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Abstract

Introduction: Interval cancers are tumors arising after a negative screening episode and before the next screening
invitation. They can be classified into true interval cancers, false-negatives, minimal-sign cancers, and occult tumors
based on mammographic findings in screening and diagnostic mammograms. This study aimed to describe
tumor-related characteristics and the association of breast density and tumor phenotype within four interval cancer
categories.

Methods: We included 2,245 invasive tumors (1,297 screening-detected and 948 interval cancers) diagnosed from
2000 to 2009 among 645,764 women aged 45 to 69 who underwent biennial screening in Spain. Interval cancers
were classified by a semi-informed retrospective review into true interval cancers (n = 455), false-negatives (n = 224),
minimal-sign (n = 166), and occult tumors (n = 103). Breast density was evaluated using Boyd’s scale and was
conflated into: <25%; 25 to 50%; 50 to 75%; >75%. Tumor-related information was obtained from cancer registries
and clinical records. Tumor phenotype was defined as follows: luminal A: ER+/HER2- or PR+/HER2-; luminal B: ER
+/HER2+ or PR+/HER2+; HER2: ER-/PR-/HER2+; triple-negative: ER-/PR-/HER2-. The association of tumor phenotype
and breast density was assessed using a multinomial logistic regression model. Adjusted odds ratios (OR) and
95% confidence intervals (95% CI) were calculated. All statistical tests were two-sided.

Results: Forty-eight percent of interval cancers were true interval cancers and 23.6% false-negatives. True
interval cancers were associated with HER2 and triple-negative phenotypes (OR = 1.91 (95% CI:1.22-2.96),
OR = 2.07 (95% CI:1.42-3.01), respectively) and extremely dense breasts (>75%) (OR = 1.67 (95% CI:1.08-2.56)).
However, among true interval cancers a higher proportion of triple-negative tumors was observed in predominantly
fatty breasts (<25%) than in denser breasts (28.7%, 21.4%, 11.3% and 14.3%, respectively; <0.001).
False-negatives and occult tumors had similar phenotypic characteristics to screening-detected cancers, extreme breast
density being strongly associated with occult tumors (OR = 6.23 (95% CI:2.65-14.66)). Minimal-sign cancers were
biologically close to true interval cancers but showed no association with breast density.
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Conclusions: Our findings revealed that both the distribution of tumor phenotype and breast density play specific and
independent roles in each category of interval cancer. Further research is needed to understand the biological basis of
the overrepresentation of triple-negative phenotype among predominantly fatty breasts in true interval cancers.
Introduction
The main goal of mammographic screening is to reduce
mortality and morbidity from breast cancer through
early detection. However, women with interval cancer
do not benefit from early detection, as their tumors are
detected clinically after a negative screening episode and
before the following screening invitation [1].
Interval cancers can be distinguished into four cat-

egories by the retrospective review of both screening
and diagnostic mammograms: a) true interval cancers
are those that showed normal or benign features in the
previous screening mammogram; b) false-negative can-
cers are detected when signs suspicious for malignancy
are retrospectively seen on a mammogram; c) minimal-
signs are cancers showing detectable but non-specific
signs at the latest screening; and d) occult tumors are
those that present clinical signs of the disease despite a
lack of mammographic abnormalities either at screening
or at diagnosis. The European guidelines recommend
first reviewing the screening films without histopatho-
logical information, and then using the screening and
diagnostic films for the definitive classification. This
practice involves substantial effort and is not normally
routinely performed [1,2]. This explains why there are
few large series with specific information on interval
cancer categories, especially series providing biological
information [3]. Studies evaluating interval cancers and
following the recommendations of the European guide-
lines have found that about half are true interval can-
cers, over 20% are false negatives [3-5], and fewer than
20% are occult tumors and minimal-sign cancers [5,6].
There is evidence that interval cancers are more likely

to have less favorable molecular features than screening-
detected cancers, such as a high proportion of tumors
not expressing estrogen receptor (ER negative, ER-) or
progesterone receptor (PR negative, PR-) [4,7-9]. Some
studies have reported a higher proportion of triple-
negative cancers (ER-, PR-, human epidermal growth
factor receptor 2 (HER2)-) among interval cancers [7,10]
and this increase is even higher if only the subset of true
interval cancers is considered in comparison to screening-
detected cancers [4]. So far, this tumor phenotype lacks the
benefit of specific adjuvant therapy and is associated with
an aggressive behavior pattern and poor prognosis [11].
Breast density has also been related to interval cancer.

