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Abstract

Background: Perturbed lipid metabolic pathways may play important roles in the devel-

opment of cardiovascular disease (CVD). However, existing epidemiological studies have

focused more on discovering individual lipid metabolites for CVD risk prediction rather

than assessing metabolic pathways.
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Methods: This study included a subcohort of 787 participants and all 230 incident CVD

cases from the PREDIMED trial. Applying a network-based analytical method, we identi-

fied lipid subnetworks and clusters from a global network of 200 lipid metabolites and

linked these subnetworks/clusters to CVD risk.

Results: Lipid metabolites with more double bonds clustered within one subnetwork,

whereas lipid metabolites with fewer double bonds clustered within other subnetworks.

We identified 10 lipid clusters that were divergently associated with CVD risk. The hazard

ratios [HRs, 95% confidence interval (CI)] of CVD per a 1-standard deviation (SD) incre-

ment in cluster score were 1.39 (1.17–1.66) for the hydroxylated phosphatidylcholine

(HPC) cluster and 1.24 (1.11–1.37) for a cluster that included diglycerides and a mono-

glyceride with stearic acyl chain. Every 1-SD increase in the score of cluster that included

highly unsaturated phospholipids and cholesterol esters was associated with an HR for

CVD of 0.81 (95% CI, 0.67–0.98). Despite a suggestion that MedDiet modified the associa-

tion between a subnetwork that included most lipids with a high degree of unsaturation

and CVD, changes in lipid subnetworks/clusters during the first-year follow-up were not

significantly different between intervention groups.

Conclusions: The degree of unsaturation was a major determinant of the architecture of

lipid metabolic network. Lipid clusters that strongly predicted CVD risk, such as the HPC

cluster, warrant further functional investigations.

Key words: Lipid network, Mediterranean diet, cardiovascular disease

Introduction

Hundreds of thousands of structurally diverse lipids play im-

portant roles in cellular signalling and energy storage as well

as the structure of biological membranes, and may be in-

volved in the pathological alterations of cardiovascular dis-

ease (CVD).1 However, our current understanding of the role

of lipids in the pathogenesis of CVD is mainly confined to

broad classes of plasma lipid markers, such as total triglycer-

ides (TG) and low-density lipoprotein cholesterol (LDL-C),

rather than individual lipid molecules. Lipidomics provide

powerful and high-throughput tools to obtain structural

details of a specific lipid metabolite, such as the polar head

group, the covalent nature of the linkage with fatty acid

chains, the length of the aliphatic chain of fatty acid and the

amount of double bonds. Several recent studies have used lip-

idomics for risk prediction of CVD and found divergent asso-

ciations of lipid metabolites, partially explained by their fatty

acyl group composition, with incident CVD, providing an

early glimpse into pathological alterations in lipid metabolic

pathways that promote CVD.2–6 Furthermore, some lipids,

such as ceramides7,8 and diacylglycerols (DAGs), may exert

potent biological functions, including pro-inflammatory

changes and impairment of insulin sensitivity, beyond their

fatty acyl group compositions.

Current lipidomics studies2–6 have focused more on dis-

covering individual lipid metabolites predictive of CVD

risk than assessing the perturbed pathways responsible for

pathological processes. The common practice of the studies

Key Messages

• We applied a network-based analytical approach to construct a global network of 200 plasma lipid metabolites, and

found many lipid subnetworks/clusters that may indicate perturbed pathways involved in the pathogenesis of CVD in

a subpopulation of the PREvencion con DIeta MEDiterranea (PREDIMED) trial.

• By incorporating the structural information of lipid network into the framework of regression, we found divergent

associations of the lipid subnetworks/clusters with the incidence of cardiovascular disease.

• Several lipid clusters, such as the hydroxylated phosphatidylcholine pathway and a pathway including diglycerides

and a monoglyceride with stearic acyl chain, strongly predicted the risk of cardiovascular disease.
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has mainly relied on a large number of statistically inde-

pendent tests in conjunction with stringent multiple-

comparison corrections, inherently neglected higher order

dependencies and pathways among lipid metabolites, and

has not generated reproducible findings.9 However, a ma-

trix of individual molecular entities usually exerts their

cellular functions interactively and through a network of

biochemical pathways. Furthermore, groups of metabolites

involved in the same pathway tend to be highly correlated

and associated with disease risk of similar strength and di-

rection. Therefore, the biological pathway may serve as a

more appropriate analysing unit to understand the com-

plex biological system.10 The network-based analytical

approach is a powerful tool for detecting clusters of metab-

olites that may represent biologically meaningful path-

ways. Furthermore, the network-based approach provides

a natural way for dimension reduction in high-dimensional

‘omics’ datasets. Previous studies have shown that path-

ways or clusters derived by the network-based approaches

corresponded to known biochemical interactions and

metabolic pathways.11–15 For example, Krumsiek et al.

