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Population genomic studies of ancient human remains have
shown how modern-day European population structure has been
shaped by a number of prehistoric migrations. The Neolithization
of Europe has been associated with large-scale migrations from
Anatolia, which was followed by migrations of herders from the
Pontic steppe at the onset of the Bronze Age. Southwestern
Europe was one of the last parts of the continent reached by these
migrations, and modern-day populations from this region show
intriguing similarities to the initial Neolithic migrants. Partly due to
climatic conditions that are unfavorable for DNA preservation,
regional studies on the Mediterranean remain challenging. Here,
we present genome-wide sequence data from 13 individuals
combined with stable isotope analysis from the north and south
of Iberia covering a four-millennial temporal transect (7,500–3,500
BP). Early Iberian farmers and Early Central European farmers ex-
hibit significant genetic differences, suggesting two independent
fronts of the Neolithic expansion. The first Neolithic migrants that
arrived in Iberia had low levels of genetic diversity, potentially
reflecting a small number of individuals; this diversity gradually
increased over time from mixing with local hunter-gatherers and
potential population expansion. The impact of post-Neolithic mi-
grations on Iberia was much smaller than for the rest of the con-
tinent, showing little external influence from the Neolithic to the
Bronze Age. Paleodietary reconstruction shows that these popula-
tions have a remarkable degree of dietary homogeneity across
space and time, suggesting a strong reliance on terrestrial food
resources despite changing culture and genetic make-up.
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The Mediterranean region has unquestionably played a central
role in human history, partly deriving from the navigable

nature of the sea that connects southern Europe, western Asia,
and North Africa. This unique setting has led to its being one of
the most important and dynamic areas throughout prehistory.
The period of the Mesolithic to the Bronze Age (in western

Eurasia) covers two major cultural shifts that are arguably among
the most important transitions in human prehistory, heralding
the change from hunter-gatherer subsistence to food production
and later the emergence of metallurgy, changes that funda-
mentally transformed human culture. Recent large-scale studies
of ancient human genomic variation (e.g., refs. 1–8) have focused
mainly on central and northern Europe and have revealed that

changes during the Neolithic and later during the Bronze Age
were driven by population movements into Europe from the
southeast and east, first by early farmers from Anatolia and the
Levant (1–3, 9, 10) and second by herders from the Pontic-
Caspian steppe (4, 6). These migrations profoundly reshaped
the genetic and cultural landscape of Europe. However, studying
the genetic impacts of these cultural transitions in southernmost
Europe, especially the Mediterranean, has usually focused on
single time periods (10–16).
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The gene pool of modern Europeans was shaped through
prehistoric migrations that reached the Western Mediterra-
nean last. Obtaining biomolecular data has been challenging
due to poor preservation related to adverse climatic conditions in
this region. Here, we study the impact of prehistoric (Neolithic–
Bronze Age) migrations in Iberia by analyzing genomic and di-
etary data, demonstrating that farming practices were introduced
by a population genetically distinct from the first farmers in cen-
tral and northern Europe. After recovering from a founder bot-
tleneck, these first farmers mixed with local hunter-gatherers.
Finally, post-Neolithic migrations had a much smaller impact on
the Iberian gene pool than they had in other parts of Europe.
Stable isotope analysis reveals a homogenous terrestrial diet
throughout this period.
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The full Neolithic package reached the Iberian Peninsula and
northern (modern-day) Morocco ca. 7,500 Cal BP, with the
Cardial pottery culture coming from the central Mediterranean
(17). This was rapidly followed by a regional diversification of
ceramics and lithics with the Cardial pottery type present in most
of the Mediterranean fringe and the interior of the Iberian
Peninsula represented by the Boquique type (e.g., El Portalón de
Cueva Mayor) (18) potentially introduced through the north via
the Pyrenees (19). In southern Iberia (Andalusia), however, the
early Neolithic is characterized by a type of impressed non-
Cardial ceramic decorated a la Almagra (20). This type of pot-
tery culture reached central Andalusia by 7,300 Cal BP, soon
replacing the Cardial pottery, and is found at the Murciélagos de
Zuheros cave (21). It has been proposed that North Africa
played a significant part in the origins of the Neolithic in
southern Spain (22), although this has recently been challenged
(23). The prehistory of the Iberian Peninsula as a whole is of
particular interest, given its specific geographic location at the
westernmost edge of the continent, naturally making it the furthest
point from the documented prehistoric migrations originating from
eastern Eurasia. This location holds potential for a complex de-
mographic history with migrations from diverse sources, as it is
connected with mainland Europe in the north, is surrounded by two
potential maritime migration routes along the Mediterranean Sea
and the Atlantic Ocean, and furthermore is in close geographic
proximity to North Africa. Previous studies on early Iberian farmers
have shown that these populations represent the descendants of
migrants from Anatolia (6, 13) followed by admixture with local
hunter-gatherers (5, 6, 9–11, 13, 24). Furthermore, modern-day
southwestern Europeans are genetically closer to Early and Middle
Neolithic Europeans than are modern-day central Europeans, who
are more closely related to Late Neolithic and Bronze Age pop-
ulations (1, 2, 4, 6, 11, 25–28), suggesting diverse and regionally
distinctive demographic histories.
To investigate the demographic history of the westernmost