There is increasing evidence that women with dense
breasts are more likely to be diagnosed with interval
cancer [12-14], but the role of breast density has not yet
been elucidated [13,15]. A masking effect, which would
contribute to hide the tumors [15], as well as a biological
effect related to tumor growth [16], has been purposed.
Because breast density influences both the risk and de-
tection of breast cancer, as well as the likelihood of de-
veloping certain pathological subtypes [17,18], studying
this factor in interval cancers would be of great interest.
We hypothesized that the roles of tumor phenotype

and that of breast density differ in distinct categories of
interval cancers. The aim of this study was to describe
the tumor-related characteristics of true interval cancers,
false negatives, minimal-sign cancers and occult tumors,
and to assess the association of breast density and tumor
phenotype in the four interval cancer categories. This
study provides a comprehensive approach to the four
categories of interval breast cancer identified from
one of the largest cohorts of women participating in
population-based breast cancer screening.

Methods
Setting
We performed a case–control study nested in a cohort
of 645,764 women aged 45 to 69 years, screened in
Spain between 1 January 2000 and 31 December 2006,
and followed up until June 2009. These women under-
went a total of 1,508,584 screening mammograms. Dur-
ing the study period, 5,309 cancers were detected in
routine screening mammograms and 1,669 emerged as
interval cancers, including both invasive and in situ
carcinomas.
All women resident in Spain aged 50 to 69 years are ac-

tively invited to participate in the population-based
screening program by a written letter every 2 years, fol-
lowing the European guidelines for Quality Assurance in
Mammographic Screening Recommendations [1]. This
nationwide program achieves the required standards [19].
We gathered data from five Spanish regions (Basque

Country, Canary Islands, Catalonia, Galicia, and Valencia),
covering a population of 752,487 women in 2005. Two
mammographic projections (mediolateral-oblique and
craniocaudal views) were made both in the initial and in
successive rounds, except in one program. All mammo-
grams were read by two radiologists, except in two pro-
grams, and the classification used for mammogram



Domingo et al. Breast Cancer Research 2014, 16:R3 Page 3 of 11
http://breast-cancer-research.com/content/16/1/R3
reading was BI-RADS [20]. Two regions switched to
digital mammography during 2003 to 2005.
All screening programs keep mammography registers

with data from participants and the final outcome of
screening. Once a tumor is histologically confirmed, the
woman is referred to a hospital for treatment and follow
up. They are not further invited to screening, as they are
controlled in the health care system.
Study data were collected using a protocol approved

by the ethics committee of Parc de Salut Mar (CEIC-
Parc de Salut MAR), Barcelona. Specific patient consent
was not required because we used retrospective data
from screening participants who had previously signed
information release documents.

Study population: case and control definitions
Case subjects with interval cancer and control subjects with
screening-detected cancer were drawn from women
enrolled in any of the screening programs. We used the
definition of interval cancers purposed in the European
guidelines: “primary breast cancer arising after a negative
screening episode, with or without further assessment, and
before the next invitation to screening, or within 24 months
for women who reached the upper age limit” [1]. The
overall 1,669 interval cancers were matched by screening
program and the year of the last screening mammogram to
one screening-detected cancer, that is, a pathologically-
confirmed malignant lesion identified during the screening
process. We excluded those cases and controls with no
available information on screening and diagnostic (only for
interval cancers) mammograms. Finally, we analyzed 948
interval cancers, and 1,297 screening-detected cancers.
Ductal in situ carcinomas were excluded from the analysis.

