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Abstract

Background: Although large scale informatics studies on introns can be useful in making broad inferences concerning
patterns of intron gain and loss, more specific questions about intron evolution at a finer scale can be addressed using a
gene family where structure and function are well known. Genome wide surveys of tetraspanins from a broad array of
organisms with fully sequenced genomes are an excellent means to understand specifics of intron evolution. Our approach
incorporated several new fully sequenced genomes that cover the major lineages of the animal kingdom as well as plants,
protists and fungi. The analysis of exon/intron gene structure in such an evolutionary broad set of genomes allowed us to
identify ancestral intron structure in tetraspanins throughout the eukaryotic tree of life.

Methodology/Principal Findings: We performed a phylogenomic analysis of the intron/exon structure of the tetraspanin
protein family. In addition, to the already characterized tetraspanin introns numbered 1 through 6 found in animals, three
additional ancient, phase 0 introns we call 4a, 4b and 4c were found. These three novel introns in combination with the
ancestral introns 1 to 6, define three basic tetraspanin gene structures which have been conserved throughout the animal
kingdom. Our phylogenomic approach also allows the estimation of the time at which the introns of the 33 human
tetraspanin paralogs appeared, which in many cases coincides with the concomitant acquisition of new introns. On the
other hand, we observed that new introns (introns other than 1–6, 4a, b and c) were not randomly inserted into the
tetraspanin gene structure. The region of tetraspanin genes corresponding to the small extracellular loop (SEL) accounts for
only 10.5% of the total sequence length but had 46% of the new animal intron insertions.

Conclusions/Significance: Our results indicate that tests of intron evolution are strengthened by the phylogenomic
approach with specific gene families like tetraspanins. These tests add to our understanding of genomic innovation coupled
to major evolutionary divergence events, functional constraints and the timing of the appearance of evolutionary novelty.
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Introduction

Eukaryotic protein coding genes are interspersed with non

coding sequences called introns that are removed from the

corresponding transcripts by the spliceosome, a complex RNA-

protein assemblage. Introns and sequences of proteins from the

splicing machinery have been found in all eukaryotic species with

fully sequenced genomes [1–3]. Despite the vast amount of

information generated since their discovery and the importance of

introns in understanding gene organization, many issues regarding

intron evolution remain enigmatic. These issues include the timing

of intron origin and proliferation, the evolutionary history of

introns and mechanisms of intron loss/gain in eukaryotic

organisms, and the evolutionary dynamics that can explain their

existence. These issues have led many researchers of intron biology

to ask - is there a selective advantage to having introns and if so

what is the advantage [for recent reviews see: 3–7].

Studies on the evolution of spliceosomal introns mainly use

broad genomic data sets of conserved homologous genes from

diverse eukaryotic organisms [3,4,8–10]. Few publications have

addressed intron evolution by examining full complements of a

gene family and the distribution of intron/exon sites in all

members of a family, probably because the intron-exon structure

was only known for a small set of species [6,11–14]. As pointed out

by Hughes our understanding of protein evolution could be

improved by studying specific well characterized systems [15]. The

recently fully sequenced genomes of multiple eukaryotic species

covering broad evolutionary divergences, makes analysis of intron-

exon structure of individual gene families an interesting option. In

particular, taking a phylogenomic approach to understand the
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distribution of intron/exon evolution in a suitable gene family

would allow the determination of ancestral states of intron

presence/absence, and allow for the correlation of intron loss/

gain events with function and to place time estimates on intron/

exon evolutionary events.

We suggest that suitable gene families to apply the phyloge-

nomic approach to examine intron/exon structure would be

ones with many members, several introns in each paralog and a

broad phylogenetic distribution. The tetraspanin superfamily of

proteins meets all three of these important requirements. This

large family has 33 paralogs in the human genome and at least

37 members in Drosophila [16]. Members of the family are found

in eukaryotic organisms as diverseas animals, fungi, plants and

protists [17–18].

The biochemical functions of tetraspanins, a broadly expressed

superfamily of transmembrane proteins, are based upon their

ability to form large integrated signalling complexes or tetra-

spanin-enriched microdomains by their primary associations with

multiple transmembrane and intracellular signaling/cytoskeletal

proteins and secondary associations with themselves [19,20].

Tetraspanins participate in many membrane-associated cellular

activities such as cell adhesion, motility, activation of signaling

pathways, and cell proliferation. This participation occurs in

normal and in pathological conditions such as cancer metastasis or

infections by viral, bacterial, or parasitic organisms [21–30].

Specific functions have been described for some tetraspanins such

as the PLS1 tetraspanin, which enables the plant pathogenic

fungus Magnoporthe to invade its rice host’s leaves [31]; the LBM

tetraspanin, whose mutations cause synaptic defects in Drosophila;

the CD9 and CD81 tetraspanins, which are involved in

mammalian sperm: oocyte fusion [25,30]; CD81, which is

involved in immune signaling [32]; peripherin/RDS, which

scaffolds vertebrate photoreceptor outer segment structure [33];

