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Résumé — Coexistence de phases au voisinage du point critique pour un modèle AUA des thio-

* 

phènes — La coexistence de phases au voisinage du point critique a été déterminée en appliquant la
technique de "parallel tempering" aux simulations de Monte Carlo conduites dans l’ensemble Grand
Canonique, dont les résultats ont été recombinés par repondérations d’histogrammes. Les données
extraites durant les simulations permettent ainsi de déterminer le point critique et d’estimer la différence
de densité entre les phases à l’équilibre. L’algorithme récemment développé par Kim [Kim Y.C. (2005)
Phys. Rev. 71, 051501 ; Kim Y.C. (2005) Comput. Phys. Commun. 169, 295], basé sur le comportement
d’échelle des positions des différents minima trouvés après une analyse du paramètre de Binder, a été
appliqué au cas d’un modèle réel pour thiophènes. Le potentiel intermoléculaire fait appel à des centres
de Lennard-Jones représentant les atomes unifiés CH ou S. Contrairement aux cas des systèmes "Hard
Core Square Well" (HCSW) et "Restricted Primitive Model" (RPM), nous avons trouvé des corrections
au comportement d’échelle. Une adaptation de l’algorithme est proposée pour calculer la coexistence
des phases à proximité du point critique.

Abstract — Near Critical Coexistence for an AUA Model of Thiophenes — Near critical coexistence
has been determined by means of parallel tempering coupled with grand canonical Monte Carlo sim-
ulations which were later recombined by using histogram reweighting techniques. The data collected
during the simulations is not only useful to determine accurately the critical point but also to provide
estimates for the coexistence density jump between the phases in equilibrium. A recently introduced
algorithm by Kim [Kim Y.C. (2005) Phys. Rev. 71, 051501; Kim Y.C. (2005) Comput. Phys. Commun.
169, 295], based on the scaling of the positions of the different minima found for the Binder parameter,
has been applied to the case of a realistic model of thiophene consisting of different Lennard Jones
sites. Contrary to the case of the Hard Core Square Well (HCSW) and Restricted Primitive Model
(RPM) systems, significant corrections to scaling are found in this case. By readapting the algorithm
we are able to calculate the coexistence in the critical region.
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INTRODUCTION

Molecular simulation is rapidly becoming a very impor-
tant tool for the prediction of thermodynamical properties
of a wide variety of compounds and mixtures. In partic-
ular, thiophene compounds are nowadays of great interest
due to the increasing requirements for sulphur removal from
fuel being dibenzothiophene (DBT) and its derivatives [3]
the most difficult compounds to remove from the streams.
Hence, there is a strong need for thermodynamic data for
these compounds for which only limited vapour-equilibrium
data can be found in the literature. For example, experimen-
tal data of Vapour-Liquid Equilibrium (VLE) for mixtures
containing thiophene + alkanes + CO2 have been published
recently [4]. In addition, mixtures of ethanol+thiophene
have also been considered [5]. A much older study on sys-
tems consisting of aromatic hydrocarbons and thiophene in
polar solvents also exists [6, 7]. The appearance of power-
ful algorithms like the Gibbs ensemble, introduced in 1987
by Panagiotopoulos [8] allowed the direct determination of
phase coexistence without considering the simulation of the
interface.

Nevertheless, studying the critical region of the differ-
ent systems still constitutes a challenge due to the fact
that the correlation length diverges when the critical point
is approached. Having a good prediction for the critical
point is crucial when equations of state or group contribu-
tion methods are applied to predict phase equilibria. For
realistic potentials, the law of rectilinear diameters com-
bined with the correct scaling relationship has commonly
been used to extrapolate phase coexistence data obtained
from molecular simulation to estimate critical points [9].
Understanding the near-critical region behaviour can be par-
ticularly useful for the case of binary mixtures where the
application of the law of rectilinear diameters is limited.
Furthermore, the introduction of the Histogram Reweight-
ing (HR) techniques [10, 11] which allow the estimation of
a joint Probability Distribution Function (PDF) has lead to
several well-based studies and determinations of the critical
point [12-14]. The use of HR techniques allows the calcula-
tion of the PDF at any combination of intensive properties, a
fact which becomes very interesting when these techniques
are combined with Finite Size Scaling (FSS) studies.