edge of the prehistoric Eurasian migrations, we have sequenced
the genomes of 13 individuals excavated from six prehistoric
Iberian sites in the north and south of modern-day Spain (SI
Appendix, Section S1 and Table S2.1). These sites cover the

Neolithic, Late Neolithic/Copper Age (LNCA), and Bronze Age
chronologies between 7,245 and 3,500 Cal BP (SI Appendix, Fig.
S3.2 and Table S3.2), including the oldest sequenced genome in
southern Iberia, from the Murciélagos de Zuheros cave. This
individual is directly dated to 7,245–7,024 y Cal BP and repre-
sents the first genome of an individual from the Neolithic
Almagra Pottery Culture, the early agriculturalists of the south
of the Iberian Peninsula. For the El Portalón cave, we generated
additional DNA sequence data for published individuals (11) as
well as sequencing five additional individuals, enabling the ge-
nomic analysis of a population that spans a temporal sequence
comprising the Neolithic, Copper Age, and Bronze Age periods
(directly dated to between 7,165 and 3,500 y Cal BP). These ge-
nomic data, combined with published data (6, 9, 11, 13, 24), allow
us to comprehensively study demographic changes through time
in the Iberian Peninsula in general and in one single location in
particular. We contrast these developments with contemporary
populations in other parts of Europe where two major population
turnovers took place during this time span (1, 4, 6, 25). Our genomic
analysis was combined with stable isotope analysis to investigate the
role of aquatic resources in the diets of the individuals tested here.
Previous genomic studies have revealed increasing amounts of ge-
netic hunter-gatherer admixture in the farmer population after the
initial arrival of Neolithic people in Europe (1–3, 11, 13), implying
the continued survival of hunter-gatherer populations or at least
their lineages. In contrast, paleodietary stable isotope studies of the
Iberian late Neolithic–Early Bronze Age have indicated that aquatic
resources are not abundant in the diet, despite their likely avail-
ability at many sites (29–35). Detecting aquatic resources can be
difficult using only bulk isotope analysis, and it has been posited that
freshwater and terrestrial C3 diets can be more easily distinguished
using stable carbon isotope values of amino acids (36, 37). Ten of
the sequenced individuals were investigated for amino acid stable
carbon isotopes of bone collagen to reconstruct paleodietary pref-
erences (38, 39), in particular the presence of aquatic food intake
(SI Appendix, Section S3) (36, 40).
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Fig. 1. (A) Sampling locations of individuals included in this study. Sites with newly generated sequencing data (SI Appendix, Table S4.1) are labeled.
(B) Enlarged section of the PCA plot (Dataset S2) showing the part of the PC1–PC2 space occupied by the ancient Iberians as well as other ancient groups. BA,
Bronze Age; BB, Bell Beaker; CA, Copper Age; CWC, Corded Ware Culture; EN, Early Neolithic; HG, hunter-gatherer; LBK_EN, Linearbandkeramik_Early
Neolithic; LNCA, Late Neolithic/Copper Age; MN, Middle Neolithic.
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Results and Discussion
We sequenced the genomes of 10 individuals from northern
and southern Spain either contextually or directly radiocarbon
dated to the Neolithic, LNCA, and Bronze Age (Fig. 1A and SI
Appendix, Table S4.1), and we increased the sequencing depth
of three individuals from a previous study (ATP16, ATP2, and
ATP12) (11) using additional bone material (SI Appendix,
Table S2.1). Altogether, our 13 sequenced genomes range
from 0.01× to 12.9× (SI Appendix, Table S4.1) with six individuals
having >2.0× genome coverage. Our sequence data show post-
mortem damage and fragmentation, as expected from endogenous
ancient DNA (aDNA) molecules (41). Eleven individuals were
genetically inferred to be males and two to be females. We
obtained contamination estimates based on the X chromosome in
male samples (42), which were all ≤5% or lower (SI Appendix,
Table S4.1). Mitochondrial contamination estimates based on
reads mapping to the mitochondrial genome (43) suggest >5%
mitochondrial contamination for two samples (POR003 and
ATP019) (SI Appendix, Table S4.1), and the sequence data from
these individuals were subsequently filtered to retain fragments
displaying postmortem damages to conservatively restrict the
analysis to these sequences (44).
Nine of the 13 ancient Iberian individuals were found to