and uroplakins, in the maintenance of the urothelial permeability

barrier [34–36]. The ability of tetraspanins to carry out multiple

interactions relies upon their characteristic structure. Structurally,

tetraspanins are proteins of only 200–300 amino acids, with four

conserved transmembrane domains which delimit one small

extracellular loop of 13–31 aminoacids (SEL; see Figure 1), a

short intracellular sequence and a large extracellular loop of 69 to

132 aminoacids (LEL) [37,38]. These SEL and LEL regions are

the least conserved regions of tetraspanins. The LEL has two

domains: a constant region, containing three a-helices (H-A, H-B,

and H-E) without cysteines and a variable region, characterized by

the presence of cysteines that form a structural scaffold of disulfide

bridges that allows for high sequence variability on the inter-

cysteine loops (Fig 1A, B) [39]. This variable region in the LEL

contains nearly all of the known tetraspanin protein-protein

Figure 1. Cartoon of a typical tetraspanin and intron positions. (A) The small (SEL) and large (LEL) extracellular loops constant and variable
regions are indicated. The example shown is that of CD81, whose LEL 3D structure has been solved (43). Brown bars in the LEL loop represent
disulfide bridges; Orange, colored SEL; Dark blue, constant region of LEL; Red, variable region of LEL; Light blue transmembrane domains; no color,
intracellular regions. (B) Ancestral intron positions 1 to 6 are indicated on the protein by arrows of the same color that will be used through all of the
figures. TM-1 to 4 transmembrane domains; H-A, H-B and H-E constant helices in the LEL (C) Animal CD63L, TSPAN15L and TSPAN13L tetraspanins’
consensus intron structure.
doi:10.1371/journal.pone.0004680.g001

Tetraspanin Introns
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interaction sites and most likely specifies the diverse tetraspanin

classes and functions [23,37].

The typical intron/exon structure of most tetraspanins has been

reported, in bilaterian animals, to consist of six introns in positions

that do not break the reading frame (so called phase 0 introns) that

we have named introns 1 to 6 (Fig. 1 B) [40].

In the present study we add to our recent analyses of tetraspanin

relationships [18,41] by investigating exon/intron evolution. In our

previous study we utilized information from tetraspanin paralogues

from fully sequenced genomes (bilaterian animals - protostomes and

deuterostomes, plants - monocots and dicots, fungi - Microsporidia,

Zygomycota and Asmcycota, and protists - Amoebozoa and

Excavates [18]). For the present study, we add tetraspanin

paralogues from non bilaterian animals (Cnidarians, Placozoa and

Poriferans), Choanoflagellates (the closest unicellular relatives of

animals), Fungi (chitridiomicota), Plants (lycophytes and mosses) and

Protists (stramenopiles, alveolates and discicristates). In all, these

organisms cover seven out of the eight major groups of eukaryotic

organisms [42]. This analysis of the full complement of tetraspanins

in a broad set of eukaryotic organisms allowed us to precisely

pinpoint the origin of specific exon/intron structure and to

determine the evolutionary significance of intron gain/loss events.

With a broad taxonomic sampling of tetraspanin genes and

precise description of their exon/intron structure we can test

several hypotheses relevant to the evolution of tetraspanin introns.

First, we can examine whether the tetraspanins corroborate

already well-established patterns of exon/intron loss in other

genes. Because there are several introns in the tetraspanins this

allows us to test hypotheses of intron gain/loss very precisely.

Second, we hypothesize that major structural changes in

tetraspanin genes with respect to exon/intron structure are

associated with major cladogenetic events in the eukaryotic tree

of life. This hypothesis stems from ideas about major radiations of

organisms being accompanied by similar major adaptations. In

order to test this hypothesis, we reconstruct the gain/loss of introns

on a well corroborated eukaryotic tree and examine where on the

tree the gain/loss events occur. Third, we hypothesize that

substantial exon/intron structural changes that occur in tetra-

spanins are associated with major functional changes in these

proteins. This hypothesis can be tested by examining whether any

other physical aspects of tetraspanins change concurrently with

exon/intron alterations. Specifically, we examine if changes in the

cysteine motifs in tetraspanins are coincidental or correlated with

exon/intron changes.

Results

Sequence analysis of sponge tetraspanin introns and the
discovery of three novel ancient animal tetraspanin
introns

Sponges are often considered the most primitive diploblastic (two

tissue layers) animals. Since fully sequenced sponge genomes are not

yet available, we searched the NCBI database for sponge

tetraspanins in the expressed sequence tag (ESTs) database. We

identified several tetraspanins from the sponge Oscarella carmella

ESTs, designed primers to obtain introns and determined the exon/

intron structure by sequencing O. carmella genomic DNA. All six

ancestral intron positions were present in one of the five sequences of

O. carmella tetraspanins that we obtained (Fig 2, Table S1). While we

did not detect other intron/exon boundaries in Oscarella, we cannot

infer that these do not exist, as the tetraspanins from this organism

were not obtained from completed genome sequences. Mining of the

whole genomes of Nematostella and Trichoplax (Placozoa) for

tetraspanins revealed the presence of all six introns in the

tetraspanins of these diploblastic animals. We found ancient intron

4 also in Fungi, Plants and introns 1 and 4 in Amoebozoa (Figure 3).

In addition to the six reported ancestral introns, 1 to 6, we identified

three new ancient introns we call 4a, 4b, and 4c, which are conserved

from the ancestors of the non bilaterian animal, Placozoa (Trichoplax

adherens, introns 4b and 4c) and the unicellular choanoflagellate

(Monosiga; intron 4a) to mammals (Fig. 2, Figures S1, S2 and S3). All

these nine introns are in positions that do not break the reading

frame (phase 0 introns).

