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Abstract
Background: Amino acids in proteins are not used equally. Some of the differences in the amino
acid composition of proteins are between species (mainly due to nucleotide composition and
lifestyle) and some are between proteins from the same species (related to protein function,
expression or subcellular localization, for example). As several factors contribute to the different
amino acid usage in proteins, it is difficult both to analyze these differences and to separate the
contributions made by each factor.

Results: Using a multi-way method called Tucker3, we have analyzed the amino composition of a
set of 64 orthologous groups of proteins present in 62 archaea and bacteria. This dataset
corresponds to essential proteins such as ribosomal proteins, tRNA synthetases and translational
initiation or elongation factors, which are common to all the species analyzed. The Tucker3 model
can be used to study the amino acid variability within and between species by taking into
consideration the tridimensionality of the data set. We found that the main factor behind the amino
acid composition of proteins is independent of the organism or protein function analyzed. This
factor must be related to the biochemical characteristics of each amino acid. The difference
between the non-ribosomal proteins and the ribosomal proteins (which are rich in arginine and
lysine) is the main factor behind the differences in amino acid composition within species, while
G+C content and optimal growth temperature are the main factors behind the differences in amino
acid usage between species.

Conclusion: We show that a multi-way method is useful for comparing the amino acid
composition of several groups of orthologous proteins from the same group of species. This kind
of dataset is extremely useful for detecting differences between and within species.

Background
Amino acids are not used equally in proteins. In addition
to the physical, chemical and biochemical differences
between amino acids, which may explain why some
amino acids are more used than others, there are also dif-

ferences in the amino acid composition that are associ-
ated with protein function or some characteristic of the
species to which they belong. Between proteins from the
same species, differences in amino acid composition have
been associated with expressivity [1], the chromosomal
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position of their genes [2,3], hydrophobicity and the
number of transmembrane regions [4], subcellular locali-
zation [5] and protein function such as differences
between ribosomal and non-ribosomal proteins [6]. The
availability of complete proteomes from a large number
of prokaryotic species has enabled a global comparison of
their amino acid compositions to be made and some of
the causes of amino acid variability between species to be
identified [7-11]. Between species, nucleotide bias and
organism lifestyle, especially whether the organisms are
mesophilic or thermophilic, are the two main factors
behind the variability in amino acid composition [7-11]
and even in synonymous codon usage [12]. The method-
ology used in these analyses involves comparing the
means and evaluating which differences are statistically
significant or using principal component analysis (PCA)
or correspondence analysis to determine which factors
influence the amino acid composition of proteins.

Most analyses that compare the amino acid composition
between species use whole proteomic averages. However,
it could be interesting to compare the amino acid compo-
sition of the same group of proteins from different species
to check whether the predicted bias is widespread and
affects virtually all genes within a genome. Any differences
found will then definitely be due to the use of different
amino acids between species, not to differences in protein
functions. Several authors have used a set of homologous
genes from different genomes to show that the observed
amino acid bias is a general trend for the evolution of pro-
teins [7,13]. Here we present a similar approach in which
we compare the amino acid composition of a set of 64
groups of orthologous proteins common to 62 archaeal
and bacterial species. The additional values of our
approach, however, are the large number of species used,
the fact that the sets of orthologous sequences used corre-
spond to different functional classes, and the procedure
used. This procedure consisted of a multi-way method
called Tucker3 that analyzes the amino acid variability
within and between species using a three-dimensional
matrix as an input. In this matrix, the rows represented the

frequency with which each amino acid is used, the col-
umns represented groups of orthologous proteins, and
the third dimension represented the 62 species analyzed.
Briefly, the Tucker3 algorithm decomposes the three-
dimensional matrix into a matrix of residuals, three com-
ponent matrices A, B, C called loadings matrices, and a 3-
way core array. This core array defines how the individual
loadings vectors interact, providing which factor combi-
nations best represent the data set in terms of explained
variability. The order of the core array, i.e. the number of
components that are calculated from each loadings
matrix, needs to be determined from a priori knowledge of
the data or by evaluating models with different combina-
tions and choosing the order that provides the most accu-
rate model. See the Methods section for a more detailed
explanation of the Tucker3 algorithm.

