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SCIENCE
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This study presents monthly and annual climate maps for relevant hydroclimatic variables in
Bolivia. We used the most complete network of precipitation and temperature stations
available in Bolivia, which passed a careful quality control and temporal homogenization
procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means
of a regression-based approach using topographic and geographic variables as predictors.
The monthly average maximum and minimum temperatures, precipitation and potential
exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly
average atmospheric evaporative demand by means of the Hargreaves model. Finally, the
average water balance is estimated on a monthly and annual scale for each 1 km cell by
means of the difference between precipitation and atmospheric evaporative demand. The
digital layers used to create the maps are available in the digital repository of the Spanish
National Research Council.

Keywords: precipitation; temperature; atmospheric water demand; regression-based
interpolation; water balance; Bolivia

1. Introduction

Climate maps are essential tools for land planning, crop and water management. This is especially
critical in countries whose economic activities are highly dependent on climate variability (agri-
culture, livestock, hydropower production, etc.). The development of methods for interpolating
local data from meteorological stations has allowed accurate maps of climate variables with
high spatial resolution to be produced (Daly, Gibson, Taylor, Johnson, & Pasteris, 2002; Katsa-
fados, Kalogirou, Papadopoulos, & Korres, 2012; Marsico, Caldara, Capolongo, & Pennetta,
2007; Ninyerola, Pons, & Roure, 2000). There are some climatology maps covering the entire
Earth (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; New, Lister, Hulme, & Makin, 2002),
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but large-scale approaches commonly have problems related to the number of stations used and
the fact that models used may not capture the variability of the climate conditions at the local
scale. Moreover, to obtain accurate maps of climate variables, it is essential to guarantee high
quality of the data inputs, and validation of the obtained results using independent data
(Vicente Serrano, Saz, & Cuadrat, 2003).

Bolivia is expected to be one of the most affected countries by continental reductions in water
supplies as a consequence of climate change (Winters, 2012). This underscores the need to
employ available climate information for better preparedness and mitigation. Bolivia has very
high climatic and environmental diversity as a consequence of marked topographic gradients
and diverse natural ecosystems. The north and east Amazonian regions are characterized by ever-
green equatorial forests (Navarro & Fereira, 2004), but the western Bolivian Altiplano (highlands)
is dominated by dry tropical forests and large cultivated areas. Geographic and topographic diver-
sity, and the influence of various atmospheric circulation mechanisms (Seiler, Hutjes, & Kabat,
2013) make the Bolivian climate highly complex over space and time (Escurra, Vazquez,
Cestti, De Nys, & Srinivasan, 2014; Garcia, Raesb, Jacobsenc, & Micheld, 2007).

An indication of the importance of water availability in the region is that 50% of the active
population of the Bolivian Altiplano is engaged in farming, with agricultural production of
bitter potato and quinoa being major economic outputs and export commodities. Over a large
part of the Altiplano the rainfall during the agricultural season is less than half of the atmospheric
water demand (Vacher & Imaña, 1987), which reinforces negative agricultural impacts when a
drought occurs (Vacher, 1998). In addition, Bolivian tropical dry forests are also highly sensitive
to droughts, with secondary growth and net primary production being markedly reduced as a
response to long-lasting droughts (Mendivelso, Camarero, Gutiérrez, & Zuidema, 2014; Seiler
et al., 2014). For these reasons, an accurate evaluation of the climatology and the average
water resources in the country must be the necessary first step toward providing climate services
in the country.

In this study, we developed and validated digital monthly and annual climate maps for Bolivia
at a spatial resolution of 1 km. National climate maps comprise not only precipitation and
maximum and minimum air temperatures as input variables, but also atmospheric water
demand and climatic water balance as derivative variables.