recovered various modules from a network of plasma

metabolites that represent metabolic pathway reactions, by

applying the Gaussian graphical model.13 Compared with

traditional dimension-reduction tools, such as principal

component analysis, a major advantage of the network-

based approaches is the ability to identify small-scope

biologically meaningful pathways, which facilitates the

construction of follow-up hypotheses in a functional

context.16,17

The PREvencion con DIeta MEDiterranea (PREDIMED)

trial18,19 evaluated the effects of overall dietary pattern on

the primary prevention of CVD, and found that the

Mediterranean diet (MedDiet) enriched with extra-virgin ol-

ive oil or mixed nuts significantly reduced CVD events by

approximately 30% compared with the control diet (low-fat

diet).20 The 2015–2020 Dietary Guidelines for Americans21

and the American Heart Association (AHA)22 both recom-

mend the MedDiet for CVD prevention, based on strong

and consistent evidence on a hard CVD endpoint from

the PREDIMED trial20 and prospective cohort studies.23–26

To strengthen the evidence base of current dietary guidelines

and develop more effective dietary prevention strategies, it

is critical to investigate the underlying biological mecha-

nisms through which the MedDiet may prevent CVD. Many

mechanisms closely related to lipid metabolism, such as re-

duction of inflammation,27–31 protection of LDL-C against

oxidation,32,33 enhanced endothelial function,29,34,35 and

lower level of atherogenic lipoproteins,36 have been

proposed to be responsible for the cardiovascular benefits

of MedDiet, yet molecular-level evidence is still limited.

The present study applied a network-based analytical

approach to lipidomics data in a subpopulation from the

PREDIMED trial. We hypothesized that various subsets of

lipid metabolic network were divergently associated with

the incidence of CVD. We also investigated whether the

associations of lipid subnetworks/clusters and CVD varied

by the MedDiet interventions, and whether the MedDiet

interventions had differential effects on the changes in dif-

ferent lipid metabolic pathways from baseline to the 1-year

follow-up.

Methods

Study design and population

This study adopted a case-cohort design37,38 and consisted

of all 230 incident CVD cases diagnosed during up to a

7.4-year follow-up (average follow-up ¼ 4.8 years) and

787 randomly selected participants at baseline (subcohort,

10% of the enrolled participants) in the PREDIMED trial.

The subcohort included 37 overlapping cases of CVD. The

case-cohort design preserves random intervention assign-

ments and maintains the causal integrity of the randomized

design of the trial. The PREDIMED trial [www.predimed.

es] was conducted from 2003 through 2010 in 11 centres

in Spain, to assess the effects of the MedDiet on the pri-

mary prevention of CVD. At baseline, this trial enrolled

7447 participants aged 55–80 years with high cardiovascu-

lar risk but free from diagnosed CVD at baseline.

Participants were randomly assigned to a MedDiet supple-

mented with extra-virgin olive oil (MedDiet þ EVOO),

a MedDiet supplemented with nuts (MedDiet þ nuts) or a

control diet consisting of advice to reduce the intake of all

types of fat. The protocol was approved by the institu-

tional review boards at all study locations, and all partici-

pants provided written informed consent. Detailed

information about the PREDIMED trial can be found

elsewhere.18,20

Study samples and lipidomics profiling

All analyses used fasting (fasting for �8 h) plasma EDTA

samples collected at baseline and year 1. All samples were

processed at each recruiting centre no later than 2 h after

collection and stored in -80�C freezers. Samples from cases

and subcohort participants were randomly distributed be-

fore being shipped to the Broad Institute in Boston, MA,

for lipidomics assays. Plasma lipid metabolites were identi-

fied by the length of aliphatic chain of fatty acid and the

number of double bonds. Details of the LC-MS platform

can be found in Supplementary methods, available as

Supplementary data at IJE online.
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Ascertainment of CVD outcomes

The primary CVD outcome was a composite of non-fatal

acute myocardial infarction (AMI), non-fatal stroke or car-

diovascular death. Information on outcomes was collected

from continuous contact with participants and primary

health care physicians, annual follow-up visits, yearly ad

hoc reviews of medical charts and annual consultation of

the National Death Index. Study physicians who were

blinded to the intervention collected information on pri-

mary outcomes. Blinded to the intervention assignment,

the clinical endpoint committee adjudicated the events

according to the standard criteria.39–44

Measurements of covariates

At baseline and yearly follow-up visits, medical conditions,

family history of disease and risk factors were collected

through a questionnaire. At baseline and during annual vis-

its, participants completed a 14-item questionnaire in a

personal interview with a registered dietitian, to assess

their adherence to the MedDiet.45 At baseline and annu-

ally, trained personnel measured participants’ body weight,

height and blood pressure according to the study protocol.

Body mass index (BMI) was calculated as weight in kilo-

grams divided by height in metres squared.

Statistical analysis

We transformed concentrations of lipid metabolites to the

natural logarithm scale to render the distributions approxi-

mately Gaussian as well as to stabilize the variance. During

the network construction step, we first constructed a

global network of lipid metabolites based on partial corre-

lations with P-values �0.05 among all 200 targeted lipid

metabolites. Each partial correlation between a pair of

lipid metabolites was calculated by the Kendall rank corre-

lation analysis conditional on the remaining 198 lipid

metabolites.46 Second, we detected a limited number of

subnetworks of the global network by applying a modular-

ity detection algorithm, the Greedy Optimization, that has

been previously applied in the gene expression network

analysis.47,48 We named each subnetwork according to the

features of the major ‘hub’ metabolites (i.e. metabolites

connected with more neighbour metabolites) within it.

Differences across these subnetworks reflected potential bi-

ological mechanisms underlying the general structure of

global network. Third, we applied the Benjamini-

Hochberg (B-H) procedure to all the edges in the initial

global network and removed paths between lipid metabo-

lites at the criterion of adjusted P-values greater than 0.05.