Assessment of interval cancers and breast density
classification
Interval cancers were identified by merging data from
the registers of screening programs with population-
based cancer registries, the regional Minimum Basic
Data Set (MBDS) and hospital-based cancer registries.
The use of different data sources ensured the quality
and homogeneity of the process across the study period
and regions. Population-based cancer registries covered
four out of five regions. The MBDS (based on hospital
discharges with information on the principal diagnosis)
is updated yearly and is available in all regions. All data
sources kept information on the time of diagnosis, which
allowed us to ensure that all interval cancers fitted the
case definition.
For interval cancer classification, three panels with

three experienced radiologists performed a semi-informed
retrospective review of both screening and diagnostic
mammograms through independent double reading with
arbitration. Screening mammograms were first reviewed
alone, without the radiologists seeing the diagnostic mam-
mogram and without histological information (blind re-
view). Interval cancers were provisionally classified into
positive (abnormality clearly visible and warrants assess-
ment), negative (normal mammogram), and minimal-sign
(subtle abnormality, not necessarily regarded as warrant-
ing assessment). Later, the diagnostic and screening mam-
mograms were reviewed together and interval cancers
were definitively classified into true interval cancers, false
negatives, minimal-sign cancers, and occult tumors [1]. In
the definitive classification, we ensured that the site where
the minimal signs were identified correlated with the site
of the interval cancer. When there was no correlation, the
case was considered a true interval cancer.
One radiologist from each panel determined the breast

density of the cancer-free breast, for both interval and
screening-detected cancers. Breast density was evaluated
using Boyd’s scale, a semiquantitative score of six categor-
ies using percentages of density: A: 0%; B: 1 to 10%; C: 10
to 25%; D: 25 to 50%; E: 50 to 75%; F: 75 to 100% [21]. For
purposes of assessing the impact of predominately fatty
versus increasingly dense breasts, the first three categories
were combined into the <25% group [22].

Study variables
The woman’s age at diagnosis was obtained from the
date of birth and date of the screening mammogram.
Tumor-related information (the tumor histology, grade,
size, lymph node involvement, and ER, PR, HER2, p53
and Ki67 status) was obtained from the cancer registries,
hospital-based registers, and from the clinical records.
Biomarker assessment was performed as part of the
diagnostic process in the hospitals. The positivity criteria
used by each hospital followed international recommen-
dations and their updates throughout the study period
[23,24]. Tumors were considered positive when more
than 20% and 10% of cells stained positive for Ki67 and
p53, respectively. For the histological classification, we
used ICD-O, 3rd edition. Histological grade was defined
according to the Scarff-Bloom-Richardson criteria, modi-
fied by Elson [25].
Based on the expression of ER, PR and HER2, tu-

mors were classified into four phenotypes: 1) luminal A:
ER+/HER2- or PR+/HER2-; 2) luminal B: ER+/HER2+ or
PR+/HER2+; 3) HER2: ER-/PR-/HER2+; and 4) triple-
negative: ER-, PR-, HER2- [26].

Statistical analysis
Comparisons were established between screening-detected
cancers, true interval cancers, false negatives, minimal-
sign cancers, and occult tumors. Statistical significance
was assessed using the Chi-square or Fisher exact test for
categorical variables, and one-way analysis of variance
(ANOVA) for continuous variables. If a significant
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difference was found, we calculated standardized Pearson
residuals as a measure of deviation between the ob-
served and expected values to determine which cells
contributed most to the Chi-square estimator [27].
Clinical features, age at diagnosis, breast density, bio-
marker expression, and the phenotypic classification were
compared between study groups. Then, we carried out a
stratified analysis of tumor phenotype and breast density
by study groups.
A multinomial regression analysis was computed to

determine the effect of tumor phenotype and breast
density on the odds of developing a true interval can-
cer, a false negative, a minimal-sign cancer, or an oc-
cult tumor versus screening-detected cancers. Our
final multinomial regression model was adjusted for
screening program (categorical), age (continuous),
and tumor size (categorical, <11 mm; 11 to 20 mm; 21
to −50 mm; >50 mm). The outputs were plotted,
showing the adjusted odds ratio (OR) and the 95% CI
for each category of interval cancer, which served as
the endpoints of the multinomial model.
We conducted sensitivity analyses by including or ex-

cluding screening-detected cancers diagnosed in preva-
lent screening. We tested different reference categories
for breast density (≤10%, ≤50%), and we checked the in-
clusion of covariates into the multivariate models (year
of screening mammogram, histological grade, Ki67 and
p53 status, the use of digital or analog mammography,
and menopausal status). The sensitivity analyses showed
no significant differences with respect to the definitive
multinomial model. We examined the interaction be-
tween breast density and phenotype and found a non-
significant effect within the multiple endpoints of the
multinomial model.
All P-values were based on two-sided tests and were

considered statistically significant if <0.05. Statistical
analyses were performed using the SPSS (version 12.0)
and R statistical software programs.