Results
To find the optimal order of the Tucker3 model, we stud-
ied several combinations of different orders. We found
that the 5 × 3 × 3 model was the most suitable because the
other models did not improve in fit when higher orders
were used. Table 1 shows the elements of the core array
obtained in the model of order 5 × 3 × 3 that describe the
relationships between the three modes (one for amino
acid composition, one for protein function and one for
the organisms). The elements are sorted by the percentage
of fraction variance that they represent. Only those with
the five highest values are shown. With only these five ele-
ments, more than 98% of the summed fraction of the var-
iability of the dataset is represented. For all of these five
elements, we have also found a biological interpretation
and a correlation with some biological character.

There is a general amino acid usage that is independent of 
the function or organism analyzed
The [1,1,1]  factor combination (which means the first
component of the amino acid composition, protein func-
tion and organism loadings matrices, respectively)
explains almost 80% of the variability of the dataset. This
value is much higher than the other elements of the core

Table 1: Some elements of the core array for a Tucker3 model of order 5 × 3 × 3

Elements of the core array 
[aa, funct, org]

% of variance 
fraction

% of summed 
fraction

Correlation with biological characters

[1, 1, 1] 79.98 79.98 amino acid abundance in Swiss-Prot database (r = 0.917)
[3, 2, 1] 6.69 86.67 differences in amino acid composition between ribosomal and non-

ribosomal proteins (r = -0.902)
[2, 1, 2] 6.25 92.92 organisms mean G+C content (r = -0.901) and organisms mean G+C at 

second codon position (r = -0.939)
[4, 3, 1] 3.34 96.26 differences in amino acid composition between ribosomal proteins S14 and 

L29 and the other proteins (r = 0.892)
[5, 1, 3] 1.68 97.94 optimal growth temperature of organisms (r = -0.840)
[2, 2, 2] 0.66 98.60 mean G+C at second codon position of each orthologous group of genes 

(r = -0.680)
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array. Figure 1 shows the representation of the [1,1,1]
against the [2,2,2]  combination (the [2,2,2]  combination
is discussed in the next section). Points representing pro-
tein function and organism (grey squares and blue circles,
respectively) have a similar position in the [1,1,1]  combi-
nation and appear as a vertical line. The projections of the
amino acid variables onto the horizontal axis show that
the amino acids are not used equally. The amino acids on
the right (A, V, L, K, G, R, E and I) are the ones used with
the highest frequency in the data set. The amino acids on
the left (C and W) are the ones used with the lowest fre-
quency. This amino acid composition is very similar to
the composition of databases of protein sequences. So, for
example, the projections of the twenty amino acids onto
the [1,1,1]  element correlates very well (r = 0.917) with
the amino acid abundance extracted from Swiss-Prot
release 46.5. These results show that there is a general
amino acid usage in the proteins analyzed and that this is
independent of the protein function or organism to which
they belong. This important observation is only possible
if a multi-way algorithm is applied to a three-dimensional
dataset.

In the dataset analyzed, ribosomal vs non-ribosomal is the 
main factor behind variability in the amino acid usage 
between different protein functions
The [3,2,1]  factor combination has a variance fraction of
6.69%. This represents the second element of the core
array with the highest variance fraction. This element is
represented in figure 2. The loadings values of the organ-
isms, represented by green triangles in figure 2, are local-
ized at the same coordinates. This means that the
differences in amino acid composition related to protein
function are a general trend and are independent of the
organisms analyzed.