Fourth, we repeated the modularity detection algorithm in

the global network after the removal of paths. Notably, we

found a large number of small-scope components of the

global network. These small-scope components contained

lipid metabolites that tended to be closely connected within

pathways of lipid metabolism. We named these small-

scope components ‘lipid clusters’ and investigated their

associations with CVD risk in the context of potential bio-

logical functions of each metabolic pathway.

In the network-guided regression step, we first extracted

the information of pathway structure, the topological

matrix,49 to calculate the pathway weight for each lipid me-

tabolite. The topological matrix measures not only the rela-

tionship among lipid metabolites based on the pair of lipid

metabolites themselves, but also their relationship to all

other lipid metabolites in the pathway. Details of the topo-

logical matrix can be found elsewhere.49 Second, using the

pathway weights, we calculated the subnetwork/cluster

scores as the weighted sum of levels of lipid metabolite

within each lipid subnetwork/cluster. Last, we modelled

these scores as the exposure variables in the Cox propor-

tional hazards (PH) model. We categorized all the partici-

pants into quartiles of the score for lipid subnetwork/cluster,

based on their distribution in the subcohort. Person-years of

follow-up were calculated from baseline to the earliest CVD

event, loss to follow-up or the end of follow-up. Weighted

Cox PH models stratified on intervention group assignments

(MedDiet þ EVOO, MedDiet þ nuts, and control) were ap-

plied to estimate hazard ratios (HRs) and their 95% confi-

dence intervals (CIs) of CVD risk, comparing participants in

each quartile with the lowest quartile of the subnetwork/

cluster scores, as well as HRs (95% CIs) associated with a

1-standard deviation (SD) increment in the scores. We used

the weighting scheme suggested by Barlow et al.50,51 to ac-

count for the over-representation of cases due to the case-

cohort design in the weighted Cox PH models. We also per-

formed secondary analyses on AMI and stroke separately.

All the models simultaneously adjusted for age, sex, BMI,

family history of CVD, smoking status and histories of hy-

pertension, dyslipidaemia and diabetes at baseline. In a sen-

sitivity analysis, the Cox PH models adjusted for levels of

plasma lipids [TG, LDL-C and high-density lipoprotein cho-

lesterol (HDL-C)] measured at baseline in addition to the

aforementioned covariates except history of dyslipidaemia.

To examine the cross-sectional associations of the lipid sub-

networks/clusters with plasma lipids measured in baseline

plasma samples, we applied general linear models that in-

cluded the lipid subnetwork/cluster scores as exposures and

plasma lipids [TG, total cholesterol (TC), LDL-C and HDL-

C] as outcomes.

To examine whether the associations between the lipid

subnetworks/clusters and incident CVD varied by the inter-

vention groups, we first calculated the multivariable-adjusted
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HRs of CVD separately in the MedDiet and control groups.

We then added a multiplicative term between intervention

assignment and the score into the multivariable Cox PH

models, to test interaction using the likelihood ratio test.

We compared the temporal (1-year) changes in the lipid sub-

network/cluster scores between intervention and control

groups, using a linear mixed model. The PREDIMED trial

recently reported some irregularities in the randomization

procedures, which affected a small subset of participants.20

To address this issue, we additionally adjusted for two pro-

pensity scores (built with 30 predictors of intervention alloca-

tion)20 and applied robust estimates of the variance to correct

for intracluster correlation in the Cox PH model for testing

the interactions between the lipid subnetworks/clusters and

intervention groups, and in the linear mixed model for com-

paring temporal changes in the lipid subnetwork/cluster

scores between intervention groups. We also examined the

associations of 1-year changes in the lipid subnetwork/cluster

scores with the incident CVD cases that occurred from the

third year to the end of follow-up. All analyses were per-

formed using R software, version 3.3.2 (R Core Team) and

SAS software, version 9.4 (SAS Institute, NC).

Results

Characteristics of study participants and global

network of lipid metabolites

The baseline characteristics of the subcohort were very simi-

lar to those of the full cohort in the PREDIMED trial20

(Table 1). We observed high correlations among 200 targeted

lipid metabolites measured in plasma samples collected at

baseline. The correlations were particularly high among indi-

vidual lipid metabolites within the same lipid subclass

(Supplementary Figure 1, available as Supplementary data at

IJE online). In the global network of lipid metabolites, each

vertex represented a lipid metabolite and each path stood

for a significant partial correlation between a pair of

lipid metabolites (Supplementary Figure 2, available as

Supplementary data at IJE online). Among the major subnet-

works of lipid metabolites, three subnetworks were partially

overlapped. In general, most lipid metabolites with a larger

number of double bonds clustered within the same subnet-

work (named ‘unsaturated subnetwork’), whereas most lipid

metabolites with a smaller number of double bonds clustered

within the other three subnetworks [named ‘saturated phos-

pholipid subnetwork’, ‘saturated glyceride subnetwork’ and

‘monoacylglyceride (MAG) subnetwork’, Figure 1 and

Supplementary Figures 3–6, available as Supplementary data

at IJE online]. Supplementary Table 1, available as

Supplementary data at IJE online, shows the lipid metabo-

lites that were included in each subnetwork. Using the ratio

of number of double bonds to length of aliphatic chain of

fatty acid as a measure of unsaturation for a specific lipid me-

tabolite, we found that the average ratios were 0.07 for the

saturated phospholipid subnetwork, 0.15 for the unsaturated

subnetwork, 0.06 for the saturated glyceride subnetwork and

0.04 for the MAG subnetwork. The components of the satu-

rated phospholipid subnetwork were diverse; the major ‘hub’