2. Methods

2.1. Climate data

From 102 monthly total precipitation (P) series and 26 monthly maximum (Tmax) and minimum
(Tmin) air temperature series from the National Meteorological & Hydrological Service of
Bolivia, we selected those climate series having at least 25 years within the period 1950–
2000. Both precipitation and air temperature series were tested for quality control and homogen-
ization. The quality control procedure was based on the comparison of the rank of each data
record with the average rank of the data recorded at adjacent stations (Vicente-Serrano et al.,
2010). Relative homogeneity methods are commonly used to identify temporal homogeneity
in climate series (Venema et al., 2012). For this purpose, we used relative homogeneity soft-
ware, HOMER (Mestre et al., 2013), as a semi-automatic methodology that combines a fully
automatic joint segmentation (Pickard et al., 2011) with a partly subjective pair-wise compari-
son (Caussinus & Mestre, 2004). HOMER takes advantage of the results of the benchmarking
process conducted in the framework of the European Community COST ACTION ES0601
(http://www.homogenisation.org/): ‘Advances in homogenization methods of climate series:
an integrated approach’, and includes some of the techniques recommended after an
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intercomparison study of the homogenization procedures (Venema et al., 2012). Checking for
inhomogeneities in each P, Tmax and Tmin series was based on the analysis involving the
nearby eight stations to each candidate station. The segmentation analysis was based on
annual data, and used ratios for precipitation and temperature differences as a measure for com-
parisons. The method provides an estimation of break points in the time series relative to neigh-
boring stations, and identifies high probabilities of the presence of inhomogeneities. Thus, if a
break point was identified between a station and several of its neighboring stations for the same
year, it was considered probable that there was inhomogeneity in the series. When a series pre-
sented an average ratio of one inhomogeneity every five years or larger, it was discarded and
was not used for mapping. A total number of 68 precipitation series and 24 temperature series
were selected to calculate the monthly averages at each station (Figure 1). The location of the
available observatories covers different environmental conditions according to the distance to
the oceans, elevation, latitude and longitude. Figure 2 shows the empirical cumulative distri-
bution functions (ecdfs) for these variables corresponding to the location of the observatories
and the entire surface of Bolivia. It shows how the observed range of these variables is satis-
factorily covered by the available observatories, independently of the fit in the ecdfs. For
example, although 60% of the territory in Bolivia is below 500 m and only 25% of the obser-
vatories are located below this elevation, there is very good representation of observatories over
the whole range of the variable.

2.2. Climate mapping

Spatial interpolation of Tmax, Tmin and P was performed using regression-based techniques. A
number of different interpolation procedures were used to obtain climate maps from punctual
meteorological data: global, local and geostatistics techniques (Borrough & McDonnell, 1998).
The most widely used procedures are global methods based on regression techniques. In these
methods, different geographic and topographic factors that control the spatial distribution of
climate are used as independent variables (Daly et al., 2002; Ninyerola et al., 2000), and depen-
dence models are created between the climate data and independent variables. The value of a

Figure 1. Elevation and meteorological stations available for precipitation and temperature in Bolivia
(circles: selected stations; triangles: discarded stations).
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climate variable in unsampled points is obtained according to the following equation:

z(x) = b0 + b1P1 + b2P2 + · · · + bnPn,

where z is the predicted value of the climate variable at point x; b0 . . . bn are the regression coef-
ficients and P1 . . . Pn are the values of the different independent variables at point x.

Figure 2. Empirical cumulative distribution functions (ecdfs) for the distance to the Atlantic and Pacific
Oceans, Elevation, Latitude and Longitude corresponding to the location of the precipitation (circles) and
temperature (triangles) observatories. Solid lines represent the ecdfs from 1 km gridded data sets for the
entire Bolivia.
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The main advantage of this technique is that climate maps are compiled not only from infor-
mation from various weather stations, but also from auxiliary information that describes geo-
graphic and topographic variables; this approach improves the accuracy and spatial detail of
the resulting maps. We used independent variables at a spatial resolution of 1 km. The indepen-
dent variables were elevation, latitude, longitude and distance to the Atlantic and Pacific oceans.
Elevation was obtained from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED,
2010) digital elevation model (DEM) at a resolution of 7.5 arc-second (https://lta.cr.usgs.gov/
GMTED2010), which was rescaled to 1 km of spatial resolution in a latitude–longitude projec-
tion with datum WGS-84. The distance to the Atlantic and Pacific oceans was obtained from the
coastlines using the BUFFDIST module of the MiraMon geographic information system (GIS)
(Pons, 2006). Low-pass filters with radii of 2.5, 5, 12.5 and 25 km were applied to elevation in
order to measure the wider influence of this variable on climate. Nevertheless, these filtered vari-
ables were only included for modeling precipitation. For temperature, we only included elevation
to avoid that inclusion of elevation with different low-pass filters that may cause the maximum
temperature to be lower than the minimum temperature, given the different variables included
in the model. Although some studies have also recommended the inclusion of the effect that topo-
graphic barriers may produce on climatic variables, for example, using the maximum height in a
wedge of given aspect and radius (Agnew & Palutikof, 2000), we discarded its use since the
strong topographic complexity in Bolivia can cause artificial boundaries between adjacent
areas with no climatological meaning. The normality of each variable was tested using the Kol-
mogorov–Smirnov test, and natural logarithms were applied where necessary in order to fit a
normal distribution more closely. Correlation between independent variables leads to problems
with collinearity. To avoid this, we followed Hair, Anderson, Tatham, and Black (1998) and
applied a forward stepwise procedure with ‘probability to enter’ set to 0.01 to retain only signifi-
cant independent variables.