Ribosomal and non-ribosomal proteins are represented
by red squares and blue circles, respectively. Each group
forms a different cluster, which shows that these proteins
have different amino acid usages. The good correlation (r
= 0.902) between the amino acid differences between
ribosomal proteins and non-ribosomal proteins and the
projections of the amino acid variables onto the horizon-
tal axis of figure 2 shows that, except for S2, L10 and L29,
the ribosomal proteins are distinguishable from the non-
ribosomal proteins if we compare their amino acid com-
positions. Figure 2 shows that the ribosomal proteins use
the basic amino acids lysine (K) and arginine (R) and the
small hydrophobic amino acids glycine (G) and valine
(V) with the greatest frequency and use leucine (L) and the
negatively charged amino acids glutamate (E) and aspar-
tate (D) with the lowest frequency. The ribosomal pro-
teins L10, L29, S2 and S14, however, do not cluster with

Triplot of [3, 2, 1] and [4, 3, 1] factorsFigure 2
Triplot of [3, 2, 1] and [4, 3, 1] factors. Superimposed 
plot of the [3, 2, 1] and [4, 3, 1] factors showing the amino 
acid usage variability related to protein function. The red 
squares and blue circles represent ribosomal and non-ribos-
omal proteins, respectively. The green triangles represent 
the loadings matrix of the organisms.
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Triplot of [1, 1, 1] and [2, 2, 2] factorsFigure 1
Triplot of [1, 1, 1] and [2, 2, 2] factors. Superimposed 
plot of the [1, 1, 1] and [2, 2, 2] factors showing the amino 
acid usage variability, independent of the organisms or func-
tions analyzed. This is a combination of three plots: a) a plot 
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matrix, A, related to amino acid variation; b) a plot of the 
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B, related to variations associated with functions; and c) a 
plot of the first and second principal components of the load-
ings matrix, C, related to variations associated with the 
organism. The blue circles and grey squares represent the 
organisms and functions, respectively.
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the other ribosomal proteins in figure 2. S2 and L10
appear in the non-ribosomal cluster, and S14 and L29
have a slightly different amino acid composition from
those of the other proteins (see figure 2). These differences
may be due to the characteristics of these ribosomal pro-
teins in the position or role when the ribosome is formed.

G+C composition and optimal growth temperature are the 
main factors behind variability in amino acid usage 
between organisms
Figure 3 represents the variability in amino acid usage
between organisms. The position of the loadings related
to protein function shows that the differences in amino
acid composition related to organisms are independent of
the proteins analyzed.

The [2,1,2]  combination is the element of the core array
with the third highest percentage of variance fraction. The
position of the organisms in this element (i.e. the projec-
tions of this variable onto the horizontal axis) correlates
very well (r = -0.901) with the G+C content of the organ-
isms. This means that the organisms represented on the
left of figure 3 (e.g. Halobacterium sp, Hbs) have the high-

est G+C content and those on the right (e.g. Methanococcus
jannaschii, Mja) have the lowest. Because of the genetic
code, the organisms with highest G+C contents use the
amino acids glycine (G), alanine (A), arginine (R) and
proline (P) [7,8] with the greatest frequency. These amino
acids are encoded by codons with a G or C in the first and
second codon positions. This is confirmed in figure 3,
where the lowest values for the amino acid loadings in the
[2,1,2]  factor combination correspond to A, R, G and P.
The position of the amino acid valine (V) in this axis,
close to the position of proline (P), is also interesting.
Valine is encoded by GTN codons, but there are more
valines in G+C rich species than expected [8]. This may be
due to the many conservative replacements between
valine and isoleucine (encoded by AT [A,T,C]) forced by
positive GC pressure [8]. On the other hand, figure 3 also
shows that lysine (K), isoleucine (I) and asparagine (N) –
three amino acids encoded by codons with T or A in the
first and second codon positions – are the amino acids
that are most used in species with the lowest G+C con-
tents.