metabolites included sphingomyelins and cholesterol esters

(CE) with saturated fatty acyl chains as well as various phos-

phatidylcholines (PCs) and phosphatidylcholine plasmalo-

gens with fewer double bonds (Supplementary Figure 3,

available as Supplementary data at IJE online). Lipid metab-

olites with unsaturated fatty acyl chains, such as triacylgly-

cerides (TAGs) (58: 11, 56: 7, 58: 8 and 60: 12), CE (20: 5),

and PC (40: 10), were the major ‘hubs’ within the unsatu-

rated subnetwork (Supplementary Figure 4, available as

Supplementary data at IJE online). The major components of

the saturated glyceride subnetwork were TAGs and DAGs

with fewer double bonds (Supplementary Figure 5, available

as Supplementary data at IJE online). The MAG subnetwork

with DAG (36: 0) as the ‘hub’ metabolite was relatively small

and included six lipid metabolites (Supplementary Figure 6,

available as Supplementary data at IJE online).

Table 1 shows that participants with a higher score for

the saturated phospholipid subnetwork had a higher preva-

lence of hypertension (Ptrend ¼ 0.03), but lower prevalence

of diabetes and current smoking (both Ptrend <0.001) at

baseline. The score for the unsaturated subnetwork was in-

versely associated with age (Ptrend <0.001) and prevalence

of diabetes (Ptrend ¼ 0.02), but positively associated with

the prevalence of dyslipidaemia (Ptrend <0.001).

Participants with a higher score of the saturated glyceride

subnetwork had higher BMI (Ptrend <0.001) and preva-

lence of diabetes (Ptrend ¼ 0.01). Participants with a higher

score of the MAG subnetwork had a non-significantly

higher score that measured the adherence to MedDiet.

Major lipid subnetworks and CVD

The four major subnetworks were associated with the inci-

dence of CVD in divergent directions (Table 2). The HR of

CVD comparing extreme quartiles of the score for the

unsaturated subnetwork was 0.62 (95% CI, 0.39–1.00,

Ptrend ¼ 0.007) after adjusting for age, sex, BMI, family

history of CVD and smoking status. The association was

attenuated after further adjustment for baseline hyperten-

sion, dyslipidaemia and diabetes but remained significant;

every 1-SD increment in the score for the unsaturated sub-

network was associated with a 19% decrease in the risk of

CVD (HR ¼ 0.81, 95% CI, 0.67–0.98). The scores for the

saturated phospholipid subnetwork and saturated glycer-

ide subnetwork were each positively associated with
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CVD risk. The HRs of CVD, comparing extreme quartiles,

were 1.76 (95% CI, 1.09-2.86, Ptrend ¼ 0.04) for the score

of the saturated phospholipid subnetwork and 1.57 (95%

CI, 0.94-2.64, Ptrend ¼ 0.04) for the score of the saturated

glyceride subnetwork in the final models. We found a sig-

nificant positive association between the score of the MAG

subnetwork and the incidence of CVD in the model adjust-

ing for major risk factors and confounding factors, but this

association became marginally significant in the final

model. Secondary analyses on stroke and AMI yielded gen-

erally similar associations between baseline subnetwork

scores and the specific CVD outcomes, compared with the

main analysis of the composite CVD outcome

(Supplementary Table 2, available as Supplementary data

at IJE online).

We found a suggestion of a significant interaction be-

tween the MedDiet intervention and the score of the unsat-

urated subnetwork (Pinteraction ¼ 0.04, Supplementary

Figure 1. Major lipid subnetworks detected from a global network of 200 plasma lipid metabolites in a subcohort of 787 participants and all 230 inci-

dent cases of cardiovascular diseases from the PREDIMED trial.

The digits after the first period stand for number of carbon atoms on the fatty acyl chain. The digits after the second period stand for number of dou-

ble bonds. Size of vertex is in proportion to �log (P-value) of the hazard ratio (HR) for the risk of composite cardiovascular disease endpoint associ-

ated with 1-standard deviation increment in the concentration of individual lipid metabolite. Square vertex corresponds to lipid metabolite associated

with HR <1.00. Circle vertex corresponds to lipid metabolite with HR� 1.00. Average of unsaturation for each major subnetwork was measured as the

average of the ratios of number of double bonds to length of aliphatic chain of fatty acid for specific lipid metabolites with the major subnetwork.

Phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine plasmalogen (PEP), phosphatidylserine (PS), phos-

phatidylserine plasmalogen (PSP), phosphatidylinositol (PI), Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylcholine plasmal-

ogen (PCP), hydroxylated phosphatidylcholine (HPC), cholesterol esters (CE), diacylglycerol (DAG), monoacylglycerol (MAG), triacylglycerol (TAG),

sphingomyelins (SM), ceramide (Cer).
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Table 3, available as Supplementary data at IJE online).

