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Abstract:  This work describes the use of a generalized modal scattering 
matrix theory as a fast, efficient approach to the analysis of incoherent 
Doppler lidars. The new technique uses Bessel beams, a type of optical 
vortices, as the basic modal expansion characterizing optical signals. The 
tactic allows solving both  multilayered reflections problems and spatial 
diffraction phenomena using scattering parameters associated with the 
transmitted and reflected spectrum of vortices. Here, we will show the 
capabilities of the technique by considering realistic incoherent Doppler 
systems based on Fabry-Perot etalons. 
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1. Introduction 

The scattering matrix is the most common used technique to study propagation waves in 
transmission lines and microwave systems [1-3]. However, the application of scattering theory 
in optics has usually been limited to multilayer propagation of plane waves, and the analysis 
of spatial diffraction, the most characteristic effect of any optical element, has had to be 
considered through techniques much less competent. One of the most used approaches, the 
angular spectrum propagation method, analyzes the propagation of optical perturbations 
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through systems consisting of optical elements, apertures, and free space regions using two-
dimensional fast Fourier transforms [4]. By using Fourier techniques, the incident beams are 
decomposed in plane waves that propagate through the optical system. Unfortunately, 
although this method requires a larger number of plane waves to represent typical optical 
perturbances, it deals very poorly with optical interferometric systems (e.g. Fabry-Perot and 
Fizeau filters) where multiple reflections need to be accurately considered to describe 
correctly their behavior. Consequently, methods other than those based on angular spectra are 
required to solve this set of problems.  

All in one, a unified approach for solving interferometric optical problems are not yet 
became readily available because of the difficulties to put together a systematic able to deal 
simultaneously with multiple reflections and diffraction. We aim to address these difficulties 
and use a generalized modal scattering matrix as a efficient approach to the analysis of 
incoherent interferometric optical systems. In contrast with other methods, the new technique 
uses Bessel beams [5, 6], a type of optical vortices, as the basic modal expansion 
characterizing optical signals. Bessel beams are free-space, exact solutions of the wave 
equation that are not subject to transverse spreading (diffraction). The tactic allows solving 
both multilayered reflections problems and spatial diffraction phenomena using scattering 
parameters (like in microwave systems) associated with the transmitted and reflected 
spectrum of optical vortices. Although this rigorous approach may have interest in many areas 
of optics, our main motivation in developing the technique has been the study of spectrometry 
problems on remote sensing systems. Intrinsically complicated and extremely sensitive, 
incoherent Doppler lidars are being considered as ideal tools to comprehend the atmospheric 
winds behavior. 

In Section 2, we describe the principles of the technique and define the main parameters 
needed to model both basic optical elements and more complex optical systems. Section 3 
describe the scattering matrix associated to a Fabry-Perot etalon and consider its use in the 
modeling of a complex, realistic incoherent interferometric system based on Fabry-Perot 
etalons. Section 3 recapitulates the main conclusions of this research. 

2. A generalized scattering matrix representation 

In this work we suggest a novel approach to fast and accurate analysis of large-scale 
incoherent optical lidar systems based on interferometric devices. We show that such systems 
may be described by scattering matrices (S matrices) and are connected by free-space 
propagations with corresponding S matrices. The properties of the entire optical 
interferoemeter are then accurately described by recursive combination of the individual S 
matrices of the functional optical components and the free-space propagations into a total S 
matrix. 

The scattering parameters (transmission and reflection coefficients) are determined from 
the scattered fields. Classically, these transmitted and reflected fields are well typify just when 
canonical illuminations (i.e., plane) are considered [7]. It results more difficult to define 
scattering parameters and to consider scattering matrix representations of optical systems 
using realistic illuminations. Fourier modal methods have been developed to overcome these 
difficulties [8]. In those, to define complex optical illuminations into the considered systems, 
it has been customary to decompose the incoming fields into its wave spectrum. Using Fourier 
transforms, the angular spectrum method express the propagated field as the sum of plane 
waves with different phase delays depending on the plane wave propagation angle [4]. 
Unfortunately, any Fourier decomposition of realistically complex 2-D optical illuminations 
needs to use a considerable number of modes. As the amount of wave planes required to 
properly describe the optical system is in the order of thousands, these spectral techniques are 
used to be of little practical interests.  

This work extends the S matrix theory based on the angular spectrum for propagating 
waves by using Bessel beams, a type of optical vortices, as the basic modal expansion 
characterizing optical signals. Bessel beams are free-space, exact solutions of the wave 
equation that are not subject to transverse spreading (diffraction). They are non-diffractive 
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waves which, as plane waves, are easily propagated in the transform domain [5, 6]. In general, 
any optical field can be decomposed in term of Bessel modes. The main advantage is that, in 
general, just a few Bessel beams are needed to describe any practical optical situation.  