The [5,1,3]  combination is also represented in figure 3.
The positions of the organisms on the y axis correlate well
(r = -0.840) with their optimal growth temperatures. Ther-
mophiles (species with an optimal growth temperature
above 60°C) and mesophiles form two clusters in this fig-
ure, so they can be distinguished by using their amino
acid composition. From the position of the loadings val-
ues, we can deduce that the amino acids preferred by ther-
mophiles are mainly glutamate (E) and valine (V). The
positions of Halobacterium sp (Hbs) and Methanosarcina
acetivorans (Mac) in figure 3 are interesting. The optimal
growth temperatures of these Euryarchaea are below
40°C, so they cannot be classified as thermophiles. How-
ever, they have a similar amino acid composition to that
of thermophiles and cluster with them in figure 3.

Finally, the [2,2,2]  factor combination shown in figure 1
explains only 0.66% of the variability of the dataset. This
factor is a combination of the effects of the G+C content
of the organisms and the variability in the G+C contents
of the various orthologous genes. Although the G+C con-
tent of a gene depends mainly on the G+C content of the
organism to which it belongs, there are also variations in
the G+C content of genes from the same organism. One of
the reasons for these G+C variations within organisms
may be compositional amino acid constraints. This is the
case of ribosomal proteins, which, because of their com-
positional amino acid constraints, have a lower G+C con-
tent at the second codon position than non-ribosomal
proteins. This effect is reflected in the correlation (r = -
0.680) between the projections onto the vertical axis of
figure 1 of the variables associated with the protein func-

Triplot of [2, 1, 2] and [5, 1, 3] factorsFigure 3
Triplot of [2, 1, 2] and [5, 1, 3] factors. Superimposed 
plot of the [2, 1, 2] and [5, 1, 3] factors showing the amino 
acid usage variability related to organisms. The red squares 
and blue circles represent thermophile and non-thermophile 
organisms, respectively. The green triangles represent the 
loadings matrix related to protein function. The abbrevia-
tions used in this figure are: Hbs, Halobacterium sp; Ape, Aero-
pyrum pernix; Mka, Methanopyrus kandleri; Mac, 
Methanosarcina acetivorans; Pya, Pyrobaculum aerophilum; Mth, 
Methanobacterium thermoautotrophicum; Afu, Archaeoglobus 
fulgidus; Pab, Pyrococcus abyssi; Pho, Pyrococcus horikoshii; Mja, 
Methanococcus jannaschii; Aae, Aquifex aeolicus; Tma, Thermo-
toga maritima; Tac, Thermoplasma acidophilum and Tvo, Ther-
moplasma volcanicum.
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tions and the mean G+C content at the second codon
position of each group of orthologous genes.

Discussion
The high percentage of the variance explained by the
[1,1,1]  factor combination shows that the main determi-
nant of the amino acid composition of proteins is inde-
pendent of the protein function or organism to which
they belong. The different uses of amino acids may there-
fore be due to differences in several biochemical charac-
teristics. However, which amino acid properties influence
their usage in proteins is still unknown. Moreover, Jordan
et al. [14] have shown that the amino acid composition of
proteins is not in equilibrium. By comparing sets of
orthologous proteins of closely related genomes from 15
species representing the three domains of life and com-
paring the fluxes of reciprocal substitutions caused by sin-
gle-nucleotide replacements, these authors found that
cysteine, methionine, histidine, serine and phenylalanine
are strong 'gainers' (i.e. their frequency is increasing), and
proline, alanine, glutamate and glycine are strong 'losers'
(i.e. their frequency is decreasing) [14]. Except for methio-
nine, gainers tend to be under-represented and losers are
over-represented [14]. This loser-rich and gainer-poor
amino acid composition may be due to the order in which
amino acids were recruited into the genetic code [14]. The
correlation between the general amino acid frequencies
that we observe (the projection of the amino acids onto
the x axis in figure 1) and the rate of gain or loss defined
by Jordan et al. [14] is only -0.39. The correlation, how-
ever, is -0.68 when we compare the general amino acid
frequencies and a consensus chronology of incorporation
of amino acids into the genetic code defined by Trifonov
[15]. This relatively high correlation value means that the
order of recruitment of the amino acids into the genetic
code can be an additional factor that influences the differ-
ent use of the amino acids. However, because Trifonov
used the amino acid composition of extant proteins as
one of the 60 criteria to obtain his consensus chronology
of amino acids [15], the above correlation is not unex-
pected and must be interpreted with caution.