Results
A total of 1,297 screening-detected cancers and 948 interval
cancers were included in the analyses. Most interval
cancers were true interval cancers (n = 455, 48.0%), followed
by false negatives (n = 224, 23.6%), minimal-sign cancers
(n = 166, 17.5%) and occult tumors (n = 103, 10.9%).
Table 1 summarizes information on age at diagnosis

and tumor-related characteristics of screening-detected
cancers and interval cancer categories. Women with true
interval cancers and occult tumors were younger (mean
age 56.4 years and 55.1 years, respectively) than women
in the remaining subsets (P <0.001). Over 80% of true
interval cancers were detected 12 months after the last
screening or later, whereas 42.7% of occult tumors devel-
oped within the first 12 months. As expected, the
highest percentage of tumors ≤10 mm in size was found
among screening-detected cancers (34.8%; P <0.001).
Among interval cancers, the percentage ranged from 7.9
to 13.3% in true interval cancers and occult tumors, re-
spectively. Extremely dense breasts (>75%) were most
frequently associated with occult tumors followed by
false-negative cancers and true interval cancers (28.2,
17.0 and 16.5%, respectively, versus 11.6% in screening-
detected cancers; P <0.001).
The expression of biomarkers among study groups is

detailed in Table 2. True interval cancers were less likely
to express ER and PR than screening-detected cancers
but were more likely to overexpress HER2, p53, and
Ki67. In contrast, the molecular profile observed among
occult tumors revealed a higher percentage of ER + can-
cers (88.4 versus 82.5%) and a lower percentage of HER2+
cancers (14.1 versus 21.9%) compared with screening-
detected cancers. Molecularly, false-negative tumors were
similar to screening-detected cancers, although they
showed a higher proportion of tumors overexpressing
Ki67 (50.3 versus 40.2%). Almost 35% of minimal-sign
cancers overexpressed p53.
The distribution of tumor phenotypes among study

groups is shown in Table 3. True interval cancers and
minimal-sign tumors showed a higher proportion of
triple-negative cancers (19.9 and 17.3%, respectively),
whereas false-negative and occult tumors showed a
similar tumor phenotype profile to screening-detected
cancers.
In Table 4 is shown the distribution of tumor pheno-

types among study groups, stratified by breast density.
According to breast density, differences in phenotype dis-
tribution were statistically significant among true interval
cancers. The highest proportion of triple-negative cancers
among true interval cancers was observed in breasts with
25% lower density than in denser breasts (28.7, 21.4, 11.3
and 14.3%, respectively; P <0.001).
Adjusted OR and 95% CI estimated by multinomial re-

gression analysis are plotted in Figure 1. True interval
cancers were associated with HER2 and triple-negative
phenotypes (OR 1.91, 95% CI 1.22, -2.96; OR 2.07, 95%
CI 1.42, 3.01, respectively) and extremely dense breasts
(OR 1.67, 95% CI 1.08, 2.56). Occult tumors were over
six times more likely to develop in extremely dense
breasts (OR 6.23, 95% CI 2.65, 14.66). False-negative
cancers showed a non-significant tendency to occur in
extremely dense breasts, whereas in the adjusted model,
minimal-sign cancers showed no association with either
breast density or tumor phenotype.

Discussion
This comprehensive study suggests that true interval
and minimal-sign cancers showed similar tumor pheno-
type distribution, with almost 20% of these tumors being



Table 1 Comparison of age at diagnosis and tumor characteristics at diagnosis between screening-detected cancers
(n = 1,297) and interval cancers (n = 948)

Screening-detected cancers True interval cancers False negatives Minimal-sign cancers Occult tumors

n = 1,297 n = 455 n = 224 n = 166 n = 103 P-value†

Interval cancer entities, n (%)‡ 455 (48.0) 224 (23.6) 166 (17.5) 103 (10.9)

Time since last screening, n (%)

<=12 months 89 (19.6) 73 (32.7) 53 (32.1) 44 (42.7)

>12 months 364 (80.4) 150 (67.3) 112 (67.9) 59 (57.3) <0.001

Age, y, mean (95% CI) 57.6 (57.3, 57.9) 56.4 (55.9, 57.0) 57.4 (56.6, 58.1) 56.8 (56.0, 57.6) 55.1 (54.0, 56.2) <0.001