Animal tetraspanins cluster in three ancient groups by
their intron/exon gene structure

We observed that three combinations of the nine ancient introns

(1 to 6, 4a, 4b, and 4c) divide animal tetraspanins into three groups;

we call them CD63-like (CD63L) (introns 1, 2, 3, 4, 5 and 6),

TSPAN15-like (TSPAN15L) (introns 1, 2, 3, 4, 4b, 4c and 6) and

TSPAN13-like (TSPAN13L) (1, 2, 4a and 6) (Fig 1 C and Figs S1,

S2, and S3). These three groups of tetraspanins have been conserved

from the basal non-bilaterian metazoans (i.e., placozoans and sea

anemones (Figure 2 and Figures S1,S2, and S3). Introns 1, 2, and 3

are common to each of the three groups described above;

interestingly variant introns 4, 4a, 4b, 4c and 5 are located in the

region of tetraspanin genes that codes for the variable LEL region.

(Figure 1C and Figures S1, S2, and S3). This protein region,

involved in protein-protein recognition between tetraspanins and

other proteins [23,37] also includes specific cysteines that form a

different scaffold of disulfide bonds in each of these three groups

(CD63L, TSPAN15L and TSPN13L), allowing for high sequence

variability in these regions. The cysteine specific disulfide bonds are

predicted for the CD63L and TSPAN15L groups in Kitadekoro et

al, [43] and Signeuret et al [39]. The TSAPAN13L prediction was

generated using the DiANNA web server [44] (Data not shown).

Introns 1 to 6 alone, characterize the largest group of tetraspanins,

CD63L. Tetraspanins in this group have six cysteines in the LEL

with the pattern: CC–CC–C–C (where C means cysteine,; and

dashes represent a variable number of amino acids; Figure S1).

Tetraspanins in the TSPAN15L group have introns 1, 2, 3, 4, 4b, 4c

and 6. This TSPAN15L tetraspanin group has an eight-cysteine

pattern: CC–C–C–CC–C–C in the LEL variable region (Suppl. Fig.

2). The last group (TSPAN13L) has introns 1, 2, 4a and 6, and six

cysteines in the following order: CC–C–C–CxxC (where x refers to

any amino acid residue; Figure S3). In this group, a new intron we

call 3a, appeared in the common ancestor of tunicates (the sea squirt

Ciona intesinallis) and vertebrates and has been conserved since (Figure

S3). In animals, new classes of tetraspanins appeared during the

diversification of phyla and classes, some of the new tetraspanins,

although maintaining the intron structure in genomic DNA, that

codes for the LEL variable region have variation in their cysteine

patterns. Such is the case of tetraspanins CD151, CD53, CD9,

CD81, CD82, CD37 and TSPAN11, TSPAN 9, TSPAN 4, TSPAN

2, TSPAN 8, TSPAN 1, TSPAN 16, TSPAN18 that have a variable

number of cysteins (4, 6, or 8) and constant introns 4 and 5 in the

DNA sequence that codes for the LEL region, (Figure S4)

A tetraspanin found in the Unicellular Choanoflagellate
Monosiga belongs to TSPAN15L

A search for tetraspanins in the recently sequenced genome of the

choanoflagellate, Monosiga brevicolis, a unicellular organism, which is

considered the closest relative to multicellular animals [45], revealed

a single tetraspanin sequence with the intron characteristics of the

TSPAN15L group (introns 1, 2, 4a and 6; Figure 2 and Figure S3).

In addition to the introns described above, M. brevicollis has four

additional specific introns (Figure 2; Figure S3).

Tetraspanin Introns
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Figure 2. Intron/exon structure of all animal tetraspanins in the present study. Intron positions are represented by boxes of different
colors. Ancestral introns 1–6 are numbered on top of the figure. Same color boxes represent conserved intron position. Empty boxes indicate unique
intron positions within the species gathered in this analysis. A star above a box indicates an intron position that breaks the reading frame (intron
phases 1 or 2).
doi:10.1371/journal.pone.0004680.g002

Tetraspanin Introns
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Tracing tetraspanin intron loss/gain to common
ancestors in the eukaryotic tree of life

Phylogenomic analysis, performed using a multigene family like

the tetraspanins from several organisms, can allow for the

identification of the common ancestor of an intron loss/gain

event. The phylogenetic distribution of the origins of the 19

introns that have been conserved in the 33 human tetraspanin

paralogs is shown in Figure 4.

In the following we refer to any intron other than 1 thru 6 and

4a, 4b and 4c as derived because they have arisen in more derived

common ancestors. Of the ten derived introns in human

tetraspanins most arose in the common ancestor of the vertebrates,

where six new introns can be traced to this common ancestor. In

addition, two new introns can be traced to the common ancestor

of mammals. These observations suggest that, for the sparsely

sampled organisms we examined in this study, there are very few

Figure 3. Intron/exon structure eukaryotic non-animal (fungi, plants and protists) tetraspanins in the present study. Intron
numbering and colours are as in legend of Figure 2.
doi:10.1371/journal.pone.0004680.g003

Tetraspanin Introns
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cases of intron loss/gain in single species lineages suggesting that

most intron evolutionary events in tetraspanins coincide with

major radiations of animals. The exceptions to this observation are

the nematode tetraspanins, where intron gain/loss is rampant in

that species (see below).