In addition to this general amino acid composition, there
are obviously differences in the amino acid composition
of proteins due to the function or organism to which they
belong. The difference between ribosomal and non-ribos-
omal proteins is the main factor behind the amino acid
usage within species in the data set we analyzed. Shape
and charge complementarity rather than sequence-spe-
cific interactions are responsible for the specific interac-
tions of most ribosomal proteins with RNA [16]. Because
of these interactions, ribosomal proteins prefer positively
charged amino acids and avoid negatively charged ones
[6]. The mapping of conserved arginines and lysines onto
the ribosome structure has revealed that these charged res-

idues frequently form surface patches that reflect RNA-
binding sites [6]. The ribosomal proteins L10, L29, S2 and
S14, however, do not cluster with the other ribosomal
proteins in figure 2. S2 and L10 appear in the non-ribos-
omal cluster, and S14 and L29 have a slightly different
amino acid composition from the other proteins (see fig-
ure 2). These differences may be due to the characteristics
of these ribosomal proteins in the position or role when
the ribosome is formed. Although S2 is one of the largest
ribosomal proteins in the 30S subunit, it is very loosely
attached to this subunit (only seven out of 236 residues
contact with the rRNA) and has the lowest percentage of
arginine and lysine in it [16]. It is not unusual, therefore,
for S2 to clusters with non-ribosomal proteins. With
approximately 60 amino acids, S14 and L29 are the small-
est ribosomal proteins in the data set. The short sequence
of these proteins influences their amino acid composition
and both appear as outliers in figure 2. However, projec-
tion of the S14 protein onto the horizontal axis of figure
2 shows that, despite its short length, this protein has
some characteristics of the majority of ribosomal proteins.
S14 is completely devoid of any globular domain, and
most of the protein has an extended coil structure [16].
Although S14 is involved in intimate protein-protein
interactions, almost its entire length is involved in RNA
contacts and its arginine and lysine contents are similar to
those of most ribosomal proteins [16]. S14 is therefore
indistinguishable from most ribosomal proteins in the x-
axis projection of figure 2. On the other hand, L29 inter-
acts with the L23 protein and with only one of the six
domains of 23S rRNA [17]. This characteristic, and its
short length, may therefore explain the position of L29 in
figure 2.

G+C content and optimal growth temperature are the two
factors that most influence differences in amino acid com-
position between organisms. Analysis of the optimal tem-
peratures of the enzymes extracted from
hyperthermophilic organisms showed that thermal resist-
ance was an intrinsic property of these enzymes [18].
Comparative analysis of the amino acid composition of
orthologous proteins from several mesophilic and ther-
mophilic organisms indicated some amino acid substitu-
tions that are preferred in thermophiles [18]. However,
the small number of sequences analyzed and the fact that
factors other than temperature can affect the amino acid
composition of proteins revealed the inconsistency of the-
ses results [19]. Comparison of the first completely
sequenced genomes of several thermophiles and mes-
ophiles showed that proteins from thermophiles contain
higher levels of both charged and hydrophobic residues
and lower levels of polar and uncharged ones [20]. Once
more complete genomes were sequenced, new analyses
were performed using different methods and different
datasets [8-10,21-25]. Although these studies show sev-
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:257 http://www.biomedcentral.com/1471-2105/7/257
eral discrepancies in the role of each amino acid, there is
a consensus that glutamate (E) and, to a lesser extent,
valine (V) are the amino acids that are more represented
in thermophiles than in mesophiles. These were also the
amino acids that were most represented in thermophiles
when our method was used.