Every 1-SD increment in the score of the unsaturated sub-

network was associated with an HR of 0.73 (95% CI,

0.56-0.93) in the MedDiet group and an HR of 0.97 (95%

CI, 0.71-1.32) in the control diet group.

Lipid clusters and CVD

We identified 10 lipid clusters and examined their associa-

tions with the incidence of CVD (Figure 2; and

Supplementary Table 4, available as Supplementary data

at IJE online). The ceramide cluster, the DAG and MAG

cluster and the hydroxylated phosphatidylcholine (HPC)

cluster included limited numbers of lipid metabolites and

were each strongly associated with increased risk of CVD;

the positive associations remained significant even after

multiple comparison adjustment (Figure 2). The unsatu-

rated phospholipid cluster predominantly consisted of

phospholipids and CEs with more double bonds, and was

associated with a decreased risk of CVD (HR per 1-SD in-

crement in the cluster score ¼ 0.83, 95% CI, 0.70-0.99,

Figure 2). The saturated triglyceride cluster included a

large number of DAGs and TAGs with saturated fatty acyl

chains and was associated with an increased risk of CVD

(HR per 1-SD increment in the cluster score ¼ 1.20, 95%

CI, 1.01-1.44, Figure 2). The score of the phosphocholine

cluster, a cluster that comprised phospholipids with a

smaller number of double bonds, was positively associated

with CVD risk, but the association was marginally signifi-

cant (HR per 1-SD increment in the pathway score ¼ 1.17,

95% CI, 0.99-1.38, Figure 2). We observed many plasmal-

ogen phospholipids in the plasmalogen cluster, and TAGs

with a low degree of unsaturation in the saturated triglyc-

eride cluster (Figure 2). The two lipid clusters were not as-

sociated with CVD risk in the final model.

Changes in lipid subnetworks/clusters

We observed similar trends from baseline to the 1-year

follow-up in the lipid subnetwork/cluster scores when

comparing each MedDiet group with the control group

(Supplementary Table 6, available as Supplementary data

at IJE online). Changes in the scores of lipid subnetwork/

clusters from baseline to 1-year follow-up were generally

Table 2. Associations between baseline scores of the major lipid subnetwork and the incidence of cardiovascular disease

Quartiles of major subnetwork scorea HR per Ptrend

Q1 Q2 Q3 Q4 1-SD increment

Saturated phospholipid subnetwork

Cases 55 75 49 51

MV1b Ref. 1.41 (0.93, 2.15) 1.10 (0.70, 1.73) 1.38 (0.86, 2.23) 1.12 (0.95, 1.32) 0.18

MV2c Ref. 1.41 (0.92, 2.16) 1.11 (0.70, 1.76) 1.43 (0.87, 2.34) 1.14 (0.96, 1.35) 0.13

MV3d Ref. 1.49 (0.96, 2.32) 1.37 (0.83, 2.23) 1.57 (0.94, 2.64) 1.20 (1.01, 1.44) 0.04

Unsaturated subnetwork

Cases 72 65 47 46

MV1 Ref. 0.97 (0.64, 1.46) 0.62 (0.40, 0.96) 0.63 (0.40, 1.00) 0.78 (0.65, 0.93) 0.006

MV2 Ref. 0.92 (0.61, 1.41) 0.61 (0.39, 0.96) 0.62 (0.39, 1.00) 0.78 (0.65, 0.93) 0.007

MV3 Ref. 1.00 (0.65, 1.55) 0.65 (0.42, 1.03) 0.71 (0.44, 1.15) 0.81 (0.67, 0.98) 0.03

Saturated glyceride subnetwork

Cases 48 58 58 66

MV1 Ref. 1.25 (0.80, 1.94) 1.28 (0.81, 2.02) 1.86 (1.18, 2.93) 1.28 (1.08, 1.52) 0.005

MV2 Ref. 1.29 (0.82, 2.04) 1.25 (0.79, 1.98) 1.81 (1.13, 2.90) 1.25 (1.04, 1.49) 0.02

MV3 Ref. 1.33 (0.82, 2.14) 1.18 (0.73, 1.92) 1.76 (1.09, 2.86) 1.22 (1.01, 1.47) 0.04

Monoglyceride subnetwork

Cases 37 62 64 67

MV1 Ref. 1.57 (0.99, 2.50) 1.73 (1.08, 2.76) 1.74 (1.09, 2.79) 1.18 (1.02, 1.38) 0.03

MV2 Ref. 1.57 (0.98, 2.51) 1.68 (1.04, 2.70) 1.74 (1.08, 2.78) 1.18 (1.01, 1.38) 0.04

MV3 Ref. 1.51 (0.93, 2.45) 1.59 (0.97, 2.61) 1.63 (0.99, 2.69) 1.15 (0.98, 1.36) 0.09

MV, multivariable model; ref., reference category.
aQuartiles were calculated based on the distributions of subnetwork score among the subcohort.
bModel 1 stratified on intervention group and simultaneously adjusted for age (continuous), sex (male, female) and other major subnetwork scores.
cModel 2 adjusted for body mass index (continuous), family history of cardiovascular disease (yes, no), and smoking status (current, never, former) in addition

to model 1.
dModel 3 adjusted for histories of hypertension, dyslipidaemia and diabetes at baseline in addition to model 2.
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Figure 2. Lipid clusters and their associations with the incidence of cardiovascular disease in a subcohort of 787 participants and all 230 incident cases

of cardiovascular diseases from the PREDIMED trial.
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Figure 2. Continued

The small-scale lipid clusters represent pathways of lipid metabolism. The digits after the first period stand for number of carbon atoms on the fatty

acyl chain. The digits after the second period stand for number of double bonds. Size of vertex is in proportion to �log (P-value) of the hazard ratio

(HR) for the risk of composite cardiovascular disease endpoint associated with 1-standard deviation increment in the concentration of individual lipid

metabolite. Square vertex corresponds to lipid metabolite associated with HR <1.00. Circle vertex corresponds to lipid metabolite with HR� 1.00.