To be specifics, using this new base we decompose any arbitrary wave U as:  

 ( )
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( , ) e
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mn m mn
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where Jm is the m-th order Bessel function of the first kind, and r and φ denotes the cylindrical 
coordinates. The product of these Bessel functions with the harmonic functions in Eq. (1) 
defines the so-called Bessel beams. The spatial frequencies νmn distinguish any of the optical 
modes used to describe the complex amplitude U. A number of (2M+1)×(N+1) modes have 
been considered. Once the modal basis has been set, the wave U can be explicitly described as 
a vector with components fmn. The number of modes needed depend on the illumination beam 
studied. For example, for a typical gaussian beam we need to consider just a few dozen 
modes. For more complex illuminations, such as those considering optical aberrations, a 
higher number of modes may be required. 

To illustrate our approach, we consider a interferometric system that consists of linear 
two-port components, including free-space propagations. In the most general case, each 
component may be a diffractive optical device. For the arbitrary diffractive optical device 
shown in Fig.1, each incident Bessel beam with order l at port i, ai,l, produces  reflected Bessel 
modes at port i, bi,l and transmitted Bessel modes at port j, bj,l. As the device is diffractive, 
each input Bessel beam generates a complete set of output modes. The generalized scattering 
parameters can be defined at input port i with input mode m and output port j and mode n: 
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For a simple two-port component, this matrix can be written as: 
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b a R T a
S

b a T R a
 (3) 

Here, the choice of the transmission T and reflection R matrices makes explicit the physical 
meaning of the four submatrices of Sj. Arbitrary lidar systems can be analyzed using this 
generalized scattering parameters. Each subsystem is connected to other subsystems in the 
same way as microwave circuits. With this modal method, reflection between subsystems are 
taken in count with the S-parameter formulism. This formalism allows to consider diffractive 
optics by defining non-diagonal S-matrix. The computationally expensive 2-D convolution of 
plane waves in classical beam propagation methods is here a simple product of full modal S-
matrix. If the optical device is not diffractive, the S-matrix is diagonal. Non-diffractive optical 
elements have diagonal S-matrix, as it has the non-diffractive propagation of our Bessel 
beams. To obtain the S parameter of a lidar system from the S parameters of the composed 
subsystem the same analysis techniques than in microwave networks can be used [9, 10]. 
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3. Modal parameters for Fabry-Perot etalons 

Our generalized modal scattering matrix approach permits considering multilayered 
reflections problems and spatial diffraction phenomena using scattering parameters associated 
with the transmitted and reflected vortical spectrum. In general, the formalism reduces the 
analysis of a general interferometric system to the definition of S matrices for any of its 
constituent optical components. As it was indicated before, our main motivation in developing 
the technique has been the study of spectrometry problems on remote sensing systems. 
Intrinsically complicated and extremely sensitive, incoherent Doppler lidars based on Fabry-
Perot etalons are being considered as ideal tools to comprehend the atmospheric winds 
behavior. 

It is straightforward to apply our analysis method to the study of Fabry-Perot 
interferometers. Figure 2 shows a simple, schematic Fabry-Perot etalon composed by two 
mirrors separated a distance d. In our technique framework, we describe the etalon as a three 
linear two-port elements, i.e., two reflective layers and one free-space propagation. Basically, 
any mirror can be represented by a field scattering matrix S with S11 = S22 = R  and    S21 = 

S12 = 1j −R , where R is the complex reflectivity of the mirror surfaces and 1j = −  takes 
into consideration the π/2 phase change introduced to the transmitted waves by the reflective 
layer. Obviously R and, consequently, the scattering parameters S11, S21, S12, and S22, have no 
dependency with the spatial frequencies νmn of the illumination wave. 

On the other hand, the free-space propagation scattering description needs to consider an 
implicit dependency on the spatial frequencies νmn used in Eq. (1) to describe the waves 
traveling the etalon cavity. Since each Bessel beam component has a different associated 
spatial frequency νmn, each travels a differently the distance between the two etalon parallel 
planes, and relative phase delays are thus introduced. The well-known direction cosine          
(1-(λνmn)

2 )1/2 along the propagation axis must be regarded as the factor describing the phase 
delay associated to the Bessel-wave component with spatial frequency νmn. Now, the required 
free-space propagation can be analyzed through a scattering matrix S with S11 = S22 = 0 and 
S21 = S12 = exp [- j k d (1-(λνmn)