There are greater discrepancies, however, over which
amino acids are used with the lowest frequency in ther-
mophiles or with the highest frequency in mesophiles. For
example, Singer and Hickey [25] found that these amino
acids were A, H, Q and T; Kreil and Ouzounis [8] found
that they were Q and T; and Tekaia and coworkers [9]
found only Q. These discrepancies indicate that hyper-
thermophilic and mesophilic enzymes may be very simi-
lar – their difference being that hyperthermophilic
enzymes are more rigid than mesophilic enzymes [18]. To
increase their rigidity, hyperthermophilic enzymes may
adopt several strategies but a common rule could be that
more charged residues are found in hyperthermophilic
proteins, mostly at the expense of uncharged polar resi-
dues [18]. Computational, biochemical, and structural
evidence now supports the hypothesis that ion pair for-
mation, hydrogen bonds, and hydration, rather than
hydrophobic interactions, play important roles in the sta-
bilization of enzymes from extremophiles [26]. Also, we
cannot talk of a common amino acid usage in mesophiles
because an adaptation to live at intermediate tempera-
tures is unnecessary. When comparing the amino acid
compositions of thermophilic and mesophilic proteins,
therefore, different datasets and methods obtain different
results.

The use of certain amino acids with higher or lower fre-
quencies in thermophiles is important for the thermal sta-
bility of their enzymes. However, other factors may
contribute to survival at high temperatures. Thermophilic
archaea, for example, may be protected by their unique
membrane lipids, the use of a reverse gyrase that intro-
duces positive supercoils [27], a DNA repair system
[28,29] and the presence of special DNA-binding proteins
[29]. One of these thermophilic-specific proteins may be
highly basic histone-like proteins that wind and compact
DNA into a nucleosome-like structure and thus protect
them from heat denaturation [29]. Loss of some of these
factors may lead to a lesser ability to grow at high temper-
atures. This could be the case of the Euryarcheota Halobac-
terium sp (Hbs) and M. acetivorans (Mac), two archaea
whose optimal growth temperature is below 40°C but
that cluster with other thermophilic species in figure 3.
The amino acid compositions of these two Euryarchaeota,
which are very similar to those of other thermophiles,
may be a trace of their past ability to grow at high temper-
atures. A thermophile-specific NTPase found in 13 ther-
mophilic genomes and absent in 52 mesophilic genomes

is present in M. acetivorans [30]. This suggests that M. ace-
tivorans facultatively could be thermophilic [30].
Although the phylogenetic position of these two archaea
and our analysis of the amino acid composition suggest a
recent transversion to mesophily in Halobacterium sp and
M. acetivorans, this hypothesis is speculative and needs to
be supported by stronger evidence. In this sense, it would
be useful to identify proteins present in all thermophilic
Euryarchaeota but not in mesophilic Euryarchaeota. One
of these proteins is a dsDNA-binding protein called Alba
(short for "acetylation lowers binding affinity"), which is
present in several thermophilic archaea but not in Halo-
bacterium sp or M. acetivorans [31]. The correlation of Alba
with growth at high temperatures hints at a role for Alba
in DNA protection and stability under these conditions
[32]. Interestingly, it has been suggested that this protein
constrains negative DNA supercoils in a temperature-
dependent fashion, which suggests that it may function in
chromosomal organization and accessibility [33].