Hazard ratios in Figure 2K were estimated from Cox regression model stratified by intervention group and simultaneously adjusted for age (continu-

ous), sex (male, female), body mass index (continuous), family history of cardiovascular disease (yes, no), smoking status (current, never, former),

histories of hypertension, dyslipidemia, and diabetes. Phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), phosphatidylethanol-

amine plasmalogen (PEP), phosphatidylserine (PS), phosphatidylserine plasmalogen (PSP), phosphatidylinositol (PI), Phosphatidylcholine (PC), lyso-

phosphatidylcholine (LPC), phosphatidylcholine plasmalogen (PCP), hydroxylated phosphatidylcholine (HPC), cholesterol esters (CE), diacylglycerol

(DAG), monoacylglycerol (MAG), triacylglycerol (TAG), sphingomyelins (SM), ceramide (Cer).
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not associated with subsequent risk of CVD, except a sug-

gestion of increased risk of CVD associated with the in-

crease in score for the MAG subnetwork and MAG and

DAG cluster (Supplementary Table 7, available as

Supplementary data at IJE online).

Lipid subnetworks/clusters, conventional lipid

markers and CVD

In the cross-sectional analysis on the lipid subnetwork/

cluster scores and conventional lipid markers, participants

with a higher score for the unsaturated subnetwork had

significantly higher plasma levels of all four lipid markers

(all Ptrend <0.01; see Supplementary Table 8, available as

Supplementary data at IJE online). The score for the satu-

rated phospholipid subnetwork was positively associated

with the levels of LDL-C, HDL-C and TC (all Ptrend

<0.001). We observed significantly positive associations

between the score for the saturated glyceride subnetwork

and levels of TG and TC, but a significantly inverse associ-

ation between the score and level of HDL-C (all Ptrend

<0.001). The score for the MAG subnetwork was associ-

ated with none of the conventional lipid markers. Among

the 10 lipid clusters, the scores for the phosphocholine

cluster, unsaturated phospholipid cluster, plasmalogen

cluster and lysophospholipid cluster were positively asso-

ciated with the levels of all the lipid markers (all Ptrend

<0.05). Participants with a higher score for the sphingo-

myelin cluster had significantly higher levels of LDL-C,

HDL-C and TC (all Ptrend <0.001). The score for the cer-

amide cluster was associated with higher plasma levels of

LDL-C, TC and TG (all Ptrend <0.001), but was not asso-

ciated with plasma HDL-C. We observed positive associa-

tions of the score for the saturated triglyceride cluster with

the plasma levels of TC and TG, but an inverse association

between the score and HDL-C (all Ptrend <0.001). The

score for the unsaturated triglyceride cluster was inversely

associated with the level of HDL-C (Ptrend ¼ 0.008) but

positively associated with the level of TG (Ptrend <0.001).

The DAG and MAG cluster and the HPC cluster were as-

sociated with none of the conventional lipid makers. Most

associations between lipid subnetworks/clusters and CVD

remained largely unchanged in the sensitivity analysis that

adjusted for plasma levels of LDL-C, HDL-C and TG in-

stead of baseline history of dyslipidaemia (Supplementary

Table 5, available as Supplementary data at IJE online).

Nevertheless, the associations for the saturated glyceride

subnetwork and the saturated triglyceride cluster were at-

tenuated, whereas the association for the unsaturated tri-

glyceride cluster became stronger in the sensitivity

analysis.

Discussion

We applied a network-based analytical approach to disen-

tangle interactive relationships among lipid metabolites in

the plasma lipidomics data from the PREDIMED trial.

We detected four major subnetworks based on the topolog-

ical structure of the global network, through which we

found the degree of unsaturation of lipid metabolites as the

major determinant of the general architecture of the global

network. We also identified 10 biologically meaningful

lipid clusters. By incorporating the structural information

of lipid network into the framework of regression, we

found divergent associations of the lipid subnetworks/clus-

ters with CVD risk. Several lipid clusters, such as the HPC

cluster and a cluster that included DAGs and a MAG

with stearic acyl chain, strongly predicted CVD risk; these

strong associations appeared to be independent of their

degrees of unsaturation. There is a suggestion that the

MedDiet intervention could modify the inverse association

between the lipid subnetwork with high degree of

unsaturation and CVD risk. However, the lipid subnet-

works/clusters remained relatively stable under the

MedDiet intervention during the first-year follow-up.

Most lipid subnetworks and clusters showed significant

associations with conventional lipid markers, whereas the

DAG and MAG cluster and HPC cluster were not associ-

ated with the lipid markers. In addition, adjusting for levels

of conventional lipids in the multivariable model did not

materially attenuate the associations of most lipid subnet-

works/clusters with CVD risk.

