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Metabolite profiling has significantly contributed to a deeper understanding of the biochemical 

metabolic networks and pathways in cancer cells. Metabolomics-based biomarker discovery would 

greatly benefit from the ability to interrogate retrospective annotated clinical specimens archived 

as formalin-fixed, paraffin-embedded (FFPE) material. Mass spectrometry–based metabolomic 

analysis was performed in matched frozen and FFPE human prostate cancers as well as isogenic 

prostate cancer cell lines. A total of 352 and 460 metabolites were profiled in human tissues and 

cell lines, respectively. Classes and physical–chemical characteristics of the metabolites preserved 

in FFPE material were characterized and related to their preservation or loss following fixation and 

embedding. Metabolite classes were differentially preserved in archival FFPE tissues, regardless of 

the age of the block, compared with matched frozen specimen, ranging from maximal preservation 

of fatty acids (78%) to loss of the majority of peptides and steroids. Generally, FFPE samples 

showed a decrease of metabolites with functional groups, such as carboxamide. As an adjunct 

technique, metabolic profiles were also obtained in situ from FFPE tissue sections where 

metabolites were extracted in a manner that preserves tissue architecture. Despite the fact that 

selected metabolites were not retained after processing, global metabolic profiles obtained from 

FFPE can be used to predict biologic states and study biologic pathways. These results pave the 

way for metabolomics-based biomarker discovery/validation utilizing retrospective and clinically 

annotated FFPE collections.

Implications—Metabolic profiles can be performed in archival tissue and may be used to 

complement other profiling methods such as gene expression for biomarker discovery or pathway 

analysis in the assessment of biologic states.

Introduction

Metabolomics is the study of the metabolite repertoire, resulting from both biosynthetic and 

catabolic pathways within a biological system, such as a cell (1), tissue (1, 2), or biofluid (3–

6), or originating from host-specific microbes as well as from the intake of food nutrients (7) 

and pharmaceuticals during physiologic or pathologic conditions (8). Metabolomics captures 

a snapshot of the complex interactions between genetic alterations, enzymatic activity, and 

metabolic reactions, providing information on whether unique metabolic profiles are driven 

by specific genetic events (1). Thus, it represents an extraordinary tool to profile tumors and 

advance personalized medicine.

A bottleneck in the human metabolomics research field is a lack of repositories with a 

sufficient number of well-annotated frozen samples available for retrospective studies. This 

limitation could be overcome using formalin-fixed, paraffin-embedded (FFPE) tissue 

specimens acquired during routine medical care for diagnostic purposes. Tissue from 

individuals with long-term follow-up is available almost exclusively in retrospective FFPE 

databases (8). Because of the widespread availability and long-term stability of these 

samples, accurate profiling of their metabolite content could greatly accelerate the rate of 

discovery and validation of clinically useful biomarkers.

The technical feasibility and reproducibility of using targeted liquid chromatography (LC) 

coupled with tandem mass spectrometry (MS) in FFPE samples has been recently examined 

in a small set of soft-tissue sarcoma samples with promising results (9). Alternative 
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protocols have been proposed in a pilot study on the feasibility of using untargeted gas 

chromatography (GC) coupled with tandem MS in FFPE material (10). Recently, Fourier 

transform ion cyclotron resonance (FT-ICR) MS coupled to matrix-assisted laser desorption/

ionization (MALDI) has been also utilized for metabolic imaging of tissues, including 

breast, gastric, renal, and esophageal tumors. However, MALDI-MS imaging has very low 

metabolome coverage and requires a matrix for co-crystallization with analytes, which 

interferes in the low mass range (<500 Da). Moreover, the suboptimal resolution of the 

MALDI instruments (11) could limit the ability to delineate the tumor and normal tissue 

area in heterogeneous and multifocal tumors such as prostate cancer. These promising albeit 

incomplete feasibility studies prompted us to perform a controlled, comprehensive analysis 

of the classes of metabolites detectable in FFPE material. The ultimate goal of this study 

was to establish MS-based metabolic profiling as a valid technique for retrospective studies 

using FFPE clinical specimen.

Frozen and FFPE prostate cancer cell lines and human prostate tumor samples were 

compared to determine the composition of metabolites preserved after fixation and paraffin 

embedding, using untargeted MS-based metabolomics. Physical and chemical properties of 

the metabolites obtained from FFPE tissues were investigated and their recovery determined 

as a function of their physical–chemical characteristics. We also assessed the ability of 

metabolomics profiling to distinguish metabolic profiles obtained from isogenic hormone-

sensitive from those of castration-resistant cell lines as well as normal from tumor human 

prostate biopsy punches. In addition, metabolites were extracted and profiled directly from 

FFPE tissue sections on glass slides preserving the tissue architecture. This allows for the 

subsequent histopathologic evaluation of the tissues after metabolite extraction and 

identifying metabolites with potentially derived from epithelium and stroma. The results 

from the current study pave the way for the application of metabolomics in FFPE samples 

for which thorough clinical annotations and long-term follow-up data are available.