FSS techniques allow the study of the influence of the
size of the simulation box on the location of the critical
point. For instance, in a recent work [15, 16] the use of the
fourth order cumulant calculation, also known as the Binder
parameter, was combined with FSS studies. Although the
use of these methodologies constitutes a significant progress
in the location of critical points, less attention has been paid
to the region close to the critical point. To give insight into
this problem, recently Kim [1] has proposed a new algorithm
able to yield precise estimates of the near critical coexisting
liquid and gas densities ρ+ and ρ− which he applied to the
Restricted Primitive Model (RPM) and Hard Core Square

Well (HCSW) systems. Due to the previously mentioned
correlation length divergence appearing in the near-critical
region, these values cannot be reliably estimated by using
the conventional criteria of equal-area construction for the
density equilibrium distribution function P(ρ; T ). For large
enough system sizes and temperatures sufficiently far away
from the critical temperature, a double peaked PDF is found
providing accurate estimates for the liquid and vapour coex-
isting densities. On the other hand, when the critical point is
approached, these two peaks become indistinguishable mak-
ing the estimates for ρ+ and ρ− unreliable. At this point, a
study of the Binder parameter QL reveals important infor-
mation which is useful to determine accurate values for the
coexisting vapour and liquid densities. In this work, we
apply the biased algorithm introduced by Kim [1] for the
case of the HCSW and the RPM, to the realistic intermolec-
ular potential developed for thiophenes [17]. By using this
algorithm, we are able to determine the coexistence density
jump Δρ∞ ≡ ρ+ − ρ− while we adopt the hypothesis of the
law of rectilinear diameters to calculate ρdiam ≡ (ρ+ + ρ−)/2
where it is important noting that both values of Δρ∞ and
ρdiam need to be determined in order to calculate the upper
part of the phase diagram. In the next section we give details
about the simulations and the model used in this work, while
in Section 2 we provide the reader with a theoretical back-
ground about the Binder parameter, QL.

1 MODEL AND SIMULATION DETAILS

To describe the dispersion interactions, thiophene is repre-
sented by a set of interacting Lennard-Jones sites for each
CH or S group. The interactions between two different
united atoms, i and j, from different molecules is calculated
according to the 6-12 Lennard Jones potential:

ULJ(ri j) = 4εi j

⎡⎢⎢⎢⎢⎢⎣
(
σi j

ri j

)12

−
(
σi j

ri j

)6⎤⎥⎥⎥⎥⎥⎦ (1)

To calculate the parameters between unlike united atoms, we
use the Lorentz-Berthelot combining rules:

εi j =
√
εiiε j j (2)

σi j =
σii + σ j j

2
(3)

To model the aromatic rings we have taken the AUA 4 CH
intermolecular potential for polyaromatic compounds by
Contreras et al. [18, 19], and the S group for thiophenes by
Pérez et al. [17]. The parameters for the different poten-
tials, which were obtained from fitting to selected equilib-
rium properties of aromatic and thiophenic compounds, are
shown in Table 1. In Table 2 we show the bond angles and
distances used for the different bonds. These parameters
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TABLE 1

Lennard-Jones parameters

Group σ (Å) ε/k (K) δ (Å)

CH [18] 3.246 89.42 0.407

S [17] 3.493 179.2 —

TABLE 2

Bond lengths and angles

Bond Length (Å) Angle Σ (deg)

Car – Car – Car 112.7

Car − Car (aromatic ring) 1.39 Car − S − Car 92.2

Car – S 1.72 Car − Car – S 111.2

have been taken from the experimental geometry of thio-
phene [20] as well as from ab initio calculations at the Den-
sity Functional Theory level. The molecule of thiophene has
been assumed to be rigid, as for the AUA 4 model for aro-
matics while no electrostatic charges have been included due
to the moderate dipole moment of the thiophene molecule
μ = 0.54 D [21].

Regarding the simulations, three different system sizes
L = 20, 25, 28 Å have been investigated by means of five
grand canonical simulations at different temperatures cou-
pled with parallel tempering exchanges. The cutoff length
was set always to half of the simulation box. Periodic bound-
ary conditions were applied. The length of each simulation
was at least 108 MC steps previously equilibrated for at least
2 × 106 MC steps. The frequencies for the different MC
moves were set to 0.2 in the case of translations and rotations
and 0.6 for insertions or deletions of the particles.

