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SUMMARY 

This paper presents a new additional perturbation control method for suppressing low-frequency 

oscillation in voltage-mode H-bridge DC-AC inverter. The stability boundary of the H-bridge inverter is 

investigated from its small-signal averaged model. High input voltage and light load would cause low-

frequency oscillation in this system. To this end, a filter-based perturbation control (FBPC) is proposed for 

eliminating this oscillation, by using an analog filter to extract the unexpected signal and applying it to the 

control loop. Theoretical results show a larger stability range of the controlled system with the proposed 

FBPC.The simulation and experiment results show that the proposed controller can control the low-

frequency oscillation in H-bridge DC-AC inverter well. 
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1. INTRODUCTION 

The inverter is widely used in electrical industry, which converters direct current (DC) into alternating 

current (AC), such as the grid inverter [1], uninterrupted power supply (UPS) [2] and so on. It outputs an 

expected low-frequency power signal by applying high-frequency switching signal to tracking a low-
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frequency reference. Therefore, the high-frequency instabilities in switching-ripple level and the low-

frequency oscillation in reference-frequency level may occur in the inverter [3-6]. Period doubling 

bifurcation [7-8] and chaos [9-11] are the typical high-frequency instabilities and scholars have explored 

some strategies to control these high-frequency instabilities. Time-delayed feedback control (TDFC)[12] is 

effective way to stabilize the unstable periods in nonlinear system and it has been studied in inverters [13-

15]. However, it is not a suitable method due to its difficult implementation with analog circuits. The low-

frequency instability, known as low-frequency oscillation [16-18] in engineering can be analyzed by 

averaged model. It is called Hopf bifurcation from the dynamic perspective [5],[19]. As for the low-

frequency oscillation, we can regulate the system parameters to avoid it. However, in this way it would 

reduce the system stability range. Up to now, few researchers explored the control method to suppress the 

low-frequency oscillation. As for the periodic instabilities in nonlinear system, we can apply a periodic 

perturbation signal to suppressing these instabilities. In our previous studies [20-21], we proposed a filter-

based perturbation method to control of chaos in voltage-mode Buck DC-DC converter well, by using an 

analog filter to extract the unexpected signal and applying it to the control loop. In this paper, we will apply 

a filter-based perturbation control (FBPC) to eliminate the low-frequency oscillation in voltage-mode 

single-phase H-bridge DC-AC inverter. 

  The paper is organized as follows. Section 2 presents stability analysis by using the system average 

model. The proposed filter-based perturbation control (FBPC) is given in Section 3. Section 4 shows the 

simulation and experiment results and some conclusions are drawn in Section 5. 

2. SYSTEM MODELING AND STABILITY ANALYSIS 

Detailed analysis of low-frequency oscillation in the voltage-mode H-bridge DC-AC inverter has been 

reported in [5]. The oscillation frequency is higher than the frequency of reference voltage, but much lower 

than the switching frequency [3]. Therefore, this phenomenon can be predicted with the system averaged 

model. Figure 1(a) shows the schematic diagram of a voltage-mode single-phase H-bridge DC-AC inverter, 
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where vo is the output voltage, vg is the DC input voltage with its average value Vg, vd is the output voltage 

of the inverter bridge and vref is the sinusoid reference voltage. The inductor current and capacitor voltage 

are marked as iL and vC, respectively. The compensator is applied with a PI controller. 
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Figure 1. The voltage-mode single-phase H-bridge DC-AC inverter, (a) The power-stage and control circuits, (b) system block 

diagram 

In the system block diagram Figure 1(b), Gvd(s) is the control-to-output transfer function, Gvg(s) is the 

line-to-output transfer function, Zout(s) is the output impedance and Gc(s) is the transfer function of the 

compensator, defined as kp(1+1/τs). Here, the expression of Gvd(s) is 
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The system stability can be investigated by the following closed-loop transfer function F(s),  
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The characteristic polynomial equation is, 

3 2

2 1 01 ( ) 0T s s a s a s a+ = + + + =
  

(4) 

where, 

p g

0

ramp

k V
a

LC V
= ,  p g

1

ramp

1
1

k V
a

LC V

 
= + 

 
 

,  2

1
a

RC
=  

Three roots of Equation (4) consist of a pair of conjugate complex ones and a real one. It can be known 

from Routh-Hurwitz stability criterion, that when a1a2<a0 the system becomes unstable. The set of 

parameter values fulfilling the equality a1a2=a0 corresponds to a low-frequency oscillation of the system. 

Indeed, a1a2=a0 implies that the pair of conjugate roots is located at the imaginary axis of the complex plane 

(s1,2=±jωh,). Therefore, from (4), we have, 

2 2

0 2 h h 1 h( ) 0a a j a  − + − =   (5) 

Where, ωh represents the critical oscillation angular frequency. 

From Equation (5), we obtain, 

   h 1 0 2/a a a = =
  

(6) 

In terms of the physical parameters of the system, the following equality at the boundary of stability is 

obtained from a1a2=a0. 

( )p g rampk V RC V − =   (7) 

Equation (8) implies that high input voltage Vg and light load (large value of R) would result in a low-

frequency oscillation, when the other system parameters keep constant.  