The disadvantage of using regression-based techniques to map climate data is that the results
are inexact because the predicted value of the climatic variable z(x) does not coincide with the real
data collected at weather stations; however, the error obtained at each point is known (residual)
and we performed a procedure to correct it. The residuals (difference between the climatic vari-
able measured at a weather station and that predicted by the model) were spatially interpolated
using inverse distance weighting, and the resulting ‘residual maps’ were added to the regression
maps, thus refining the results (Ninyerola et al., 2000).

2.3. Calculation of the atmospheric water demand

A number of different methods are used to calculate atmospheric evaporative demand (AED)
(Allen, Pereira, Raes, & Smith, 1998). The Food and Agriculture Organization of the United
Nations (FAO) have adopted the Penman–Monteith (PM) method (Allen et al., 1998) as the stan-
dard for computing AED from climate data including a reference surface resistance term based on
standard crop (reference evapotranspiration – ETo). Nevertheless, the PM needs a large amount
of data, as it requires values of solar radiation, wind speed and relative humidity, which are not
available in Bolivia.

Several authors have proposed the empirical Hargreaves (HG) equation (Hargreaves &
Samani, 1985) as the best alternative where data are scarce (Martı́nez-Cob, 2002; Vicente-
Serrano et al., 2014; Xu & Singh, 2001). This method only requires information on Tmax, Tmin

and extraterrestrial radiation (Ra). Because Ra can be calculated theoretically (Droogers &
Allen, 2002), the only variables required in this method are observed air temperatures. Droogers
and Allen (2002) modified the original HG equation by including a rainfall term, on the assump-
tion that monthly P can represent relative levels of humidity and solar radiation. The ETo
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(mm day21) is calculated as

ETo = 0.0013Ra(T + 17.0)(R − 0.0123P)0.76,

where P is the monthly total precipitation in mm, R is the difference between the maximum
and minimum temperatures (monthly averages; 8C) and Ra is the extraterrestrial solar radi-
ation (mm day21). Ra values are modeled from the DEM at a cell size of 1 km. For this
purpose, we used an algorithm that considers the effects of terrain complexity (shadowing
and reflection) and the daily solar position (Pons & Ninyerola, 2008). Ra is provided in
MJ m22 day21, which is transformed to mm day21 (1 MJ m22 day21 ¼ 0.408 mm day21).

Table 1. Results of the monthly models to map precipitation, and maximum and minimum temperatures.

R2 Adjusted R2 f p

Precipitation
January 0.66 0.64 38.9 0.049
February 0.64 0.63 47.2 0.042
March 0.67 0.66 53.5 0.003
April 0.89 0.88 124.4 0
May 0.84 0.83 103.3 0.01
June 0.58 0.57 36.9 0.006
July 0.70 0.67 34.4 0
August 0.64 0.63 48 0.004
September 0.71 0.69 63.8 0.002
October 0.80 0.80 163.2 0
November 0.85 0.95 156.4 0
December 0.75 0.73 57.4 0.003
Maximum temperature
January 0.94 0.94 279.7 0
February 0.94 0.93 274.1 0
March 0.92 0.92 236.5 0
April 0.89 0.89 157.2 0
May 0.86 0.85 222.8 0.002
June 0.85 0.84 68.8 0.002
July 0.87 0.86 83.4 0.001
August 0.90 0.90 334.1 0
September 0.91 0.91 190.9 0
October 0.91 0.91 189.5 0
November 0.91 0.90 177.3 0
December 0.92 0.92 219.0 0
Minimum temperature
January 0.98 0.95 927.9 0
February 0.98 0.95 1757.4 0
March 0.98 0.98 1635.2 0
April 0.98 0.96 1590.6 0
May 0.96 0.96 420.9 0
June 0.91 0.91 192.0 0
July 0.90 0.90 168.7 0.001
August 0.91 0.90 120.5 0
September 0.93 0.93 150.7 0
October 0.94 0.94 543.4 0
November 0.95 0.94 673.6 0
December 0.97 0.96 1073.3 0
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Vicente-Serrano, Lanjeri, and López-Moreno (2007) showed that this approach provides more
accurate estimations of ETo than estimating Ra only according to the latitude and the day of
the year.