carry mitochondrial haplogroups associated with European
early farmers, namely K, J, N, and X (SI Appendix, Table S4.1),
distributed throughout the Early Neolithic to the Bronze Age
(6, 45). Two individuals have haplogroups HV0 and H, known
in both European early farmers and hunter-gatherers (25, 45)
and are present during the LNCA. Further, haplogroup U5,
characteristic of hunter-gatherers (46, 47), is found in a Late
Copper Age individual. Consistent with the mitochondrial hap-
logroup composition of the ancient Iberians, the Y chromosome
composition (Dataset S1) displays a mix of haplogroups associated
with both European farmers and hunter-gatherers. Among the
Early Neolithic individuals, we find the European farmer-associated
haplogroup G2a2 (9) and the European farmer-associated hap-
logroup H2 (1, 6), while in the LNCA we observe haplogroup I2,
previously found in both hunter-gatherers and farmers (SI Ap-
pendix, Table S4.1) (1, 6). Both Bronze Age males carried
haplogroup R1b-M269 (SI Appendix, Table S4.1), which is
frequent among Late Neolithic and Bronze Age samples from
other parts of Europe (4, 6). This uniparental marker com-
position is in agreement with the well-known admixture be-
tween resident hunter-gatherers and incoming farmers.
To obtain an overview of the genetic variation within pre-

historic Iberia, we performed principal component analysis (PCA)
on a reference panel of 26 modern-day populations from western
Eurasia (1) on which we projected our 13 ancient individuals,
together with relevant Mesolithic (n = 17), Neolithic/Chalcolithic
(n = 98), and Late Neolithic/Bronze Age (n = 78) genomes from
Europe and Anatolia (Fig. 1B and Dataset S2). This PCA repli-
cates previous findings: (i) a clear genetic distinction between
early farmers and resident hunter-gatherers, (ii) affinity of the
former with the southwestern modern-day European variation,
and (iii) an increased affinity of prehistoric farmers to western
hunter-gatherers over time due to increased admixture between
the two populations (1–3, 11, 25, 26). Despite the geographic
proximity of southern Iberia to northern Africa, we do not see
substantial affinities of any individual to modern-day African
populations, but the lack of ancient North African genomes limits
our abilities to test these connections (SI Appendix, Fig. S5.1).
Zooming into the genetic variation within prehistoric Iberia,

we do not find a geographic stratification pattern between
North and South Iberian populations; instead, we observe
stratification directly associated with chronology. Three clus-
ters are identified among the Iberian farmers on the PCA. The
first cluster comprises the early Neolithic Iberians (Fig. 1B,

yellow triangles) that falls within the modern-day Sardinian
genomic variation showing the highest affinity to Sardinians
among all early European farmers. The second group includes
the Middle Neolithic (Fig. 1B, blue triangles and squares) and
LNCA (Fig. 1B, red triangles and squares) populations falling
within the modern-day southern European variation but differen-
tiating from the early Neolithic Iberians, a pattern which can be
explained by the subsequent admixture with local hunter-gatherers
(6, 11, 24). These Iberian farmers were likely the group that later
developed Bell Beaker pottery (widely found in Western Europe
during the third millennium BC), which then spread without major
migrations toward central and northwestern Europe (48). The third
cluster encompasses the Bronze Age individuals (Fig. 1B, turquoise
triangles and squares) and is differentiated from the other two
groups, showing the highest affinity to modern-day Iberians.
There is a strong genetic difference among Iberian populations
dating to the Mesolithic, early and middle Neolithic, LNCA,
and Bronze Age; this genetic pattern is likely the result of
numerous migrations and admixture events over time.
A striking feature of the PCA (Fig. 1B) is the genetic dif-