3. Filter-Based perturbation control method 

Figure 2 (a) shows the detailed information of the output voltage vo in stable situation. It contains only 

two kinds of frequency components, the signal vb with the same frequency with the sinusoidal reference and 

the switching signal vs. However, in the case of a low-frequency oscillation, an oscillation frequency 
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component vh appears, as shown in Figure 2(b). Compared with the oscillation signal vh, the amplitude of 

the switching ripple vs is much small so as to be neglected in theoretical analysis. 
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Figure 2. Decomposition of the output voltage waveform 
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Figure 3. The control block diagram with FBPC 

The whole control block diagram with FBPC is represented in Figure 3. Here, we will design FBPC in 

frequency domain and consider its transfer function as Gs(j). Our control target is that the perturbation 

control signal Δvcon of FBPC vanishes when the system is stable. Therefore, the following equations should 

be guaranteed. 
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where b and s represent the reference angular frequency and switching angular frequency respectively.  

For the voltage-mode inverter, the direct current (DC) component of the output voltage vo closes to zero 

and its alternative current (AC) is a non-zero value. That is Vo(0)=0 and Vo(jb)≠0. Moreover, it can be 

concluded from above analysis that Vo(js)≈0. Therefore, from Equation (8), we obtain, 
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From Equation (9), we will use a cascaded connection of a second order filter and a proportional controller 

to realize the FBPC controller Gs(j). 
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where Gk(j) and Gf(j) represent the proportional controller and the second order filter, respectively. Here, 

p is the proportional gain, kf is the DC gain of the second order filter, ks is the total gain of FBPC and c is 

the characteristic angular frequency. Q is the equivalent quality factor, defined by the following equation 
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Figure 4 shows an implementation of FBPC with analog circuit. Some expressions are obtained as follows, 
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Figure 4. The analog circuit of FBPC 

When FBPC is applied to the system, the new loop gain becomes  
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The new closed-loop transfer function is, 
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Hence, from Equation (14) the system stability with FBPC can be analyzed. 
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4. NUMERICAL SIMULATION AND EXPERIMENTAL VALIDATION 

4.1 Extending the stability region with FBPC 

The parameters values of the inverter system are shown in Table 1.  

Table 1 Circuit and control parameters in simulation and experiment 

 

 

 

Based on the Equations (7) and (14), the stability boundaries of the system with and without FBPC can be 

obtained in terms of the input voltage Vg and the load resistance R, respectively. The control parameters of 

FBPC were selected as ks=2.1, kf=1.05, p=2, ωb=2πfr, fr=50 Hz. The stability results are shown in Figure 5, 

from which it can be seen that the stability area of the system with FBPC becomes larger. 
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Figure 5. The stability boundaries of the system with and without FBPC  

Symbol Name Value 

Vg DC input voltage 20V 

Vref Reference output voltage 8sin(t+)V 

fr Reference voltage frequency 50Hz 

L Filter inductor 1.5mH 

C Filter capacitor 44µF 

R load 4.4~6.67Ω 

fs Switching frequency 25kHz 

Vramp Triangular Carrier 4V 

b Filter angular frequency 100π rad/s 

kp Proportional gain 0.3411 

 Integral time constant  0.1463ms 
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4.2 Simulation results 

Figures 6(a)-(b) shows the simulation results of transient response of the output voltage vo, the 

compensation signal vcon and the control signal Δvcon for a load step with R changing from 4.4Ω to 6.6Ω 

(from point a to point b in Figure 5). Without FBPC, the low-frequency oscillation occurs after a load step. 

Reversely, it maintains stable with FBPC. 
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Figure 6. Transient response for a load step from heavy load to light load, (a) Without FBPC, (b) With FBPC 

4.3 Experimental verification 

The photo of the laboratory prototype and the schematic diagram of the experiment circuit are shown in 

Figures 7 (a) and (b), respectively. The MOSFET is SPW47N60C3 and its drive chip is IR2103. The 

control circuits are constructed with simple analog ICs and operational amplifiers, consisting of LF347, 

LM393, CD4049 and so on. The experiment parameters are basic consisted with Table 1.  
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Figure 7. Experiment circuits (a) photo of the laboratory prototype, (b) schematic diagram of experiment circuits 

 

Figure 8(a) shows the load transient response of the output voltage and the inductor current without 

FPBC. After the load current jumps from 1.8A to 1.2A, the oscillation occurs. From Figure 8(b), it can be 

seen that with FPBC, the system is controlled stable after a load step. That is to say, the proposed control 

can extend the stability region. Meanwhile, the total harmonic distortions (THD) of the output are largely 

reduced. Moreover, vcon is smaller than the compensator signal vcon. Therefore, it has a little impact of the 

FBPC on the system steady-state output performance. 
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Figure 8. Experimental waveforms of the load transient, (a) Without FBPC, (b) With FBPC 

5. CONCLUTIONS 

A filter-based perturbation control method is proposed in this paper to suppress the low-frequency 

oscillation in voltage-mode H-bridge DC-AC inverter well. The numerical simulation and experimental 

results show that it has a good effect of the proposed FBPC on the system performances such as stability 

and THD and its implementation is simple. Furthermore, the control method is applicable to other types of 

switching power converters.  
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