We also observed that of the ten more highly derived intron

positions we detect in this study, seven break the reading frame

(either phases 1 or 2), in contrast to the ancestral nine phase 0 well-

conserved introns (introns 1 through 6). These phase 1 or 2 introns

are found in tetraspanin groups: CD9, Tsp2, CD37 (intron 1a);

Tsp8, (intron 1b); CD82, CD37, (intron 1c); Tsp 12 (intron 1d);

Tsp32, (intron 1e); ROM, RDS, (intron 4d); and Tsp10, (intron

4e). For example, the gene structure of the tetraspanin subgroup

Tsp2/CD81/CD9 shows a new intron (intron 1a in Figure 2,

Figure 4. Ancestral origins of introns in mice and humans. The tree shows ancestral points of origin (mammals, tetrapods, vertebrates,
chordates and animals) for the human and mouse tetraspanins (modified from Garcia-Espana et al, 2008 (18). Human and mouse intron origins are
indicated by arrows. The phylogenetic tree is based on our best recent understanding of relationships of major taxonomic groups.
doi:10.1371/journal.pone.0004680.g004

Tetraspanin Introns
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Figure S4) between intron 1 and 2. This intron (1a) has been

conserved from tunicates (Ciona) throughout vertebrates. Another

example is that of the CD37/CD82 subgroup which has accrued a

new intron (intron 1c) in the ancestor of vertebrates (Figure 2,

Figure S4).

Frequency of intron gain/loss in tetraspanins
We coded all introns, in all organisms we examined in this study

as present, absent or as unknown (missing data) into a matrix

[46,47], and mapped these onto the phylogenetic hypothesis in

Figure 5. The result of character mapping and ancestral

reconstruction indicated that nine conserved ancient intron/exon

junctions (1 thru 6 and 4a, 4b and 4c) were present in the ancestor

of all animals. The red branches in Figure 5 show the position and

number of intron gains that led to the nine ancestral animal

tetraspanin introns. Subsequent gain and infrequent loss of intron/

exon junctions has occurred in all protostome and deuterostome

genomes we examined in this study (Figure 5).

Using the mapped presence/absence of introns on the

phylogenetic tree we calculated there are 105 intron gain events

and only four intron loss events. More than one fourth of these

gains (27 gains) are in hypothetical ancestors in the tree. The

majority of the gains occur in a single species, in the nematode C.

elegans (42 gains), with ten percent occurring in the sea squirt (11

gains) and over five percent occurring in Drosophila (6 gains) and

choanoflagellate (5 gains). The rest of the gains are dispersed

across the other taxa. The four losses occur in the common

ancestor of protosotomes (2; blue branch in Figure 5), in the

lineage leading to C. elegans (1) and in the sea squirt (1).

When we characterized the loss and gain of introns in

tetraspanin genes in terminal lineages in the taxa in Figure 5 by

calculating the percentage of introns that are lineage-specific gains

Figure 5. Phylogeny of all organisms examined in this study showing number of intron gains and losses on internal branches. The
number of gains and losses in a particular species since its divergence from a common ancestor is shown below the taxon name. For instance, the
number four below the sea urchin name means that the sea urchin has had four gain/loss events since its divergence from the common ancestor of
sea urchins and vertebrates.
doi:10.1371/journal.pone.0004680.g005

Tetraspanin Introns
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and losses, we observe a high degree of variability of percentage of

gains from taxon to taxon (Figure 6). The majority of taxa in Figure 2

have gained 10% or fewer introns in their tetraspanin genes since

divergence of the last common ancestor in the tree. The only

exceptions are the C. elegans tetraspanins, which show a very high

frequency of intron gain (88% of the introns in C. elegans are gains

from the common ancestor of Drosophila and C. elegans; Figure 6). The

average number of introns per gene (not shown) is in accordance

with what has been described for other genes (3; 7) with the

exception of the A. thaliana tetraspanins which have fewer introns per

gene than the average in that species. The high frequency of intron

gains we observe in tetraspanins in C. elegans is a well documented

phenomenon for other genes examined so far [48].

Intron exon/structure in tetraspanins support several
nodes in animal phylogeny

An examination of the phylogenetic patterns of intron presence/

absence mapped on the phylogenetic tree (Figure 5) demonstrates a

strong correspondence between phylogeny and the distribution of

introns. The large scale agreement of intron presence and absence is

manifest in the strong consistency of these characters when mapped

on the tree. Only six introns have consistency indices less than 1.0,

while of the 37 introns that are phylogenetically informative, 35 of

these have a consistency index of 1.0, meaning they are entirely

consistent with the well accepted phylogenetic hypothesis in Figure 5.

These results suggest that major branching events in the tree of life

(like the origin of vertebrates) are highly correlated with intron gain/

loss. This result also implies that the tetraspanins that share the same

intron structure cluster together into strongly supported phylogenetic

groups. For example, in the large cluster that we call the CD group

[Espana et al., 2007; 18], the subcluster CD151/Tsp11 and Tsp9/

Tsp4/CD53 have the ancestral six intron structure, while CD9/

Tsp2/CD81 all have, in addition, a new intron 1a between

conserved introns 1 and 2. All tetraspanins in the Tsp8 group have

intron 1b and CD82/CD37 tetraspanins have intron 1c (Figure S4).