Materials and Methods

Cell line model

LNCaP cells were obtained from ATCC whereas LNCaP-Abl cells were kindly provided by 

Dr. Brown (Dana-Farber Cancer Institute, Boston, MA; DFCI). Cell lines were authenticated 

using short tandem repeat analysis [DDC Medical for LNCaP (10/28/2014) and Promega 

Service for LNCaP-Abl (11/11/2014)]. To prepare frozen samples, adherent cells were 

directly quenched with 1 mL of 80% methanol in the dish culture to avoid trypsin use, and 

cells were gently detached using a cell lifter. The methanol solution containing the quenched 

cells was pipetted into a 2-mL centrifuge tube for extraction. In the case of FFPE samples, 

the adherent cells were directly quenched with 1 mL of 4% formalin. The formalin solution 

was kept in the culture dish for 20-minute cross-links at room temperature. Then, the 

adherent cells were washed 3 times with PBS, detached using a cell lifter, and then 

embedded in paraffin following the standard procedure. The detailed protocol to produce 

flash-frozen cell line and FFPE cell line samples is described in Supplementary Information.
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Human prostate tissue

Samples from radical prostatectomies were utilized in the study. All samples were collected 

with informed consent approved by DFCI Institutional Review Board. Both optimal cutting 

temperature (OCT)-embedded and FFPE tissue blocks were collected from each 

prostatectomy. Tissue blocks were sectioned at 5 μm and were stained with hematoxylin and 

eosin (H&E) to identify tumor and normal area in each block. Section of 20 μm were used 

for the metabolomic analysis and then stained with H&E to evaluate the tissue architecture. 

Histopathologic evaluation was performed to assess the percentage of tumor and the Gleason 

score in each tissue samples. From each tissue block, 2-mm biopsy punch samples were 

collected from both the tumor and normal tissue compartments.

Metabolite extraction with methanol

The metabolome from frozen samples was extracted incubating the tissue in 1 mL of 80% 

methanol at room temperature on a benchtop for 4 hours. After centrifugation at 14,000 × g 
(10 minutes), the supernatant was collected and stored at −80 °C. Metabolite extraction from 

FFPE samples was performed as described by Yuan and colleagues (12). The protocol is 

briefly described in Supplementary Information.

Metabolite profiling

Metabolite profiling was conducted by the company Metabolon Inc. as previously described 

by Evans and colleagues (13). Sample preparation, MS analysis, data quality management, 

and compound identification are described in Supplementary Information.

Pre-processing

Contaminants present in FFPE samples (i.e., DMSO, lauryl sulfate, and melanine) and OCT-

embedded samples (i.e., heptaethylene glycol, hexaethylene glycol, octaethylene glycol, 

pentaethylene glycol, and tetraethylene glycol) were not considered in the analysis. 

Compounds with more than 90% of missing value were not considered to be reliable and 

therefore excluded. Probabilistic quotient normalization (14) was used to normalize data due 

to dilution effects in the extraction procedure.

For multivariate analysis, compounds with more than 25% of missing values were not used. 

Otherwise, missing metabolite measurements were imputed using k nearest neighbor (kNN) 

algorithm (15) with k = 5. Data were log-transformed, mean-centered, and scaled to unit 

variance. The cell line data were centered to the mean of all samples, and human samples 

were centered to the mean of each patient.

Statistical analysis

The Fisher exact test was used for testing the null hypothesis of independence of rows and 

columns in a contingency table. Pairwise comparisons were made using the Mann–Whitney 

test for independent data. Spearman rho was used to correlate each metabolite with the age 

of the FFPE block. Pearson product moment correlation coefficient (r) was used to correlate 

metabolites between pair of replicates and metabolic signature with the epithelial tissue 

percentage. The threshold for significance was P < 0.05 for all tests. To account for multiple 
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testing, a false discovery rate (FDR) of <10% was applied to reduce identification of false-

positives. FDRs were calculated using the q conversion algorithm (16) in multiple 

comparison.

Furthermore, orthogonal signal correction (OSC) applied to the partial least square (PLS) 

model (17), a supervised pattern recognition approach, was used to visualize differences in 

metabolite composition in samples and as a predictive model in cross-validation analysis 

using the values of the orthogonal latent variable.

Metabolite set enrichment analysis (MSEA) was carried out using the tool GSEA (Gene 

Pattern software, Broad Institute, http://genepattern.broadinstitute.org). The metabolite sets 

were built using the human pathway information available in the Human Metabolome 

Database (http://www.hmdb.ca). The loadings of OSC-PLS were used for the ranking in the 

MSEA.