ference between Iberian and central European farmers (or-
ange, purple, gray, and black diamonds in Fig. 1B). This division
could represent slightly different gene pools of the migrating
populations along the two different routes for early Neolithic
farmers: one following the Danube river into central Europe and
a second along the Mediterranean coast, which has been sug-
gested based on the analysis of smaller datasets (5, 12, 24). To
formally test this separation, we calculated f4 statistics to in-
vestigate if Iberian farmers form a clade to the exclusion of
central European farmers. The statistic of the form f4(Chimp,
X; Central_LBK_EN and Iberia_EN) measures whether an
individual X shares more genetic drift with early Neolithic cen-
tral Europeans (if the value is negative) or early Neolithic Ibe-
rians (if the value is positive). For this analysis, we only used
SNP-captured individuals for the reference populations (Central
LBK_EN and Iberia_EN) to avoid spurious affinities between
references and X due to technological artifacts (49, 50). In
contrast to prehistoric populations from central Europe, this
statistic is consistently shifted toward positive values for pre-
historic Iberian groups from different chronologies (Fig. 2A)
and is qualitatively similar when using other individuals as
reference (Dataset S4). This pattern does not seem to be driven
by hunter-gatherer–related admixture into the farming pop-
ulations (Dataset S5). This observation suggests that all Neo-
lithic Iberians trace most of their ancestry to the first Neolithic
migrants arriving in the peninsula and that later contributions from
contemporary central Europeans were only minor. The overall
pattern is consistent with two independent Neolithic migrations of
genetically slightly different populations that spread farming
practices across Europe. The Mediterranean route migrants show a
strong connection with modern-day population isolates in south-
western Europe. Modern-day Sardinians have been suggested
to be relatively direct descendants of the early Neolithic in-
dividuals (27, 51), and modern-day Basques also trace a high
proportion of their ancestry to the first Mediterranean farmers
with only minor additional admixture since the Neolithic (11).
A large migration of Pontic-Caspian steppe herders (the

Yamnaya culture) during the Late Neolithic/Early Bronze Age
has been found to have a substantial impact on the gene pool of
central and northern European populations (4, 6–8), but the
impact of this migration on contemporary southern and western
Europeans has been unclear. To estimate the genetic contribu-
tions of different prehistoric groups (hunter-gatherers, early
Anatolian farmers, and Steppe herders) to other ancient pop-
ulations, we inferred admixture fractions using both un-
supervised (ADMIXTURE, ref. 52) (Dataset S3) and supervised
approaches (qpAdm and ADMIXTURE, refs. 6 and 52). Neo-
lithic European populations share different proportions of
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hunter-gatherer and Neolithic farmer genetic material, with
a tendency toward more hunter-gatherer–related ancestry in
later groups (Fig. 2B) (11). Late Neolithic and Bronze Age north-
central Europeans display substantial fractions of Pontic Steppe
ancestry (up to 71% estimated with qpAdm; 93% based on su-
pervised ADMIXTURE) (SI Appendix, Fig. S5.3) at the onset of
the Bronze Age. However, steppe ancestry in Bronze Age individ-
uals from Iberia (13%; 18%) and Hungary (21%; 38%) is lower
than in their north-central European counterparts (Fig. 2B), a
pattern previously suggested but not directly quantified (24). The
estimates for Bronze Age Iberians are close to the 15% steppe
ancestry estimated for the modern Spanish population (Fig. 2B).
Consistently, Bronze Age populations from Greece and Anatolia
also show a limited increase in steppe ancestry compared with their
Neolithic ancestors (15). This reduced impact of Steppe herders on
these populations could reflect a decrease in the number of mi-
grants or a dilution of Steppe ancestry during this process. In
contrast to the events in north-central Europe, the arrival of most
of the Yamnaya-related ancestry in Iberia postdates the onset of
Bell Beaker pottery in Iberia, suggesting that the Bell Beaker
culture spread culturally (48), while steppe ancestry was brought
into Iberia through later migrations. Notably, both male Bronze
Age Iberian individuals in this study as well as all three Iberian
Bronze Age males in ref. 24 carried R1b-M269 Y chromosomes (SI
Appendix, Table S4.1) also found with high frequency in individuals
associated with the Yamnaya culture, the source population of
steppe ancestry (4, 6), indicating a continuing male-driven migra-
tion from central Europe into southwestern Europe (8, 24, 53).
To obtain additional insights into the demographic develop-

ment of prehistoric populations—their diversity as well as their
effective population sizes—we estimated genetic diversity
through time in all shotgun-sequenced Iberian, Anatolian, and
central European farmers as well as in Mesolithic hunter-
gatherer populations (Fig. 3). As previously observed (2), Me-
solithic hunter-gatherers had the lowest diversity of the groups

tested. Interestingly, the group with lowest genetic diversity
among farmers was early Neolithic Iberians. There is a signifi-
cant increase in diversity from the early Neolithic to the middle
Neolithic in Iberia, a pattern not observed in central Europe.
The low diversity levels in early Neolithic Iberian farmers could
potentially reflect a bottleneck resulting from the initial migra-
tion along the Mediterranean coast. The subsequent increase in
genetic diversity over time represents a recovery from this bot-
tleneck and is likely due to an increase in population size and
admixture with local hunter-gatherers.