SEL and the hypervariable region of LEL in tetraspanins
are preferential hotspots for new intron insertion

Interestingly, the derived tetraspanin introns are not randomly

inserted in tetraspanin genes, but rather are preferentially found in

the sequence region that codes for the small extracelular loop 1

(SEL) (Fig. 1). In this short domain that corresponds to only 10.5%

of the total sequence surveyed, we found 36.7% of the 79 novel

intron gains in tetraspanins (a ratio of 3.5 times greater rate than

expected over random). The next highest intron dense region in

tetraspanins is the variable subdomain in the LEL where 24.0% of

all new introns are found in the 25.3% of the sequence that makes

up the LEL. The remainder of the tetraspanin gene regions (the

four trasmenmbrane domains and the LEL without the variable

subdomain; Fig 1), had a frequency of intron insertions 5.8 times

lower than that of the SEL (a frequency of 0.60 for each region). In

particular, of the ten derived introns present in human

tetraspanins (1a–f, 3a, 4d and 4e; Fig. 4), seven (1a to 1f) were

found in the SEL region and three (3a, 4e and 4d) in the LEL

region. A search for the implication of these derived introns in

alternative spliced transcript in the NCBI AceView database,

showed that only intron/exon junctions, 1f in TSPAN14 and

TSPAN5, were involved in alternative splicing events (exons

between introns 1f and intron 4 and between 1f and 2 were

omitted in splice variants of TSPAN14 and TSPAN5 respectively;

AceViev database TSPAN14 transcript variant iApr07 and

TSPAN5 transcript variant bApr07).

Apparent intron sliding in tetraspanins CD81 and
Tspan15 is due to variation in sequence length at the
ends of exons

As expected, the intron/exon junctions for the same intron (i.e.,

intron 1, 2, 3, etc) were almost always found in the same position

and phase in the aligned sequences of orthologous tetraspanins

genes. However, in a few tetraspanins some intron positions are

Figure 6. Histogram showing a comparison of the number of introns in taxa that are gains and losses at the tips of the tree (A) and
at internal nodes of the tree (B). The number of events was calculated using the ACCTRANS option in MacClade. Common names of the species
and higher categories of organisms are given on the X axis. The number of intron gains and losses are given on the Y axis. Gains are in blue. Losses
are in red.
doi:10.1371/journal.pone.0004680.g006

Tetraspanin Introns
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shifted in position by one to three amino acid residues (Figures S5

and S6). This observation raises doubts about whether such

introns are really orthologous (we assume that an intron is

orthologous in two genes if it occupies the same position in both

genes and it has the same phase). For example, the position of the

5th intron in mouse CD81 gene is shifted one amino acid codon

relative to that in the same gene in Danio rerio (Figure S5). Another

example is the D. rerio Tsp5/14 intron position 4c which has

shifted tree amino acid residues with respect to mouse Tsp14

(Supplemental Figure 6). A closer look showed that the shifts were

due to indels at the exon DNA sequence level, flanking the intron

(Figures. 5B and 6B and C).

Discussion

General Pattern of Intron Gain and Loss in Tetraspanins
Our phylogenomic approach using tetraspanins allows us to

specifically address the general observation from genome wide

informatics studies that intron gain is more prevalent than intron loss

[49–52]. Our character mapping of intron loss/gain in tetrasapanins

(Figure 4) suggests that intron/exon junctions 1 and 4 existed in the

common ancestor of all eukaryotes, while the intron/exon junction

combination of 1 through 6 existed in the common ancestor of

animals. How can we best explain this distribution with respect to

intron gain and loss? Hypothesizing that all six of these ‘‘core’’

introns existed in the common ancestor of eukaryotes requires the

parallel loss of introns 2, 3, 5 and 6 in the protist, plant and fungal

lineages (Figure 4). An alternative hypothesis is that the common

ancestor of all eukaryotes had introns 1 and 4 and that the common

ancestor of animals acquired introns 2, 3, 5 and 6. This alternative

hypothesis is better because it requires many fewer evolutionary loss

and gain events (4 versus 12). Even if the loss or gain of introns 2, 3, 4

and 5 is considered a single evolutionary event, the scenario with

fewer steps (1 step versus 3 steps) suggests that the common ancestor

of animals acquired the four ‘‘core’’ introns 2, 3, 5 and 6 (Figure 4).

This analysis supports a mixture of introns late and introns early in

the evolution of tetraspanins (depending on what one considers

‘‘early’’ and ‘‘late’’) and is similar to the conclusions made by

Rogozin et al. [8]. Figure 6 clearly demonstrates that the bulk of

tetraspanin introns are the result of gains both at the tips of the tree

for the organisms involved in this study, and for internal nodes. One

exception to this general trend is the internal node defining

protostomes (in the present study protostomes are represented by

C. elegans and D. melanogaster).

Intron gain/loss is correlated with cladogenetic events in
the tree of life

Early studies of intron gain/loss indicated that intron gain is

prevalent in eukaryotic genomes [49–51]. More detailed examina-

tion of this problem revealed a more specific pattern. Babenko et al.