Heatmaps were ordered according to hierarchical clustering (Ward linkage) on the basis of 

the KODAMA dissimilarity matrix (18) implemented in R package KODAMA (19). For 

human FFPE samples of the training set, KODAMA was performed with sample replicates 

constrained to cluster together. Analyses were carried out using R software (20) with scripts 

developed in-house.

Non-negative matrix factorization (NMF; refs. 14, 21) was used to deconvolute a KxG 
matrix of metabolic profiles into a KxN matrix of metabolic signature and an NxG matrix of 

metabolic presence (where G is the number of samples, K is the number of metabolites, and 

N is the number of estimated metabolic signatures). The number of possible signatures 

ranged from 2 to 10, N was chosen using the smallest value of the cophenetic correlation 

coefficient for which this coefficient starts decreasing (22).

Results

Isogenic prostate cancer cell lines

Metabolite recovery in FFPE samples—To compare metabolomic data generated from 

frozen and FFPE material, we profiled prostate cancer isogenic hormone-sensitive LNCaP 

and castration-resistant LNCaP-Abl cell lines using untargeted ultrahigh performance liquid 

chromatography (UPLC)-MS and GC-MS. Using the protocol schematized in Fig. 1A Both 

FFPE and frozen cell line samples were generated from replicates of 10-cm culture dishes 

(48 hours after seeding 5 ×10−6 cells). A total of 252 metabolites were detected and 

quantified in both frozen and FFPE samples. An additional 208 metabolites were identified 

in frozen samples (Fig. 1B). Extraction yield from FFPE samples was estimated to be 12-

fold less than frozen samples as determined by comparing intensity values of recovered 

metabolite signals (Fig. 1C).

Next, we used the metabolite categorization (i.e., superclass, class, subclass, and metabolic 

pathway), substituents (an atom or group of atoms taking the place of another atom group or 

occupying a specific position in a molecule), and chemical/physical properties as annotated 

in the Human Metabolome Database (HMDB, http://www.hmdb.ca/), Small Molecule 
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Pathway Database (SMPDB, http://smpdb.ca), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG, http://www.genome.jp/kegg) to provide a detailed analysis of the 

metabolites detectable in FFPE samples. As shown in Fig. 1D, the rate of detection in FFPE 

samples compared with the corresponding frozen material varied according to the class and 

the chemical/physical properties of the metabolite. We used Fisher exact test to evaluate the 

differences in the number of metabolites belonging to a specific category detected or 

nondetected in FFPE samples. Significant differences are listed in Supplementary Table S1. 

At the extremes, only 6 peptides of 56 were detected (11%, P = 4.56 × 10−13; FDR = 3.65 × 

10−12), whereas 114 lipids of 171 analyzed (67%, P = 1.01 × 10−4; FDR = 4.03 × 10−4) were 

preserved in FFPE samples. The majority of fatty acids (93%, P = 4.74 × 10−6; FDR = 5.93 

× 10−5), including lysophosphatidylethanolamine (94%, P = 4.18 × 10−4; FDR = 4.73 × 

10−3), glycerolipids (100%, P = 2.97 × 10−3; FDR = 2.47 × 10−2), pyrimidine nucleotides 

(92%, P = 8.24 × 10−3; FDR = 5.15 × 10−2), and purine nucleotides (85%, P = 4.50 × 10−2; 

FDR = 1.87 × 10−1), were detectable in FFPE samples, whereas monosaccharides (23%, P = 

2.11 × 10−2; FDR = 1.05 × 10−1), phosphatidylcholines (0%, P = 1.30 × 10−3; FDR = 1.11 × 

10−2), and lysophosphatidylcholines (46%, P = 5.74 × 10−1; FDR = 7.65 × 10−1) were 

poorly detectable in FFPE samples. FFPE samples showed a decrease of metabolites with 

characteristic functional groups, such as secondary carboxylic acid amide (28%, P = 7.43 × 

10−12; FDR = 6.42 × 10−10), present in peptides and quaternary ammonium salts (33%, P = 

1.01 × 10−3; FDR = 2.30 × 10−2) present in glycerophosphocholines and absent in 

glycerophosphoethanolamines. We did not observe any specific depletion of metabolic 

pathway information. Nonparametric Wilcoxon–Mann–Whitney test was used to evaluate 

the difference between chemical/physical properties. Interestingly, lipophilic metabolites 

showed high detectability in FFPE samples (P = 8.09 × 10−5; FDR = 1.29 × 10−3).