2 ANALYSIS OF THE BINDER PARAMETER (QL)

As has been previously shown, the QL parameter provides
useful information when analysing the critical region. As is
shown in Figure 1, the study of the QL parameter along the
equilibrium line defined as:

QL =
1

UL
=
〈m2〉2
〈m4〉 (4)

where m = ρ − 〈ρ〉 is the order parameter and where it
is important noting that in this case UL = Q−1

L , provides
a direct route to estimating the critical point through the
intersections of the curves plotted for different system sizes
L. The UL parameter provides a dimensionless measure of
the shape of the order parameter distribution function and is
expected to have a universal value UL = 1.6035 at the crit-
ical point [22] for the Ising universality class. This means
that the infinite system size critical point can be identified as
the point where UL becomes system-size independent, being
this point where cumulants from different sizes intersect.

Although this estimate is in principle a direct estimate of
the infinite system size critical point, there are corrections
to scaling which cause the intersections of different system
sizes, and hence this estimate of the infinite system size
critical point, to be also sensitive to the system size, albeit
less so than an estimate taken from just one system size.
These corrections to scaling can be used to scale various
intersections from different system sizes with system size.

On the other hand, the QL parameter investigated at con-
stant temperature as a function of ρ, also embodies impor-
tant information. As is shown in Figure 2, when the QL

parameter is plotted at isothermal conditions, two minima
can be appreciated. These two minima give the finite size
values of the coexisting vapour and liquid densities ρ±L(T ).

Below the critical temperature, and for system sizes going
to infinity, where the finite-size effects are negligible, the
values of ρ±L(T ) for the minima approach the true ρ± values
while their respective heights Q−min and Q+min vanish. Under
these conditions, the values obtained for ρ± are fully con-
sistent with the use of the equal-weight construction crite-
ria [23]. Close to the critical temperature, a finite-size scal-
ing approach for QL, the theoretical basis of which is briefly
described here, is proposed by Kim. For further details, the
reader is referred to [1] and [2]. The following finite-size
scaling expression is proposed for QL:

QL(T, 〈ρ〉) ≈ Q(tL1/ν,Δρ/|t|β) (5)

being Q the scaling function, Δρ = 〈ρ〉 − ρc, t a propor-
tionality constant, and β and ν critical exponents. Accord-
ing to this expression, the average of the minima heights
and the average of the normalized density deviations follow
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Figure 1

UL parameter calculated along the equilibrium line for differ-
ent system sizes. Dotted, dashed-dotted, dashed and solid lines
represent L = 25, 32, 37, 42 Å systems respectively.
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Figure 2

QL parameter as a function of density calculated at different
temperatures.

respectively the scaling expressions:

Qmin(T ; L) ≡ 1
2

(Q+min + Q−min) ≈ M(tL1/ν) (6)

Δymin(T ; L) ≡ ρ
+
min − ρ−min

Δρ∞
≈ N(tL1/ν) (7)

beingM and N the appropriate universal scaling functions.
Since both averages depend on the same scaling variable
tL1/ν, Δymin can be expressed as a universal functionR(Qmin)
of the average of the minima heights. As can be seen from
Equation 7, the knowledge of the universal scaling function
R(Qmin) leads to the determination of Δρ∞, thus the calcu-
lation of the critical exponent β as well as the determination
of the critical temperature which can be identified as the
point where Δρ∞ vanishes. In order to determine R(Qmin),
an algorithm has recently been proposed [2] based on a
recursive numerical construction of the function taking as
a starting point the exact expansion obtained for the case
of the double-peaked Gaussian distribution of the density
PDF found well below the critical temperature. The use of
this algorithm requires generating very accurate data for a
variety of system sizes, at least three, in the critical region.
To overcome this limitation, a second algorithm was pro-
posed by assuming the universality class to which the sys-
tems belong to. This assumption is well justified for a wide
variety of systems, such as the HCSW fluid, the Lennard-
Jones (LJ) model and even the RPM system where the uni-
versality class is already known. This second algorithm uses
as input the R(Qmin) previously determined by using the
unbiased algorithm. This allows Δρ∞ to be determined by
considering only a unique system size thanks to the a priori
knowledge of the universal scaling function R(Qmin), that

can be presented now as a term which corrects the finite-
size jump in density (ρ+min − ρ−min) transforming it into the
infinite system size difference between coexisting densities.