2)1/2], where λ is the illumination wavelength and k= 2π/λ is the 
wavenumber. Certainly, these results consider the foundations of scalar diffraction theory. In 
fact, as with the angular spectrum of plane waves, we are formulating the scalar diffraction in 
a linear framework where the basic optical disturbances are our Bessel beams: If a complex 
field distribution is analyzed across any plane, the various spatial components can be 
identified as Bessel waves traveling away from that plane so that the field amplitude across 
any other plane can be calculated by adding the contributions of these Bessel waves taking 
due account of the phase shifts they undergone during propagation. Using these propagation 
terms, we make sure that our estimations collect any diffraction effect due to diffracting 
structures (per example, apertures limiting the incoming light) or finite illumination sources 
(such as Gaussian field illuminations). Also, we use scalar diffraction in its most general 
forms, i.e., we do not need to consider Fresnel and Fraunhofer approximations used to reduce 
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Mode 1: b1,1
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at Port 2

Incidence Waves
at Port 1

Reflected Waves
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Fig. 1 Outgoing and incoming waves in two-port optical network. We denote the incoming 
and outgoing waves at ports i by the L=(2M+1)x(N+1)-component vectors ai, and bi, 
respectively 
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the mathematical manipulations. Our estimations are valid for any possible range making 
possible to consider both near and far fields of the illumination.  

Finally, connecting the three S matrices needed to build a Fabry-Perot scattering model, 
we have a full, exact, electromagnetic description of the interferometric device. Well beyond 
the scope of paraxial and Fourier approaches, with our technique any possible consideration 
of electromagnetic optics is implicit in the analysis. Furthermore, by defining new S matrices 
for any other possible component of the instrument, this modal scattering method allow us 
readily to define realistic system configurations with diverse complexity and without 
compromise the accuracy of the analysis. We can extent the technique to consider multiple-
etalon interferometric sytems in a reliable way by simply adding new Fabry-Perot etalons 
separated by free space propagations. Any diffraction, interference, and coupling effects are 
automatically considered. 

So far, we have defined Fabry-Perot etalons by using three different two-port elements. 
However, it is worth to comment that is possible to follow a different approach. In fact, if we 
are interested in the analysis of multi-etalon interferometers, the analysis may be simpler if we 
could define an S matrix for the etalon itself. Per example, if we were able to define this basic 
etalon scattering matrix, and without considering any secondary optics, the analysis of a three-
etalon system would need to consider just three S matrices instead of the nine matrices 
requiring the previous approach implementation. By considering any Fabry-Perot etalon as a 
three-element optical network, we can steadily obtain its S matrix by applying the so-called 
Mason’s gain rules [10]. The representation of our optical resonator by a block diagram 
showing the basic connectivity of its components (Fig. 3), allows finding the transfer function 
of the system by working out the forward and backward paths and their gains. In our case, the 
paths are those connecting the three optical components (two mirrors and the propagation) and 
the gains are just the transmissivities S21, S12 and reflectivities S11, S22 we have defined for 
them. It is easy to apply Mason´s rule to obtain the S-matrix components of a Fabry-Perot 
resonator:   
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Obviously, this synthetic approach must lead to the same results that the genuine one 
considering a matrix for any component on every etalon. We have tested and confirmed this 
result. Also, it is worth to note that results in (4) are similar ─but not identical─ to the well 
known Airy formulas for the transmission of an ideal Fabry-Perot resonator [11]. Here, we 
consider not just the interference of multiple resonator modes traveling back and forth 

External
Port

External
Port

1 2 3 4 5 6

Free Space
Propagation

Reflective
Layer 1

Reflective
Layer 2

Reflectivity R1 Reflectivity R2Length d

Fig. 2. A Fabry-Perot interferometer can be analyzed as a multiport optical system 
composed of three different two-port elements. Waves b2 transmitted by the first reflective 
layer propagated a distance d to reach the second reflective layer as incoming waves a5. By 
properly defining the scattering matrix of any of these three elements, our modal approach 
allows to describes any interference and diffractive problem characterizing the Fabry-Perot 
etalon behavior. 
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between the two mirrors, but any diffraction effect and illumination divergence not 
contemplated in the basic Airy expressions. 

Next, we show the result of applying our techniques to a tandem of two Fabry-Perot 
resonators acting as an incoherent Doppler interferometric system. Direct detection Doppler 
lidars probing atmospheric winds need to consider both Mie scattering from aerosols in the 
lower troposphere and Rayleigh scattering form the lower stratosphere. As the spectral widths 
of aerosol (MHz) and molecular (GHz) backscattered signals are orders of magnitude 
different, two different interferometric channels must be defined in any reliable working lidar 
system. In an effort to increase the overall system efficiency, usual instrument configurations 
capture the light reflected by a high-spectral-resolution aerosol Fabry-Perot etalon into 
another wider passband molecular etalon.  Certainly, the analysis and optimization of such 
complex instruments has to consider in a realistic way the limitations caused by any cross-talk 
between light channels and any interference and diffractive effect. 