[52] analyzed the evolution of exon/intron structure of paralogous

genes in several eukaryotic lineages and concluded that intron loss

dominates at short evolutionary distances, whereas bursts of intron

insertion might accompany major evolutionary transitions. In

addition, Carmel et al., [53,54] showed that evolutionarily conserved

genes and gene families accumulate introns more readily than

rapidly evolving genes. We can directly test this hypothesis using the

patterns observed in tetraspanins. The gain/loss of tetraspanin

introns coincides with the major organismal radiations and there are

very few intron gain/loss events found in single taxa in our study

(except the protosomes, D. melanogaster and C. elegans). Most

tetraspanins (20 of 33 human tetraspanins) originated in the

common ancestor of vertebrates [18] (Fig. 4). A few other tetraspanin

groups can be traced to the common ancestor of mammals (4 out of

33 human tetraspanins; 18). The appearance of these new

tetraspanins coincides in nearly all cases with the concomitant

acquisition of new introns. On the other hand, the large number of

protostome tetraspanins (from flies and worms) have few orthologs

with the 33 tetraspanins in Homo sapiens, and hence few orthologous

intron acquisitions. Because we only used a limited taxonomic

sampling for our comparisons, the suggestion that major intron loss

and gains coincide with the divergence of major organismal groups

needs to be tested with the acquisition of more whole genomes.

Nevertheless, our data are consistent with the notion that intron

structure changes are major evolutionary events that coincide with

adaptive or anatomical divergence.

Are intron gain/loss events correlated with function?
The generation of functional diversity in gene families is another

interesting aspect that might be correlated with intron gain/loss

events. In order to examine this possibility, we utilize the

interesting result that three combinations of the nine ancient

intron positions divide all the animal tetraspanins into three groups

CD63L, TSPAN15L and TSPAN13L (Fig. 1C). All animal

tetraspanins are included in these three groups except for RDS/

ROM which has only one of the nine ancient introns (intron 6)

and TSPAN10 (oculospanin) which has no introns (Fig. 2).

Each of these three groups have a distinct scaffold of disulfide

bonds in the LEL variable region suggesting that each group could

perform different functions as these particular structures are in is

the region of tetraspanins that is involved in protein-protein

recognition [23,37]. The presence of group specific introns (introns

4, 4a, 4b, 4c, 5) in the DNA that codes for the variable domain,

could be an evolutionary remnant of the different gene

assemblages in the ancestral tetraspanins that duplicated to

produce CD63L, TSPAN15L and TSPAN13L tetraspanin gene

structures. On the other hand, different patterns of alternative

splicing patterns involving these group specific intron junctions

could be behind the conservation of those intron junctions

throughout tetraspanin evolution in the animal kingdom. Splice

variants generated with some of those specific intron junctures in

CD82 and TSPAN 32 from group CD63L have been reported in

normal and tumor tissues [55,56] and from TSPAN17, TSPAN 31

from groups TSPAN15L and TSPAN13L (mRNA variants

hApr07 and jApr07 from NCBI AceView) respectively.

Utilizing a phylogenomic analysis of tetraspanin protein

sequences, we previously suggested that tetraspanins can be

divided into four major groups - the CD family, the CD63 family,

the uroplakin family and the RDS family [18]. When we combine

this earlier classification approach with the intron classification

scheme presented in this paper we observe that: the CD63L group

include all the tetraspanins of the CD family (TSPAN11, 9, 4, 2, 8,

1, 16, 18, CD151, 53, 9, 81, 82, 37) uroplakin family, (and

uroplakins and TSPN12, 32), and the CD63 family (CD63,

TSPAN3, 6 and 7). This observation indicates that CD and

uroplakin families most likely diverged from a CD63-like ancestor.

On the other hand, TSPAN13 and 31 which form the TSPAN13L

group are also included in the CD63 family of tetraspanins based

in sequence analysis [18]. This placement of the TSPAN13L

tetraspanins, which are the smallest group of tetraspanins, in the

CD63 family despite their different intron structure and cysteine

pattern relative to other CD63 tetraspanins suggests that the

TSPAN13L may have distinct functional properties relative to

their closely related CD63 proteins.

Finally, the TSP15L group includes all the RDS family

tetraspanins (TSPAN15, 14, 5, 17 and 33) except for the RDS/

ROM and TSPAN10 (oculospanin). These 8 cysteine pattern

proteins are close to the base of the tree in Garcia-Espana et al
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[18], which is occupied by the plant, fungi and protist tetraspanins,

indicating a basal origin for the RDS/ROM family of proteins.

Despite being implicated in important cellular activities, few

tetraspanins have been studied in detail, probably due to the

difficulties imposed by their functional redundancy and subtle

functions [17,20]. The available data does not currently allow for a

unifying view of their functions [23]. We suggest that classifying

tetraspanins, based on their primary sequences in conjunction with

their gene structure, could uncover functional differences and be

useful in the task of elucidating their functional roles.

Are intron loss/gains localized to specific regions of
tetraspanins?

Interestingly, 36.7% of the derived newly gained 79 tetraspanin

introns are found in the SEL which make up only 10.5% of the

total sequence length. A correlation of some intron positions in the

DNA with protein structural features has been observed, but how

or why this correlation occurs is not fully understood. It has been

reported that a non-random tendency exists for introns to be

located in interdomain regions of proteins [57–58]. There is also a

propensity for introns to avoid secondary structure elements such

as a-helices and b-strands [59], and in some proteins there is a

coincidence of introns with variable surface loops in the protein

structure [60]. One explanation is that some of these intron

location constraints could be caused by the amino acid

composition of these regions which have nucleotide compositions

found at different frequencies in various protein secondary

structure elements [61–62].