We used the modified HG method to obtain monthly maps of ETo at a spatial resolution of
1 km using the grids of P, Tmax and Tmin obtained by means of regression-based interpolation
and the Ra modeled by means of the DEM.

2.4. Calculation of the climatic water balance

We calculated a simple climatic water balance model by means of the difference between P
and ETo, monthly and annually (Thornthwaite, 1948). This measure, although not considered
the water runoff potential in each grid cell, can be considered as a measure of the average
long-term water deficit or surplus, which is very useful as a measure of water stress and so
can be used to obtain robust drought indices (Vicente-Serrano, Beguerı́a, & López-Moreno,
2010).

2.5. Validation

In the absence of a sufficient number of observatories (68 precipitation and 24 temperature obser-
vatories for the whole country), the ‘jack-knifing’ method was adopted for validation, based on
withholding, in turn, one station out of the network, estimating climate at each point according
to the procedure explained in Section 2.2 from the remaining observatories and calculating the

Figure 3. Spatial distribution of monthly maximum temperature (8C) obtained from regression-based mod-
eling and local interpolation of residuals.
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difference between the predicted and observed values for each withheld observatory (Phillips,
Dolph, & Marks, 1992). This method has frequently been used in climatology (Daly, Neilson,
& Phillips, 1994; Hofstra, Haylock, New, Jones, & Frei, 2008; Holdaway, 1996), particularly
where a low number of cases are available for validation.

The performance of each map is assessed by means of different validation statistics. Combin-
ing the benefits of a range of statistical estimators can provide a more rigorous assessment of the
model uncertainty. In this work we used three accuracy estimators, including bias, the mean absol-
ute error (MAE) and the D Willmott’s refined index of agreement (Willmott, Robeson, & Mat-
suura, 2012).

The bias is calculated as a measure of the differences in values between the observed (O) and
model (P) data, and is given as

Bias = N−1
∑N

i=1

(Pi − Oi),

where N is the sample size, O is the observed value and P is the model value at station i.
The MAE is calculated as the average of the absolute difference between observed and pre-

dicted data:

MAE = N−1
∑N

i=1

Pi − Oi| |.

Figure 4. Spatial distribution of monthly minimum temperature (8C) obtained from regression-based mod-
eling and local interpolation of residuals.
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The refined D Willmott statistic is a measure of agreement/disagreement between the observed
and modeled data, reflecting not only differences in their means, but also differences in their stan-
dard deviations. This coefficient is dimensionless as it is bounded between 21 (no agreement) and
1 (perfect agreement). According to Willmott et al. (2012), the D statistic is given as

D = 1 −

∑n

i=1
|Pi − Oi|

2
∑n

i=1
|Oi − O|

,

when

∑n

i=1

|Pi − Oi| ≤ 2
∑n

i=1

|Oi − O,

and

D =
2
∑n

i=1
|Oi − O|

∑n

i=1
|Pi − Oi|

− 1,

Figure 5. Spatial distribution of monthly precipitation (mm) obtained from regression-based modeling and
local interpolation of residuals.
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when

∑n

i=1

|Pi − Oi| . 2
∑n

i=1

|Oi − O.

3. Results

Table 1 shows the results for the regression model fit corresponding to the monthly P, Tmax and
Tmin using as predictors the topographic and geographic variables indicated earlier. The fit is
better for maximum and minimum temperatures than for precipitation in the majority of
months. Minimum temperatures also show higher R2 values than maximum temperature. There
are no noticeable seasonal differences in the fit of the different models.

Figures 3–5 show the spatial distribution of Tmax, Tmin and P, respectively. Precipitation
shows strong geographical gradients and noticeable seasonality. The humid season spans from
November to March. Maximum precipitation is recorded in the north and northwest areas,
which correspond to the Amazon basin and the slopes that separate this area from the elevated

Figure 6. Relationship between observed and predicted monthly precipitation and temperature using the
jackknife approach.
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Table 2. Error/accuracy statistics for the monthly precipitation and temperature maps.