●

●

A B

Fig. 2. (A) f4 statistics testing affinities of prehistoric European farmers to either early Neolithic Iberians or central Europeans, restricting these reference
populations to SNP-captured individuals to avoid technical artifacts driving the affinities. The boxplots in A show the distributions of all individual f4 statistics
belonging to the respective groups. The signal is not sensitive to the choice of reference populations and is not driven by hunter-gatherer–related admixture
(Datasets S4 and S5). (B) Estimates of ancestry proportions in different prehistoric Europeans as well as modern southwestern Europeans. Individuals from
regions of Iberia were grouped together for the analysis in A and B to increase sample sizes per group and reduce noise.

Fig. 3. Conditional nucleotide diversity (2) for different prehistoric pop-
ulations. Each population is represented by the two shotgun-sequenced in-
dividuals with the highest sequencing coverage. Error bars show two SEs
estimated using a block jackknife. The estimates for early Neolithic Hun-
garians are based on the shotgun data published in ref. 25.
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Paleodietary analysis (SI Appendix, Section S3) of these same
individuals shows that they had a remarkable degree of homo-
geneity in their diets, temporally and geographically. The ana-
lyses indicate that the individuals maintained a C3 terrestrial diet
and that neither freshwater nor marine sources of protein
significantly contributed to the diet, in agreement with pre-
vious studies (e.g., refs. 29 and 30). Even though the Early
Neolithic individuals from northern and southern Iberia were
found >600 km apart, there is a clear similarity in dietary pref-
erences for terrestrial foods. In addition, although there is evidence
of contact between groups that have different subsistence strategies
(an increasing hunter-gatherer genetic component through time),
dietary preferences remain constant from the Early Neolithic to the
beginning of the Bronze Age.

Conclusions
We present a comprehensive biomolecular dataset spanning
four millennia of prehistory across the whole Iberian Peninsula.
Our results highlight the power of archaeogenomic studies fo-
cusing on specific regions and covering a temporal transect.
The 4,000 y of prehistory in Iberia were shaped by major
chronological changes but with little geographic substructure
within the Peninsula. The subtle but clear genetic differences
between early Neolithic Iberian farmers and early Neolithic
central European farmers point toward two independent
migrations, potentially originating from two slightly different
source populations. These populations followed different
routes, one along the Mediterranean coast, giving rise to early
Neolithic Iberian farmers, and one via mainland Europe
forming early Neolithic central European farmers. This di-
rectly links all Neolithic Iberians with the first migrants that
arrived with the initial Mediterranean Neolithic wave of ex-
pansion. These Iberians mixed with local hunter-gatherers
(but maintained farming/pastoral subsistence strategies, i.e.,
diet), leading to a recovery from the loss of genetic diversity
emerging from the initial migration founder bottleneck. Only
after the spread of Bell Beaker pottery did steppe-related
ancestry arrive in Iberia, where it had smaller contributions to
the population compared with the impact that it had in central
Europe. This implies that the two prehistoric migrations
causing major population turnovers in central Europe had dif-
ferential effects at the southwestern edge of their distribution:
The Neolithic migrations caused substantial changes in the Iberian
gene pool (the introduction of agriculture by farmers) (6, 9,
11, 13, 24), whereas the impact of Bronze Age migrations
(Yamnaya) was significantly smaller in Iberia than in north-central
Europe (24). The post-Neolithic prehistory of Iberia is generally
characterized by interactions between residents rather than by
migrations from other parts of Europe, resulting in relative
genetic continuity, while most other regions were subject to
major genetic turnovers after the Neolithic (4, 6, 7, 9, 25, 48).
Although Iberian populations represent the furthest wave of
Neolithic expansion in the westernmost Mediterranean, the sub-
sequent populations maintain a surprisingly high genetic legacy
of the original pioneer farming migrants from the east compared
with their central European counterparts. This counterintuitive
result emphasizes the importance of in-depth diachronic studies
in all parts of the continent.