Tumor size, mm, mean (95% CI) 15.7 (15.1, 16.3) 25.3 (23.6, 26.9) 23.9 (22.1, 25.8) 22.7 (20.5, 24.8) 19.3 (17.0, 21.6) <0.001

Focality, n (%)

Unifocal 1030 (82.8) 341 (79.1) 171 (78.4) 118 (74.7) 83 (85.6)

Multifocal and/or multicentric 214 (17.2) 90 (20.9) 47 (21.6) 40 (25.3) 14 (14.4) 0.041

Unknown 53 24 6 8 6

Tumor size, n (%)

<= 10 mm 452 (34.8)* 36 (7.9)* 18 (8.0)* 22 (13.3)* 13 (12.6)*

11 to 20 mm 521 (40.2) 147 (32.3) 79 (35.3) 53 (31.9) 45 (43.7)

21 to 50 mm 233 (18.0)* 171 (37.6)* 78 (34.8)* 62 (37.3)* 23 (22.3)

>50 mm 91 (7.0)* 101 (22.2)* 49 (21.9)* 29 (17.5) 22 (21.4)* <0.001

Unknown 0 0 0 0 0

Lymph node involvement, n (%)

Negative 872 (70.2)* 195 (50.4)* 102 (54.5) 76 (49.7)* 54 (62.1)

Positive 371 (29.8)* 192 (49.6)* 85 (45.5) 77 (50.3)* 33 (37.9) <0.001

Unknown 54 68 37 13 16

Histological type, n (%)

Ductal 1039 (80.5) 349 (77.6) 165 (74.0) 129 (77.7) 70 (68.6)

Lobular 109 (8.4)* 54 (12.0) 36 (16.1)* 16 (9.6) 21 (20.6)*

Other 143 (11.1) 47 (10.4) 22 (9.9) 21 (12.7) 11 (10.8) <0.001

Unknown 6 5 1 0 1

Histological grade, n (%)

I 390 (34.9)* 57 (14.9)* 41 (21.4) 33 (22.9) 19 (22.6)

II 474 (42.4) 149 (39.0) 88 (45.8) 62 (43.1) 42 (50.0)

III 241 (21.6)* 171 (44.8)* 61 (31.8) 47 (32.6) 20 (23.8)

NA 13 (1.2) 5 (1.3) 2 (1.0) 2 (1.4) 3 (3.6) <0.001
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Table 1 Comparison of age at diagnosis and tumor characteristics at diagnosis between screening-detected cancers
(n = 1,297) and interval cancers (n = 948) (Continued)

Breast density, n (%)

<25% 510 (39.3)* 139 (30.5)* 81 (36.2) 64 (38.6) 15 (14.6)*

25 to 50% 359 (27.7) 127 (27.9) 60 (26.8) 47 (28.3) 20 (19.4)

51 to 75% 277 (21.4)* 114 (25.1) 45 (20.1) 39 (23.5) 39 (37.9)*

>75% 151 (11.6) 75 (16.5) 38 (17.0) 16 (9.6) 29 (28.2)* <0.001

Unknown 0 0 0 0 0

Missing values were excluded from the calculations of percentages. *Standardized Pearson residuals with statistically significant deviation between observed and expected values.
†P-values for comparison of characteristics among the five study groups were obtained by one-way analysis of variance for continuous variables and the Chi-square test for categorical variables. All tests were
two-sided. ‡Row percentages.
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Table 2 Biomarker expression among screening-detected cancers (n = 1,297) and distinct categories of interval cancers
(n = 948)

Screening-detected
cancers

True interval cancers False negatives Minimal-sign cancers Occult tumors

n = 1,297 n = 455 n = 224 n = 166 n = 103 P-value†

Estrogen receptor 1022 (82.5)* 283 (63.2 )* 178 (81.7) 114 (71.3) 84 (88.4) <0.001

Missing values 58 7 6 6 8

Progesterone receptor 775 (63.7)* 214 (48.2)* 128 (59.0) 86 (54.4) 60 (64.5) <0.001