Largely driven by the degree of unsaturation of individ-

ual lipid metabolites, the initial clustering of the lipid

metabolites generated four major subnetworks divergently

associated with CVD risk. Our results corroborated

Stegemann et al.’s findings that plasma lipid metabolites

with more double bonds were generally associated with a

lower risk of CVD, whereas those with fewer double bonds

were generally associated with a higher risk of CVD in the

Bruneck study.4 Nevertheless, a recent lipidomics study

within the ADVANCE (Action in Diabetes and Vascular

Disease: PreterAx and DiamicroNMR Controlled

Evaluation) trial failed to identify such a relationship be-

tween the degree of unsaturation of lipid metabolites, par-

ticularly for TAGs, and CVD risk.6 However, the fact that

all the participants in the ADVANCE study were type 2 di-

abetes patients might be one explanation for the difference

from Stegemann et al.’s findings and our observations.

Lipid metabolites with a high degree of unsaturation, in-

cluding PCs, CEs, and TAGs that contain polyunsaturated

fatty acids (PUFAs), particularly eicosapentanoic acid

(EPA), docosahexanoic acid (DHA), docosapentaenoic

acid (DPA), and arachidonic acid (AA), tended to cluster in
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one subnetwork (unsaturated subnetwork). The high cor-

relations among PUFA-rich lipid metabolites reflected that

dietary intake is the predominant source of PUFAs con-

tained in these metabolites. The observed association

between this major subnetwork and decrease CVD risk

was supported by the well-established evidence that high

PUFA intake predicts a lower risk of CVD.52–54

We observed a stronger inverse association of the unsat-

urated subnetwork with CVD risk in the MedDiet inter-

vention, compared to that in the control group, with a

significant test of interaction. The MedDiet is character-

ized by the following: a high intake of virgin olive oil, fruit,

nuts, vegetables, and cereals; a moderate intake of fish

and poultry; a low intake of dairy products, red meat,

processed meats, and sweets; and wine in moderation,

consumed with meals.55 In conjunction with two supple-

mentary foods, extra-virgin olive oil or mixed nuts, the

interventions in the PREDIMED trial might have improved

dietary fat quality through decreasing saturated fat intake

and increasing MUFA and PUFA intakes, and modulated

de novo lipogenesis with higher intake of low-glycemic

index food, and therefore boosted the cardio-protective

effect of the subnetwork rich in PUFAs. Lipid metabolites

with SFAs and MUFAs tended to clustered in three major

subnetworks that were associated with higher CVD risk.

Unlike PUFAs, the sources of SFAs and MUFAs contained

in the lipid metabolites are diverse because they can be

either derived from dietary sources or synthesized via the

de novo lipogenesis pathway primarily in the liver. In addition,

most dietary or endogenously synthesized SFAs are rapidly

converted to MUFAs by the action of steroyl-CoA desaturase

1.56 There is ample evidence supporting a mechanistic link of

SFA and MUFA metabolism and high SFA intake, especially

when substituted for PUFA, with CVD risk in part by promot-

ing dyslipidemia.57 Furthermore, atherogenic apolipoprotein B

(ApoB)-containing lipoproteins preferentially carry MUFA-

rich lipids; these ApoB-containing lipoprotein particles have

enhanced ability to bind to arterial proteoglycans and retain in

the artery wall.58,59

Among the small-scope lipid clusters, two were associ-

ated with lower risk of CVD. The unsaturated phospholipid

cluster featured CEs and phospholipids that contain PUFAs

and was inversely associated with CVD risk. The unsatu-

rated triglyceride cluster was enriched by TAGs containing

PUFAs and was only marginally associated with a lower

risk of CVD. Mechanistic evidence supports that PUFA-rich

CEs were causally linked to the development of atheroscle-

rosis, but it is still debatable whether lipoprotein-associated

TGs are mechanistically involved in the pathogenesis of

CVD. Some argued that these TGs were simply carried to-

gether with CEs in the same lipoprotein class, rather than

exerting causal functions in atherogenesis.58,60

It is possible that high abundance of PUFA-rich phospho-

lipids is indicative of high anti-oxidative capacity because

PUFAs are a primary target of oxidizing radicals during the

phospholipid oxidation.61 Oxidized phospholipids mediated

the strong association between lipoprotein (a) and CVD risk

through inducing monocyte trafficking to the arterial wall

and pro-inflammatory responses.62 Notably, we linked a

lipid cluster (DAG and MAG cluster) featured by DAGs

and a MAG that contained stearic acid to increased CVD

risk. Previous mechanistic studies have showed that accu-

mulation of DAGs, particularly those with SFA, led to the

inhibition of insulin-stimulated insulin receptor kinase phos-

phorylation of the insulin receptor substrate proteins and an

impaired activation of the downstream insulin-signaling cas-

cade.63–65 Meikle and colleagues reported decreased levels

of circulating plasmalogens in patients with either stable or

unstable coronary heart disease, compared with healthy

controls, suggesting that a depletion of plasmalogens was in-

dicative of oxidative stress and high risk of atherosclerosis.66

However, our data did not support that the lipid cluster that

included most plasmalogens (plasmalogen cluster) was asso-

ciated with CVD risk. A possible explanation of the discrep-

ancy could be that plasmalogen levels were indicative of

plaque stability in Meikle et al’s study, but not a predictor

of atherogenesis and incident CVD in our study. Consistent

with findings from previous studies, including our recent re-

port from the PREDIMED trial,67,68 the ceramide cluster

was associated with elevated CVD risk. The role of ceram-

ides in the development of insulin resistance has been inten-

sively studied.69–72 Human studies have observed positive

correlations between plasma ceramide concentrations and

inflammatory makers (e.g. interleukin-673 and TNF-a74)