The regions in tetraspanins where introns are less frequently

found (mainly the transmembrane domains) have distinct and

conserved secondary structures mainly formed by a-helices. These

a-helices shape the transmembrane domains and form a tree trunk

like structure in the LEL constant domain from which the LEL

variable domain extends [39,43]. On the other hand, the SEL loop

and the LEL variable domain have a lower tendency for a-helix

formation that could explain in part its higher frequency of intron

gains in comparison to regions with a-helices. One reason why

derived introns in tertraspanins are less frequently found in the

DNA coding for a-helices could be the caused by the effects of

purifying natural selection, as a result of the chance of disrupting

the a-helices. Large alternative splice events or subtle changes

produced by NAGNAG tandem acceptors that could be produced

by the insertion of new introns would severely disrupt the a-helical

structure of these regions. It is reasonable to assume that natural

selection will eliminate variation caused by novel intron insertions

in a-helices because of the disruption of the primary structure in

these regions of tetraspanins. Such purifying selection would be

absent or weak in DNA regions coding for flexible or loosely

packed parts of a fold and hence such regions could accrue more

novel intron insertions. Our observations on tetraspanin introns

suggest that a systematic analysis of intron evolution, in suitable

protein families where new and ancient introns could be

differentiated, may shed light in the mechanisms of intron gain

and loss and their relationship to protein structure and function.

Intron sliding in tetraspanins
That specific intron junctions sometimes differ among species by

only a few nucleotides is a well known although rare phenomena

[63,64]. Since the rate of sequence divergence in introns is very

high, it is difficult to infer the source/mechanism of such spatial

differences between distantly related species [65]. We observed

several instances of putative intron sliding in tetraspanins in which

intron positions were shifted among different species. It has been

pointed out that exon length variations could be caused by

extension or contraction of exons at the intron junctions, as for

example by the assimilation of adjacent intron sequences by one

exon [60,66]. This hypothesis plus that the shifted intron positions

were located in the extracellular variable domain let us to check if

intron exon sequences could be implicated as a source of sequence

variability by producing expansion or contraction of exons length.

To study this phenomenon further, we gathered orthologous

tetraspanins in the close relatives to the species in which the shift

took place. In two instances, CD81 intron 5 and TSPAN14 intron

4c (Figures S5 and S6), we were able to compare the intron

sequence in two closely related species which ruled out any

implication of the intron sequence in the exon change of length. It

seems the variation of length at the end of the exons was due to

indel loss or gain, a frequent cause of divergence [67].

Testing hypotheses about intron evolution with
tetraspanins

The tetraspanin family is particularly well suited to addressing

questions about protein function and evolution in a phylogenomic

context. Because the structure and function of many of the

members of the gene family are well known, these attributes of

tretraspanins can be examined for correlation with intron change

and organismal evolution. Because the number of introns in the

tetraspanin family is reasonably large, and the phylogenetic

distribution of genomes that can be used for such studies covers

all of eukaryotes, specific evolutionary questions about introns can

be addressed. Using tetraspanins, we were able to examine several

aspects of intron evolution in a very precise manner. First, we

examined the overall phylogenetic distribution of intron change

and found that much of the intron gain/loss occurs in major

phylogenetic branching events, specifically in the origin of the

vertebrates. Second, we show that a proportionately larger

number of intron gain/loss events occur in the large and small

extracellular loops (LEL and SEL) than anywhere else in the

protein structure. Finally, we examine the dynamics of intron

gain/loss in the context of reading phase shifts. Close examination

of tetraspanins allows for very precise statements to be made about

these phenomena related to intron evolution.

Materials and Methods

Data mining and Sequence analysis
Intron-exon borders (Table S1) were determined or verified

aligning the tetraspanin sequences to their respective genomic region

with the Align two sequences option of the NCBI BLAST program

(www.ncbi.nlm.nih.gov) and manual supervision of the splice

consensus signals. Information about the position of introns was

gathered from different sources such as: Ensmbl, (www.ensembl.org).

Amplification of genomic DNA
Genomic DNA from the bird Taeniopygia guttata was prepared

with the RNeasy Midi Kit (QIAGEN Science, Maryland, U.S.A)

and DNA from the sponge Oscarella carmela was kindly donated by

Scott A. Nichols (University of California, Berkeley). The genomic

fragments of the Oscarella and Taeniopygia tetraspanin genes were

amplified by PCR using the AccuPrime Taq DNA polymerase

System (Invitrogene, California, U.S.A).

Intron positions
An intron was considered to be shared if it was found in the

same aminoacid position and the same codon position (the same

intron phase) in sequences the alignments of the FASTA-

formatted files containing the protein. We used introns positions

in the tetraspanins reading frame between intron 1 and 6 and
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exclude the divergent ends of tetraspanin proteins. To compare

intron positions we used several alignments with Clustal W (www.

ebi.ac.uk/, email: ) or at NPS@, url: Web server (http://npsa-

pbil.ibcp.fr). Tetraspanin splicing transcripts were searched in the

NCBI AceView database (http://www.ncbi.nlm.nih.gov/IEB/

Research/Acembly/index.html) and published data [55,56].

Establishment of intron/exon structure
Our approach to identifying patterns of intron evolution is to

determine the intron/exon arrangements from a wide variety of

organisms and to map these onto a phylogenetic tree. By

reconstructing ancestors in the phylogenetic tree we can decipher

the transition of intron/exon structure over evolutionary time.