Missing values 81 11 7 8 10

HER2 203 (21.9) 113 (29.1)* 44 (24.0) 31 (23.1) 11 (14.1) 0.018

Missing values 371 67 41 32 25

p53 149 (22.7) 86 (36.6)* 23 (21.5) 27 (34.6) 17 (28.8) <0.001

Missing values 641 228 117 88 44

Ki67 381 (40.2) 169 (52.5 )* 83 (50.3) 50 (41.7) 26 (39.4) 0.001

Missing values 349 133 59 46 37

Number of cases and percentage of tumors with positive biomarker expression. *Standardized Pearson residuals with statistically significant deviation between
observed and expected values. †P-values for comparison of characteristics among the five study groups were obtained by two-sided Chi-square test. HER2, human
epidermal growth factor receptor 2.
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triple negative. In contrast, false-negative and occult tu-
mors were phenotypically closer to screening-detected
cancers. High breast density was mainly associated with
occult tumors, and to a lesser extent, to true interval
cancers and false negatives. However, among true inter-
val cancers, those with the triple-negative phenotype
were more likely to occur in predominately fatty breasts
than in extremely dense breasts.
The proportion of tumors classified as true interval

cancers, false negatives, minimal-sign cancers, or occult
tumors is in line with previous series [3-6], that followed
the European guidelines for the definition and classifica-
tion of interval cancers. The percentage of false nega-
tives slightly exceeded the limit of 20% recommended by
the European guidelines, but is lower than that in other
contexts [3,28]. Nevertheless, the lack of a standardized
method for the radiological classification of interval can-
cers, together with the subjective nature of mammography
Table 3 Distribution of tumor phenotypes among screening-d
cancers (n = 948)

Screening-detected cancers True interval cancers

n = 1,297 n = 455

Tumor phenotype

Luminal A 629 (68.3) 197 (50.9)*

Luminal B 139 (15.1) 60 (15.5)

HER2 62 (6.7) 53 (13.7)*

Triple-negative 91 (9.9)* 77 (19.9)*

Unknown 376 68

Results are expressed as number (%). Tumor phenotype = Luminal A (ER+/HER2- or
Triple-negative (ER-/PR-/HER2-). *Standardized Pearson residuals with statistically sig
of tumor phenotype was compared among the study groups using the two-sided C
epidermal growth factor receptor 2.
interpretation, hamper valid comparisons between screen-
ing programs [2,28].
As expected by the lead time, all interval cancers were

larger at diagnosis and were more likely to show lymph
node involvement than screening-detected cancers. In
agreement with previous work [4,8], true interval can-
cers were those with the longest waiting time to breast
cancer diagnosis and were also the largest. However,
some studies that analyzed occult tumors and true
interval cancers together have reported that the clinical
features of this subset differed less than those of
screening-detected tumors [8]. As occult tumors were
those detected earliest after screening, resulting in a
higher proportion of small carcinomas and showing a mo-
lecular pattern similar to screening-detected cancers,
grouping true interval and occult tumors together may
lead to underestimation of the less prognostically favor-
able features of true interval cancers.
etected cancers (n = 1,297) and categories of interval

False negatives Minimal-sign cancers Occult tumors

n = 224 n = 166 n = 103 (%) P value†

124 (68.1) 79 (59.4) 62 (79.5)

29 (15.9) 18 (13.5) 8 (10.3)

14 (7.7) 13 (9.8) 3 (3.8)

15 (8.2) 23 (17.3) 5 (6.4) <0.001

42 33 25

PR+/HER2-); Luminal B (ER+/HER2+ or PR+/HER2+); HER2 (ER-/PR-/HER2+);
nificant deviation between observed and expected values. †The distribution
hi-square test. ER, estrogen receptor; PR, progesterone receptor; HER2, human



Table 4 Distribution of tumor phenotypes among screening-detected cancers (n = 1,297) and categories of interval
cancers (n = 948) stratified by breast density

Breast density

<25% 25 to 50% 50 to 75% >75% P-value†

Tumor phenotype

Screening-detected cancers

Luminal A 247 (68.6) 165 (65.5) 142 (70.3) 75 (71.4)

Luminal B 51 (36.7) 49 (19.3) 24 (11.9) 15 (14.3)

HER2 20 (5.6) 16 (6.3) 17 (8.4) 9 (8.6)