The relationship between genomic G+C content and opti-
mal growth temperature in prokaryotes has been debated
recently in the literature [34-37]. Because G:C pairs in
DNA are more thermally stable than A:T pairs, it has been
suggested that a high G+C content may be a selective
response to high temperature. In this sense, a significant
correlation has been observed between optimal growth
temperature and the G+C content of structural RNAs
[35,36]. When open reading frames are analyzed, some
studies have concluded that there is no correlation
between G+C content and optimal growth temperature
[34-36] and others have found a positive correlation
among some families of prokaryotes [37]. If this correla-
tion exists, it could be argued that the G+C-content
dependence observed in the amino acid composition of
prokaryotes is a consequence of their thermophily-
dependence. In our dataset, the G+C content at the third
codon position and the optimal growth temperature do
not correlate significantly (r = 0.081). In addition, the
results obtained with the tucker3 algorithm indicate that
these two variables are independent. The amino acid var-
iation associated with G+C content and optimal growth
temperature corresponds to the second and fifth factor of
the amino acid loadings matrix, respectively. Because the
principal components obtained with the tucker3 model
were constrained to be orthogonal, it can be concluded
that the two factors are independent. The correlation
observed therefore for the second and fifth factors of the
amino acid loadings matrix is only 6.03E-5. Similar argu-
ments can be applied to the second and third factors
(those associated with differences in G+C content and
optimal growth temperature, respectively) of the organ-
ism's loadings matrix. Moreover, the amino acid preferred
by thermophiles is glutamate, which is an amino acid
encoded by intermediate-GC content codons (GA [A,G]).
Page 6 of 10
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All this evidence suggests that the amino acid variations
related to variations of G+C content and optimal growth
temperature are independent and that the observed G+C-
dependence is not a consequence of a thermophily
dependence.

Conclusion
We have shown that a multi-way method can be used to
analyze differences in the amino acid composition within
and between species. This method determines the relative
influence of the various factors behind the heterogeneity
of amino acid composition in proteins. Also, using a data-
set consisting of a group of orthologous proteins present
in all the species analyzed ensures that the differences in
the amino acid composition between species are related
to an intrinsic property of their proteins.

Methods
Definition of the data set
Sixty-four orthologous groups of proteins present in 62
archaea and bacteria were imported from the COG data-
base [38]. This data set was chosen because it represents a
group of proteins that are present in all the genomes
(except for the eukaryotic species and the archaea Sulfolo-
bus solfataricus) in the August 2003 version of the COG
database [38]. The organisms analyzed [see Additional file
1] comprise various taxonomic groups of bacteria and
archaea with different growth temperatures (from mes-
ophiles to hyperthermophiles) and a wide range of G+C
contents. The 64 groups of orthologous proteins analyzed
[see Additional file 2] have essential functions such as
ribosome formation, tRNA synthesis or translation initia-
tion and are therefore conserved in all the organisms we
analyzed. Protein sequences of each COG family for the
62 species analyzed were extracted using our own PERL
programs. When paralogous sequences were detected,
only the largest proteins were retained. In three cases a
fusion protein had two of the activities analyzed. These
proteins were the HP1198 and jhp1121 from H. pylori
26695 and H. pylori J99, respectively, which contain the
two fused beta subunits of a DNA-directed RNA polymer-
ase (COG0085 and COG0086), and the MTH39 protein
from M. thermoautotrophicum, which contains fused the
ribosomal proteins L13 and S9 (COG0102 and
COG0103). These fusion proteins were computationally
cut into two proteins using information from the compar-
ison of orthologous sequences. So as not to be predicted
as horizontally transferred, all the protein sequence in the
final dataset was checked using the HGT-Database
[39,40]. Using our own PERL programs, we calculated the
amino acid composition of each protein of the 64 orthol-
ogous groups from the 62 previously defined species. Our
data set was therefore a three-dimensional matrix of order
(20 × 64 × 62), in which the rows represented the fre-
quency of use of each amino acid, the columns repre-

sented the group of orthologous proteins, and the third
dimension represented the 62 species analyzed. To ana-
lyze the amino acid variability within and between spe-
cies, the three-dimensional matrix was column mean-
centered and analyzed using a multi-way method called
Tucker3 [41] developed for the MATLAB (The Mathworks,
Natick, MA, USA) environment.