Two kinds of information on intron/exon junction need to be

made clear. First, any whole genome that has been characterized

for tetraspanin intron/exon pattern can equivocally be used to

determine the pattern in common ancestors. The second kind of

information on intron/exon presence is found in incompletely

sequenced genomes. In these cases, only the presence of an intron/

exon junction can be considered as equivocal. The absence of the

junction in such cases is not inferable. Consequently, we

constructed a presence absence matrix for all of the known introns

and exons in tetraspanins from fully sequenced genomes.

Mapping intron/exon structure on phylogenetic
hypothesis

We mapped these presence absence data onto a phylogenetic

hypotheses for the animals in the study. We utilize a tree that

places placozoa as the basal most animal. We present a

reconstruction of intron/exon structure for only wholly sequenced

genomes and for tetraspanins from selected other taxa such as a

sponge. The reconstructions were made using MacClade [46]. We

implemented the ACCTRANS mode of character transformation

which results in accelerating the transformation of characters in

trees. The reconstructions for each intron was then used to

construct Figure 3 which shows where in the phylogeny, taxa

either lost or gained introns.

Estimating frequency of intron loss and gain
A matrix of intron presence/absence was constructed for all

introns in the study and then mapped onto the phylogenetic

hypothesis. We estimated the number of intron gains and losses

using character reconstruction of only unambiguous changes. The

number of introns found in all of the tetraspanins was calculated

and then divided by the number of intron losses or gains that are

lineage specific to the terminal taxa in the tree.

Supporting Information

Table S1 List of all genes and their accession numbers used in

this study.

Found at: doi:10.1371/journal.pone.0004680.s001 (0.19 MB

DOC)

Figure S1 Intron junction analysis of the CD63L group.

Alignment of full length representative CD63 tetraspanin from

human (Hs), mouse (Mm), and zebrafish (Dr) with Sea anemone

and Trychoplax CD63-like tetraspanins. The presence of an

intron is shown within the amino acid sequences by a number,

shaded in red, indicating the intron phase (0 is between codons, 1

is between the first and second position of a codon and 2 is

between the second and third position). Ancestral introns 1–6 are

numbered above the alignment. Cysteines in the variable

subdomain in the LEL loop are shaded in yellow.

Found at: doi:10.1371/journal.pone.0004680.s002 (0.25 MB TIF)

Figure S2 Intron junction analysis of the TSPAN15L group.

Alignment of Deuterostomes (Mm, Dr, Ci, and Sp) and

Protostomes (Dm) TSPAN15L proteines with Sea anemone,

Trychoplax and Sponge tetraspanins of the TSPAN15L group.

Ancestral introns 1–4, and 6 plus introns 4b and 4c characteristics

of this group of tetraspanins are numbered above the aligned

sequences. Cysteines in the variable LEL loop domain and introns

positions are marked yellow as in Figure S1.

Found at: doi:10.1371/journal.pone.0004680.s003 (0.34 MB TIF)

Figure S3 Intron junction analysis of TSPAN13L group.

Alignment of Deuterostomes (Mm, Dr, Ci, and Sp) and

Protostomes (Dm) TSPAN13L proteines with Sea anemone,

Trychoplax and Monosiga tetraspanins of the TSPAN15L group.

Characteristic introns of this group (1, 2 and 6 plus 4a) are

numbered above the aligned sequences. Cysteines in the LEL loop

and introns positions are marked as in Suppl. Fig 1.

Found at: doi:10.1371/journal.pone.0004680.s004 (0.37 MB TIF)

Figure S4 Evolution of the Intron structure in tetraspanins

supports several nodes in animal phylogeny. Intron structures are

represented above the tetraspanins from the cluster we called CD

group in Garcia-Espana et al [18]. Cysteine numbers in the

varaiable LEL domain are shown in boxes above the intron

structures. Species are designated by coloured boxes with a legend

for the species designation given. (Species abbreviation are: Hs,

human; Cf, dog; Mm, mouse; Gg, chicken; Dr, zebrafish; Ci, sea

squirt; Sp, sea urchin; Dm, drosophila; Ce; C. elegans.

Found at: doi:10.1371/journal.pone.0004680.s005 (0.16 MB TIF)

Figure S5 Junction analysis of the CD81 group. (A) Protein

alignment of the full exon protein sequences between introns 4 and

6 of several CD81 tetraspanins. Cysteines are shaded in yellow. (B)

Clustal W DNA alignment of the above exons 5 and 6 in blue

letters plus the intron sequence between them in black letters of

CD81 tetraspanins from Aves, chicken (Gg) and zebra finch (Tg).

Other species: Hs, human; Pt, chimpanzee; Cf, dog; Rn, rat; Mm,

mouse; Md, opossum; Ac, green anole lizard; Xt and XL, frogs;

Dr, zebrafish; Fr and Tn, puffer fish; Ol, medaka; Ga, stickleback.

* indicates indentical bases in both sequences.

Found at: doi:10.1371/journal.pone.0004680.s006 (0.24 MB TIF)

Figure S6 Junction analysis of theTSPAN14 group. (A) Protein

alignment of the exon protein sequences between introns 4b and 6

of several TSPAN14 tetraspanins. Intron/exon junctions are

indicated with arrowheads. (B) Clustal W DNA alignment of exons

sequences in blue and partial intron sequences in black of the

TSPAN14 sequences from fish stickleback and medaka. (C)

Alignment of sequences from zebrafish, fugu, medaka and

stickleback.Dashes indicate intron sequence not shown. Species

are designated as in S5.

Found at: doi:10.1371/journal.pone.0004680.s007 (0.24 MB TIF)
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