Δρ∞ ≈
(ρ+min − ρ−min)

R(Qmin)
(8)

To determine the value of R(Qmin), it has been fitted [2] to
the following expression defined in terms of the auxiliary
variable q ≡ Qminln(4/eQmin):

R(Qmin)−1/β 

[
1 − q

2β

]
(1 − qr)(1 + a2q2

r + a3q3
r )

(1 − qr + b2q2
r + b3q3

r )
(9)

where a2 = 1.829, a3 = 1.955, b2 = 2.340, b3 = −1.388 and
qr = q/qc being qc the value at which R(Qmin) vanishes and
consequently indicating the critical point. In the absence
of corrections to scaling, the value of qc is expected to be
universal. For the case of the HCSW and the RPM it was
found that qc 
 0.286.

3 NEAR-CRITICAL COEXISTENCE APPROACH
AND CONCLUSIONS

Since the main objective of this work is to determine the
near-critical phase coexistence with a reasonable investment
of computational time, in this section we show how to adapt
the algorithm proposed by Kim and Fisher to the case of
our realistic intermolecular potentials where the computa-
tional time is increased and furthermore we find corrections
to scaling which are not found in the case of the HCSW fluid
or the RPM model. Although the biased algorithm is able to
provide the user with accurate estimates of Δρ∞, in order to
close the phase diagram, the value of ρdiam is also necessary.
A precise and complex algorithm has already been devel-
oped [1] based also on a numerical recursive construction
taking as initial point the double-peaked Gaussian distribu-
tion found below the critical point, however in this case there
is no associated universal function that can be developed and
each system can have a different form. By applying this
scaling algorithm one can notice that the applicability of the
law of rectilinear diameters extends up to the region very
close to the critical point.

Thus, in order to close the phase diagram, we propose
the combination of the assumptions of the law of rectilin-
ear diameters with the predictions for Δρ∞ obtained from
the biased algorithm. To construct the upper part of the
phase diagram, two points are defined to calculate the values
of ρdiam(T ). First of all, the critical temperature and den-
sity are calculated from a FSS analysis of the intersections
of the Binder parameter calculated using different system
sizes with its universal value [24]. Then, a second point
for ρdiam(T ) can be fixed at a temperature sufficiently below
the critical temperature such that the FSS effects are negli-
gible. Then, by applying the biased algorithm mentioned in
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Section 2, we can calculate the scaled values of Δρ∞ which
allow us to calculate finally ρ±L(T ).

Due to the observed corrections to scaling appearing in
the case of the Lennard-Jones fluid, we have observed in the
limit of vanishing Δρ∞ a value of q ≈ 0.31, slightly different
from the expected universal value q ≈ 0.286 calculated by
Kim. This can be appreciated in Figure 3 where, as in the
case of UL in Figure 1, the values of qL have been found
for different temperatures and system sizes. Although in
this case the limited quality of the simulation data prevent
an accurate estimate of the intersections being made, how-
ever, we can conclude that for the case of the Lennard-Jones
thiophene system, the intersections occur at a significantly
higher value than the one calculated by Kim. To deter-
mine from our simulation data, the universal value of q, and
according to the already observed behaviour of the intersec-
tions of the fourth order cumulant curves with its universal
value UL = 1.6035 [22], we have plotted the intersections
of the qL curves with the apparent critical temperatures cal-
culated from the UL analysis [24]. These values, indicated
in Figure 3 by means of squares, seem to take place at an
approximate value qL ≈ 0.294 close to the value calculated
by Kim. The discrepancy between these values can prob-
ably be explained taking into account the error that could
be committed when applying the full numerical method as
well as the error in the calculation of the qL curves of this
work. After this analysis, for the case of the Lennard-Jones
potentials used in our model, the behaviour observed sug-
gests that we need to readapt the biased algorithm simply by
replacing in the calculation of qr the critical universal value
qc = 0.294 with the approximate value at which the intersec-
tions take place q ≈ 0.31. Finally, in Figure 4, we show how
the phase diagram of thiophene is closed by applying the
combination of HR techniques with a FSS study of the QL
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Figure 3

qL intersections at different system sizes. Dotted, dashed and
solid line represent L = 20, 25, 28 Å systems respectively.
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Thiophene phase diagram: coexistence densities close to the
critical point.

minima. We can conclude that the use of this methodology
allows a well-founded calculation of the upper part of the
phase diagram without the necessity of investing additional
computational time.
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