Triple negative 42 (11.7) 24 (9.4) 19 (9.4) 6 (5.7)

Unknown 150 105 25 46 0.306

True interval cancers

Luminal A 60 (52.2) 51 (45.5) 49 (50.5) 37 (58.7)

Luminal B 13 (11.3) 17 (15.2) 15 (15.5) 15 (23.8)

HER2 9 (7.8) 20 (17.9) 22 (22.7)* 2 (3.2)*

Triple negative 33 (28.7)* 24 (21.4) 11 (11.3) 9 (14.3)

Unknown 24 15 17 12 <0.001

False negatives

Luminal A 40 (62.5) 39 (75.0) 22 (64.7) 23 (71.9)

Luminal B 10 (15.6) 4 (7.7) 9 (26.5) 6 (18.8)

HER2 6 (9.4) 4 (7.7) 2 (5.9) 2 (6.3)

Triple negative 8 (12.5) 5 (9.6) 1 (2.9) 1 (3.1)

Unknown 17 8 11 6 0.375

Minimal-sign cancers

Luminal A 30 (60.0) 26 (66.7) 16 (55.2) 7 (46.7)

Luminal B 6 (12.0) 3 (7.7) 5 (17.2) 4 (26.7)

HER2 2 (4.0) 5 (12.8) 2 (6.9) 4 (26.7)

Triple negative 12 (24.0) 5 (12.8) 6 (20.7) 0 (0)

Unknown 14 8 10 1 0.081

Occult tumors

Luminal A 8 (80.0) 12 (80.0) 26 (78.8) 16 (80.0)

Luminal B 0 (0) 2 (13.3) 4 (12.1) 2 (10.0)

HER2 0 (0) 1 (6.7) 0 (0) 2 (10.0)

Triple negative 2 (20.0) 0 (0) 3 (9.1) 0 (0)

Unknown 5 5 6 9 0.296

Results are expressed as number (%). Tumor phenotypes = Luminal A (ER+/HER2- or PR+/HER2-); Luminal B (ER+/HER2+ or PR+/HER2+); HER2 (ER-/PR-/HER2+);
Triple-negative (ER-/PR-/HER2-). *Standardized Pearson residuals with statistically significant deviation between observed and expected values. †P-value assesses
the distribution of tumor phenotype distribution among breast density categories within study groups, using the two-sided Chi-square test, or Fisher exact test
when appropriate. ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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True interval and minimal-sign cancers showed simi-
larities in their patterns of biomarker expression and
tumor phenotype. Our results confirm that true interval
cancers were less likely to express hormonal receptors
[4,8,9,29] and support previous series reporting overex-
pression of HER2, p53, and Ki67 [4,9,30]. To our know-
ledge, this is the first study that provides complete
molecular characterization of minimal-sign cancers. In
line with previous evidence for the overrepresentation of
triple-negative tumors among interval cancers [4,7,10],
we found that most triple-negative tumors were concen-
trated among true interval and minimal-sign cancers. The
biological similarities shared by both entities suggest that
some minimal-sign tumors could be a more advanced
form of true interval cancer, whereas false negatives seem
to be a clearly distinct entity from minimal-sign cancers.
These two entities should not be classified together, as has
been done in some previous studies [31,32].
Breast density is a well-known risk factor for breast

cancer and particularly interval cancer [13,14], but its



Figure 1 Multinomial logistic regression model of the association of breast density and tumor phenotypes with categories of interval
cancer, adjusted for age at screening, screening program, and tumor size. The association of breast density with tumor phenotype, adjusted
by screening program (categorical), age (continuous), and tumor size (categorical, <11 mm; 11 to 20 mm; 21 to 50 mm; >50 mm), is shown
for the multiple endpoints of the multinomial logistic regression models, which are (a) true interval cancers; (b) false negatives; (c) minimal-
sign cancers and (d) occult tumors. The reference category (Ref) is screening-detected cancers. The black squares and the horizontal lines
represent the odds ratios (OR) and corresponding 95% CI, respectively. ORs are presented on the log scale. Tumor phenotype = Luminal
A: ER/HER2- or PR+/HER2-; Luminal B: ER+/HER2+ or PR+/HER2+; HER2: ER-/PR-/HER2+; Triple-negative: ER-/PR-/HER2-.
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association with tumor phenotypes remains controver-
sial. Our findings revealed that luminal cancers were
more likely to be detected in extremely dense breasts
than in predominately fatty breasts, in agreement in with
some previous studies [10,33,34], but contrasting with
others [18]. Yanhjyan et al. [18] reported a higher pro-
portion of triple-negative cancers among women with
dense breasts. However, their study design was not com-
parable with ours, as these authors did not take into ac-
count whether the cancers were detected by screening.
Unless the detection mode is considered, the association
of triple-negative cancers and breast density may be
overestimated, because tumors detected between two
screenings are more likely to be detected in women with
dense breasts and to be triple negative [15,17].
Our findings support the association of breast density