Fig.6 (left) shows the flowchart representing two etalons in cascade. Using Mason rules, 
the two-etalon transmittance for a given Bessel mode l (element of the S matrix diagonal as 
this network is not dispersive) is obtained: 

 1 21 2
21

21 2 12 1

( ) ( )
1l l

T T
T S

R R

τρ ρ
τ τ

= =
−

 (5) 

where T1 and T2 are the two etalon transmittances, R1 and R2 are the etalon reflectances, and 
τ21 is the transmittance (attenuation) between the two etalons and τ12 is the transmittance 
(isolation) in the reflected signal between the two etalons. 

Note, that expression (5) has the same form of the well-known Fabry-Perot Airy function. 
Alternatively, this result an be obtained by summing the multiple wave reflections between 
etalons [12]. However, using the proposed flow chart method, compact analytical expressions 
for triple or other optical circuits can be easily obtained. Distinctively, expressions (4) and (5) 
give the transmittance for each Bessel mode l, and they depend on the the radial angular 
spectrum frequency associated to this wave (ρl=νmn). Thus, expressions (4) and (5) takes into 
account the angular dispersion of the light at the input. As a simple example, Fig.6 shows the 
transmittances function of the two-etalon combination (reflectivity R=90%, separations of 
0.24 mm and 2.12 mm). This figure shows the ideal case without interreflections simulated 
sing an isolator between the two etalons (τ12=0, τ21=1), and without attenuator (τ12= τ21=1), and 
with attenuator of 5% (τ12= τ21=0.95). This figure shows that interreflections can be reduced 
using an attenuator, but the cost is a reduction in the peak transmittance. This fact is well 
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Fig. 3. Flow chart for a Fabry-Perot interferometer. In bold line, the signal path for an 
input wave that propagates to the output of the etalon. To find the transfer function of the 
etalon system represented by this block diagram we use Mason’s gain rule. 
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known in microwave area, where attenuators are common connected between mismatched 
devices to improve the return loss of the second device. Multiple etalon systems improve the 
background rejection with a modest cost to signal transmittance due the attenuation losses 
[12]. 

4. Conclusion 

The behavior of an incoherent Doppler lidar can be efficiently analyzed in terms of 
normalized wave variables at the ports of optical component multiports described by 
generalized scattering matrices. The new transfer matrix uses vortical Bessel beam as the 
basic modal expansion characterizing optical signals. The tactic allows solving both 
multilayered reflections problems and spatial diffraction phenomena using scattering 
parameters associated with the transmitted and reflected vortical spectrum. Although a wide 
variety of matrix representations for optical elements are known, the transfer scattering matrix 
representation shows the characteristic needed to properly address most of the electromagnetic 
problems of concern in optical interferometry. We are able to define useful relationships 
among different multiport matrix representations suitable to describe the complexity of the 
interactions in interferometric systems. 

These research has been devoted to the definition and development of this new, rigorous 
systematic allowing the analysis and design of realistic incoherent lidar setups. All the results 
shown in this work have been carried out in the framework of VBS (Vortical Beam Spectra), a 
self-contained software package implementing our new, generalized modal scattering matrix 
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Fig. 4. Flow chart (up) for two etalons with a attenuator used to reduce reflections between 
etalons. In bold line, it is market the signal path for an input wave that propagate to the 
output of the second etalon. Transmittance for the dual-etalon solar filter without absorber, 
with 5% absorber, and isolated etalons omitting reflections (down). 
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theory and including a library of blocks to model the behavior of optical elements and 
systems. VBS tools are helping us to implement commercial and research optical 
interferometric systems and their components. The software serves a broad range of tasks 
across a variety of optical problems from analysis and design to optimization and modeling. 

Interferometers used for atmospheric wind studies need to produce narrow and smooth 
interference fringes. By using our generalized scattering matrix formalism, we have analyzed 
the details of mode formation in multiple Fabry-Perot incoherent Doppler lidar systems and 
we have extended these results to the apparently more complex situation of incoherent 
Doppler lidars based on Fizeau wedge interferometers. The unique capabilities of the 
technique have been used to address the optimization of the interferometric device parameters, 
those producing the sharpest fringes in the detection plane. We have chosen to show the 
sensitivity of the method by studying the wind measurement uncertainty inherent to the lidar 
instrumentation as an indication of the performance of systems based on multiple Fabry-Perot 
etalons and Fizeau wedges. We intend to present these results in a companion paper. 
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