suggesting a relationship between excess ceramides and in-

flammation. Ceramides may contribute to plaque erosion75

and cardiomyopathy.76 The strong and positive association

between the pathway that included two HPCs and CVD

risk was novel and possibly suggested an important role of

lipid oxidation in the pathogenic process of CVD.77 A re-

cent report from the Women’s Health Initiative also found

the positive associations of plasma HPCs with the risk of

CVD.78 Nevertheless, this finding should be further repli-

cated in the future studies and investigated in mechanistic

studies.

We explored the interrelationships among lipid subnet-

works/clusters, conventional lipid markers, and CVD risk.

The lipid subnetwork/cluster with a low degree of unsatu-

ration (saturated glyceride subnetwork and saturated TAG

cluster) was associated with high levels of TG and TC and

low level of HDL-C, an atherogenic profile of conventional

lipid markers. Moreover, the associations between the lipid

subsets and the risk of CVD appeared to be mediated by

mechanisms related to lipoprotein metabolism. On the
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contrary, the lipid subsets (unsaturated subnetwork and

unsaturated phospholipid cluster) that mainly consisted of

lipid metabolites (particularly glycerides and phospholi-

pids) with a high degree of unsaturation were associated

with different lipid fractions in the same direction.

Furthermore, the inverse associations between the lipid

sets with a high degree of unsaturation and the risk of

CVD remained largely unchanged or even became stronger

after adjusting for conventional lipid markers in the model,

suggesting a potential cardioprotective effect of the lipid

sets beyond lipoprotein metabolism. These findings were

important in the era when individuals can readily achieve

recommended LDL-C levels through the use of lipid-

lowering medication. With low LDL-C levels, the relative

contribution of composition of lipoprotein particles other

than CEs (e.g. TAGs and phospholipids) and the composi-

tion of fatty acid to CVD risk may increase.79 The DAG

and MAG cluster and HPC cluster were associated with

none of the conventional lipid makers and were robustly

associated with an increased risk of CVD independent of

the conventional lipid markers, suggesting pathways (e.g.

lipid oxidation and insulin-signaling pathways) other than

lipoprotein metabolism that contributed importantly to the

pathogenesis of CVD. All these observations further sup-

ported the added values of a detailed investigation of spe-

cific lipid metabolites compared with summary measures

of lipids.

Our results should be interpreted in the context of sev-

eral limitations. First, our lipidomics methods could not

provide identification among isomers of lipid metabolite;

molecular species that are more precise remain unknown.

Secondly, participants were recruited based on their high

CVD risk. Therefore, our findings might not be applicable

in populations with low CVD risk. Thirdly, participants of

this project were mostly European Caucasians, which

might limit the generalizability of our findings to other

populations. Fourthly, we cannot examine whether the

results can be replicated in an independent population.

Therefore, our findings should be interpreted as largely

exploratory and warrant independent replication in the

future. Finally, even though we carefully adjusted for many

potential confounders, residual confounding could not be

ruled out.

Our study possesses several major strengths. First, this

study was built on a large, successful randomized controlled

trial of primary prevention of hard clinical CVD endpoints

with an intervention aiming to change the whole dietary

pattern, which provided a unique and powerful setting to

address our research questions, because of its well-

characterized study population, high compliance to the

interventions, and low rates of drop-out. Second, as a major

advantage over traditional dimension-reduction methods

(e.g. factor analysis and principle component analysis), our

analytical approaches were able to identify many biologi-

cally meaningful and small-scope metabolic pathways and

link these pathways to disease outcome, which naturally im-

proved the interpretability of findings and facilitated the

construction of follow-up hypotheses in a functional con-

text. Third, the case-cohort design preserved the random-

ized design of this intervention trial and maintained the

causal integrity of a randomized exposure status. Fourth,

network-guided regression incorporated topological infor-

mation as weights. This outcome-independent weighting

scheme could address the concern over potential model

overfitting embedded in using regression coefficients as

weights to combine multiple metabolites (a popular weight-

ing approach in metabolomics and lipidomics studies), and

therefore improve robustness and reliability of statistical in-

ference. Compared to unweighted subnetwork/cluster

scores, this weighting scheme appeared to enhance the study

efficiency for most subnetworks/clusters that have relatively

large number of lipid metabolites (Supplementary Table 5,

available as Supplementary data at IJE online).

In summary, by applying a network-based analytical

method, our study constructed a global network of a large

number of lipid metabolites and uncovered the lipid sub-

networks and clusters that may indicate perturbed path-

ways involved in the pathogenesis of CVD. In addition, we

directly incorporated topological information of network

into a regression analysis and found that different meta-

bolic pathways were divergently associated with CVD

risk. Further studies are warranted to replicate

these results in other populations and investigate potential

mechanisms.

Supplementary Data

Supplementary data are available at IJE online.
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