Materials and Methods
Archaeological Samples. Thirteen individuals from northern Spain (El Portalón,
San Quílez, and Cueva de los Lagos) and Andalusia in the south (Murciélagos
de Zuheros, Cueva de los Cuarenta, and El Pirulejo) were sampled for aDNA
analyses. All six sites cover a chronological period from the Early Neolithic to
the Bronze Age. Eleven samples were directly radiocarbon dated using ac-
celerator mass spectrometry, and the remaining two were associated with
archaeological contexts. See SI Appendix, Section S1.

Sequencing. DNA was extracted from bones and teeth (54); DNA extracts
were converted into blunt-end Illumina libraries (55). All samples were
prepared in dedicated aDNA facilities at the Evolutionary Biology Center
in Uppsala, Sweden. The libraries were sequenced on Illumina HiSeq
platforms 2500 or X Ten at the SNP&SEQ Technology Platform at the
Science for Life Laboratory Sequencing Centre in Uppsala. All 13 samples
were screened for human DNA and yielded over 1% human DNA con-
tent; thus, all were included for downstream analysis. See SI Appendix,
Section S2.

Stable Isotopes. A subsample of the individuals studied for DNA underwent
amino acid stable carbon isotope analysis of bone collagen to determine the
long-term dietary preferences of these individuals. Bone collagen was iso-
lated from bone samples following a modified Longin method (56, 57), and
amino acids were prepared via hydrolysis of collagen. The δ13C values of the
amino acid fractions were measured using a Thermo Fisher LC-isotope ratio
MS (LC-IRMS) system following methods similar to those described in ref. 38.
These data were supplemented by bulk δ13C and δ15N values provided with
the radiocarbon dates of the bone collagen. See SI Appendix, Section S3.

Next-Generation Sequencing Data Processing and Authentication. Overlapping
paired-end reads were merged, the remaining adapters were trimmed (58),
and the fragments were mapped to the human reference genome using
bwa (59). Fragments with identical start and end positions were considered
PCR duplicates, and all duplicates were collapsed into consensus sequences.
Contamination was estimated based on heterozygous sites on the X chro-
mosome in males (42) and in the mitochondrial genome (43). All samples
show indications of characteristic aDNA damage, and for samples with high
levels of mitochondrial contamination (>15%), the analysis was restricted to
fragments indicating postmortem damage (44). See SI Appendix, Section S4.

Uniparental Haplogroups. HAPLOFIND (60) was used to infer the most likely
haplogroup for mitochondrial consensus sequences. Y chromosomal hap-
logroups were assigned by investigating up to 732 haplotype-informative
single base substitutions obtained from the Phylotree version of March 9,
2016 (61). Sites presenting more than one allele were not taken into account
for the classification. Derived sites for all samples are shown in Dataset S1.
See SI Appendix, Section S4.

Reference Datasets. Newly sequenced individuals were analyzed with a large
set of published prehistoric European genomes as well as 203 modern
populations from the Human Origins panel (1). At each SNP position, a single
read (minimum mapping and base quality of 30) was randomly drawn to
represent the ancient individual. Transitions were coded as missing data to
exclude potential postmortem damage. See SI Appendix, Section S5.

Population Genetic Analysis. For each ancient individual, a PCAwas conducted
together with modern Europeans from the Human Origins panel using
smartpca (62). All ancient individuals were projected on one plot using
Procrustes analysis. We used popstats (63) to calculate D and f statistics (64)
to estimate shared drift between populations and to test tree topologies. To
estimate genetic diversity (2) within prehistoric groups, we calculated con-
ditional nucleotide diversity for shotgun sequence data and at transversion
polymorphisms ascertained in Yorubans. See SI Appendix, Section S5.

The model-based clustering approach implemented in ADMIXTURE (52)
was run with all modern individuals of the Human Origins dataset and all
ancient individuals. Common modes among the different runs were identi-
fied, and clusters were aligned across different values of K using pong (65).
The full unsupervised ADMIXTURE results are shown in Dataset S3. We used
supervised ADMIXTURE and qpAdm (6) to estimate the ancestry proportions
attributable to early Anatolian farmers, hunter-gatherers, and steppe
herders in Neolithic and Bronze Age Europeans (SI Appendix, Section S5).
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and J.L.A.). Sequencing was performed at the National Genomics Infra-
structure, Uppsala, and all computations were conducted through the

Uppsala Multidisciplinary Centre for Advanced Computational Science
under projects b2013203 and b2013240.
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