Analysis of the 3-way data array using the Tucker3 method
In standard multivariate data analysis, data are arranged
in a two-way structure (i.e. a table or a matrix) that con-
tains objects and variables. These tables are analyzed with
a method such as PCA or correspondence analysis, which
enables large amounts of data to be condensed to a few
representative variables (called principal components or
factors). The projections of objects and variables in the
representative principal factors are called scores and load-
ings matrices, respectively. These matrices are used to
identify the similarities and dissimilarities between
objects and variables in the data under investigation. In
this sense, the scores and loadings plots of different prin-
cipal components are indispensable for finding patterns
and clusters between variables and identifying the varia-
bles responsible for the formation of these clusters. They
are also indispensable for identifying the variables, or
combinations of variables, responsible for the maximum
variability between objects. Sometimes, however, the
structure of the data set is such that a standard two-way
table is not enough to describe it. In these cases, a third
mode needs to be added to represent the data set, which
can be imagined as a parallelepiped of size r1 × r2 × r3. To
apply standard PCA, these three-way data arrays must be
unfolded to obtain a two-way data table. This can be done
in several ways, depending on what one would like to
focus on. Multi-way analysis is the natural extension of
multivariate analysis, in which data are arranged in three
or more dimensions. There are several multi-way models
for analyzing three-way data sets. Here we focus on the
Tucker3 model. The origin of this method lies in psycho-
metrics and the pioneering work of Tucker [42]. The algo-
rithm solution for estimating the model was later
considerably improved by Kroonenberg and de Leeuw
[41].

Figure 4 shows the basis of the Tucker3 model, which
takes as a starting point a 3-way data array X of order (20
× 64 × 62). The tucker3 algorithm decomposes the data
array into a matrix E of residuals, a 3-way core array G of
order (w1 × w2 × w3), and three component matrices A, B,
C called loadings matrices. In order to use less computa-
tion time and make the results easier to interpret, the com-
ponent matrices of each loadings matrix are usually
constrained to be orthogonal. Mathematically, it can be
said that
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where ail, bjm and ckn denote elements of the component
matrices A, B and C of orders 20 × w1, 64 × w2 and 62 × w3
respectively, glmn denotes the elements (l, m, n) of the w1 ×
w2 × w3 core array G, and eijk denotes the error term for ele-
ment xijk and is an element of the 20 × 64 × 62 array E. See
[43] for more details on Tucker's models.

The number of factors in each of the three modes, i.e. w1,
w2 and w3, is determined by the analyst from a priori
knowledge of the data or by evaluating models with dif-
ferent combinations and choosing the order that provides
the most accurate model of X [44]. The elements of the
core array define how individual loadings vectors in the
different modes interact. For example, the [1,1,1]  factor
combination means the first component of the amino
acid composition, the protein function and the organism
modes, respectively. The core array therefore provides a
way to interpret the solutions since its squared entries rep-
resent the relative importance of each individual factor
combination in terms of explained variability. A highly
effective way to analyze these combinations of factors is to
represent them in a series of bi- or triplots. In our case, tri-
plots consist of the superposition of the representation of
two of the principal components for each loadings matrix.

These plots can be interpreted as the plot of scores and
loadings in standard PCA. By analysing points of the same
type (amino acids, functions or organisms), we can ana-
lyse the variation observed and the clusters formed. Also,
by analysing the mutual positions of points of different
types, we can identify which variables are responsible for
the variation. Though several successful applications of
multi-way models have been demonstrated in quite dif-
ferent areas [43,44], these models have not received much
attention in the analysis of proteomic or genomic data. In
this paper we show that this kind of algorithm is useful for
comparing the amino acid composition of several groups
of orthologous proteins.

Robustness of the model and reliability of the results
Robustness measures the ability of a method to remain
unaffected by small variations in variables or procedure.
To validate the robustness of our model and check that
the results were not a product of chance, we have verified
that minor changes in the modelling procedure do not
affect our conclusions. Specifically we have verified that
the model: (i) was unaffected by small changes in the
structural model, and (ii) was unaffected by slight changes
such as the elimination at random of some organisms or
group of orthologous sequences.

Another important matter is the reliability of the results.
Our results have been shown to be reliable by the percent-
age of summed variance fraction (98.60%) correlated
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with some biological character, the high value of these
correlations, and the consistency of our results with previ-
ous studies and our knowledge of the system analyzed.
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