and interval cancer independently of phenotype. The asso-
ciation of breast density and true interval cancers
reinforces the hypothesis that some tumors are stimulated
by growth factors found in dense breasts [35]. However,
the overrepresentation of triple-negative tumors among
predominantly fatty breasts in true interval cancers may
reflect the aggressive behavior, rapid carcinogenesis and
nonlinear progression of this tumor phenotype, regardless
of breast density [11,36]. Further research is still needed
to understand the biological basis of the association of
breast density and tumor phenotypes, taking into account
the mode of detection. The knowledge of epidemiological
factors and radiological features predictive of an aggressive
tumor subtype, such as the triple-negative phenotype,
could add information for future personalized screening
programs in women at risk of interval cancer.
The strong association of breast density and occult

tumors pointed to a masking effect, confirming the
assumptions noted years ago by Houssami [2]. Our find-
ings also reinforce the idea that a masking effect mainly
affects cancers that developed up to 12 months after
screening [15]. Nevertheless, breast density appears to
play a lesser role in false negatives, in line with previous
series [13,37]. Breast density remains a major issue in
breast cancer screening because it is one of the variables
proposed to tailor screening [38]. Information on its role
among interval cancer categories along with data on its
relationship with tumor phenotypes may be useful to es-
timate the potential benefit of personalizing screening
strategies on the basis of this factor.
The strengths of the current study are the large sample

size and the completeness of the information. These fac-
tors have allowed us to study the role of breast density
and tumor phenotype for each interval cancer category
and to describe some features that may help to better
understand their etiology.
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There are, however, some limitations that should be
considered. First, misclassification among interval can-
cers cannot be excluded. Some interval cancers could be
classified as screening-detected if symptomatic women
waited for the screening visit instead of making an im-
mediate appointment with a physician. However, such
misclassification would attenuate differences in tumor
characteristics among study groups. Second, not all cases
would have been phenotypically classified. Since this lack
of information affects both screening-detected cancers
and interval cancers, and was similar in all screening
programs we do not believe that it affects the results.
However, data on p53 and Ki67 were not always avail-
able because they were not routinely checked in all cen-
ters. Given that their lack of availability was not random,
these data were not entered into the multinomial model.
Third, grouping breast density into four categories re-
duced the sample size in the stratified analyses, but
allowed the role of extremely dense breasts to be
assessed. Collapsing breast density into two categories
(≤50 and >50%) diminished the magnitude of the associ-
ation of breast density and distinct categories of interval
cancer (data not shown). Fourth, some important vari-
ables associated with breast density, such as body mass
index, age at menarche or childbirth, are not routinely
collected by screening programs, and therefore we could
not adjust for these potential confounders.

Conclusions
Our findings revealed that both the distribution of
tumor phenotype and breast density play specific and in-
dependent roles in each category of interval cancer. Al-
most half of the interval cancers were true interval
cancers, which encompassed a high percentage of tu-
mors with a molecular profile associated with poor prog-
nosis on the one hand and were more likely to be
detected among women with extremely dense breasts on
the other. False-negative and occult tumors had similar
phenotypic characteristics to screening-detected cancers,
high breast density being strongly associated with occult
tumors. Minimal-sign cancers were biologically close to
true interval cancers but showed no association with
breast density. In view of the heterogeneity within inter-
val cancers, further studies aiming to characterize inter-
val cancers should avoid grouping true interval cancers
and occult tumors, or false-negative and minimal-sign
cancers. Knowledge of the clinical and biological par-
ticularities of interval cancers and of the role of breast
density may be useful for the design of new risk-based
screening strategies.
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