J F M A M J J A S O N D Annual

MAE (mm) Precip 25.169 23.990 22.708 11.463 8.346 7.073 5.456 6.382 8.784 11.872 15.337 23.241 141.154
Tmax 1.537 1.453 1.469 1.600 1.528 1.615 1.626 1.548 1.587 1.676 1.714 1.664 1.532
Tmin 0.913 0.920 0.995 1.394 1.968 2.281 2.366 2.309 1.999 1.655 1.495 1.195 1.624

MBE (mm) Precip 21.868 21.848 21.184 20.046 20.225 20.010 0.129 21.102 20.665 21.061 21.175 0.794 28.260
Tmax 0.063 0.045 0.004 20.072 20.050 20.021 20.006 0.009 0.039 0.031 0.053 0.047 0.012
Tmin 0.136 0.146 0.136 0.221 0.322 0.336 0.320 0.332 0.338 0.308 0.275 0.203 0.256

D Precip 0.749 0.752 0.800 0.947 0.969 0.976 0.982 0.978 0.967 0.944 0.904 0.772 0.901
Tmax 0.889 0.894 0.893 0.883 0.886 0.877 0.877 0.886 0.886 0.883 0.881 0.882 0.889
Tmin 0.938 0.937 0.931 0.900 0.855 0.858 0.862 0.844 0.853 0.882 0.895 0.918 0.889
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Altiplano. The Altiplano receives much less precipitation, which is concentrated in the summer
period. Maximum and minimum temperatures also show seasonality and noticeable spatial differ-
ences, mainly controlled by relief.

The agreement between observed and estimated values obtained by means of the jackknife
approach is high (Figure 6, Table 2). The fit between observed and predicted data is higher for
minimum temperature than for maximum temperature. Moreover, precipitation underestimation
is observed at some meteorological stations. Bias and MAE values show a clear seasonal
pattern, which is in agreement with precipitation and temperature seasonality. In general pre-
cipitation shows a negative bias, which means that predictions tend to underestimate obser-
vations, whereas minimum temperature tends to be overestimated. Annual MAE is
141.1 mm for precipitation and 1.58C for maximum and 1.68C for minimum temperatures.
The D statistic, which allows comparison between months and variables, shows high values
(D . 0.9 for precipitation between April and November). For temperature the D values are
always higher than 0.84, which demonstrates good agreement between the magnitude and
spatial distribution of observed and predicted values. Annual D is around 0.9 in the three
modeled variables, which provides high confidence in the predicted values with respect to
the observed range of these variables.

Figure 7 shows the spatial distribution of monthly ETo that exhibits strong spatial differences
between neighboring areas as a consequence of the complex relief. The main contrast is recorded
between southern and northern slopes during the cold season. In winter, the ETo is mainly con-
trolled by the available radiation, whereas in summer the mean temperature and the daily

Figure 7. Spatial distribution of monthly ETo (mm) obtained from maximum and minimum temperatures
and the relief-based modeled solar radiation.
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temperature range play a major role in ETo rates, explaining the reason for the lower topographic
control of ETo during summer.

Figure 8 shows the spatial distribution of the climatic water balance (the difference between
precipitation and ETo). The different plots show strong seasonal differences between the humid
season (November–March), in which positive values are dominant, and the dry season (April–
October), in which negative values are recorded, mainly in the Altiplano region.

Climate averages shown in the main Annual Climate Map for Bolivia (Main Map) stress the
strong contrasts of climate in the country and the clear separation between the Amazonian basin
(North) and the Altiplano (Southwest), the latter characterized by limiting climate conditions for
the development of natural vegetation and agriculture (i.e. low precipitation, cold temperatures
and negative water balances).

4. Conclusions

We have created monthly and annual precipitation and maximum and minimum temperature maps
for Bolivia at a spatial resolution of 1 km using regression-based modeling, with topographic and
geographic variables as independent variables. The different monthly climate maps have shown
good agreement between observations and predictions with an agreement index (D) around 0.9.
MAE for annual values is 141 mm for precipitation and around 1.58C for both maximum and
minimum temperatures. These errors can be considered low given the high precipitation and
temperature ranges in the country (.2000 mm and .208C, for precipitation and temperature,
respectively).

Figure 8. Spatial distribution of monthly climatic water balance (mm) by means of the difference between
precipitation and ETo.
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We have also created climate maps for atmospheric water demand based on precipitation,
temperature and the modeled exoatmospheric solar radiation derived from the topography. The
differences in the atmospheric water demand across Bolivia are very important with approximately
1800–2000 mm year21. In the south and southeast areas, the atmospheric water demand is higher
than 2000 mm year21. The variation in precipitation and atmospheric water demand shows that
large areas of Bolivia have a strong annual water deficit (.1000 mm year21) and that humid
areas are restricted to the northern part of the Amazonian basin and the transitional slopes to the
Altiplano. The 1 km monthly and annual digital layers of precipitation, maximum and
minimum temperatures, ETo and climatic water balance are available in ArcGIS ASCIIformat
in the web repository of the Spanish National Research Council (CSIC) at https://digital.csic.es/
handle/10261/103342.
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