Metabolites lost during FFPE procedure—We investigated potential chemical reasons 

that might affect selectively specific classes of metabolites during the formalin-fixing and 

paraffin-embedding process (Supplementary Fig. S2). We identified as major factors: (i) 

solubility in formalin solution, (ii) covalent bonding to cellular component (e.g., protein, 

DNA/RNA), and (iii) solubility in ethanol and xylene. Using the protocol schematized in 

Supplementary Fig. S1A, we collected and profiled cell samples immediately after the 

formalin fixation before the paraffin-embedding procedure and the supernatant solutions of 

formalin used during the fixation. In Supplementary Fig. S1B, Venn diagrams show 

metabolomic data collected during the different steps of the procedures and their rate of 

detection according to the superclass they belong to.

The formalin fixation and paraffin-embedding is a multistep procedure. The first step 

consists of the immersion of the tissue in the formalin solution. During this step, polar 

metabolites may dissolve in the formalin solution whereas some metabolites may react with 

formaldehyde forming covalent bonds with cellular components. After fixation, the tissue is 

dehydrated via a series of graded ethanols followed by xylenes and finally liquid paraffin. 

Apolar metabolites could dissolve in ethanol/ xylene solvents.

First, we compared metabolites found in the supernatant (n = 132) with those found in the 

extracts from frozen samples (n = 437), as described in Supplementary Table S2 to identify 

those that are soluble in formalin and could, as a result, be lost in the analysis. The majority 
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of these metabolites were classified as amino acids (and derivatives). Specifically, in the 

supernatant, we detected 53% of all amino acids present in the frozen samples (P = 2.33 × 

10−8; FDR = 1.87 × 10−7). Analyzing their chemical–physical properties, metabolites 

soluble in formalin are characterized by lower molecular weight (P = 2.35 × 10−24; FDR = 

2.10 × 10−23), polarizability (P = 6.86 × 10−23; FDR = 3.66 × 10−22), refractivity (P = 2.58 × 

10−20; FDR = 2.23 × 10−19), number of rotatable bond (P = 4.80 × 10−17; FDR = 1.54 × 

10−16), and a higher solubility (P = 7.81 × 10−11; FDR = 1.56 × 10−10).

Second, we identified metabolites that might be lost in FPPE due to their reaction with 

formaldehyde when tissues are immersed in a formalin solution. Metabolites interacting 

with formalin could form covalent bonds with cellular components (insoluble or with high 

molecular weight) and thus be no longer detectable by MS. In Supplementary Table S3, we 

list the metabolites that were not detected in either formalin solution, nor in the extract from 

FF samples. Overall, we observed that peptides (78%, P = 2.29 × 10−19; FDR = 1.84 × 

10−18) and carbohydrates (47%, P = 4.09 × 10−3; FDR = 1.09 × 10−2) probably reacted with 

formaldehyde. In particular, some metabolites with substituents (an atom or group of atoms 

taking the place of another atom or group or occupying a specific position in a molecule), 

such as n-substituted-alpha-amino acid (73%, P = 1.87 × 10−15; FDR = 2.88 × 10−13) and 

carboxamide group (54%, P = 1.61 × 10−14; FDR = 1.23 × 10−12), were severely affected by 

the fixation procedure, whereas other classes of metabolites, such as fatty acid ester (0%, P = 

2.33 × 10−8; FDR = 8.90 × 10−7) and phosphocholine (0%, P = 1.13 × 10−3; FDR = 1.84 × 

10−2), remained intact.

These results confirm the analysis reported in Supplementary Table S4 for the comparison 

between the metabolites found in formalin-fixated and frozen extracts where we observed 

that peptides (22%, P = 9.70 × 10−17; FDR = 4.69 × 10−16) and carbohydrates (53%, P = 

1.32 ×10−2; FDR = 3.51 × 10−2) were poorly detectable after the fixation procedure. 

Although, we reported that the amino acid concentration could be severely affect when 

tissues are immersed in an aqueous solution (i.e., formalin), they were still detectable after 

the fixation procedure.

Finally, we investigated how the paraffin-embedding procedure affects the metabolome. We 

thus compared metabolites extracted from the samples before and after the paraffin 

embedding and we observed a global depletion of metabolites in all classes (Supplementary 

Table S5). In particular, the major depletion was found for membrane lipids, such as 

glycerophospholipids (60%, P = 4.76 × 10−2; FDR = 3.33 × 10−1). In particular some 

metabolites with substituents, such as quaternary ammonium salt (42%, P = 2.68 × 10−6; 

FDR = 6.13 × 10−4) and phosphocholine (33%, P = 2.35 × 10−5; FDR = 2.69 × 10−3), were 

severely affected by the paraffin-embedding procedure.

The relative susceptibility of each class of metabolites to each factor described above 

(solubility in formalin, the covalent bonding to cellular component, and solubility in ethanol 

and xylene) is summarized in Supplementary Table S6. Taking this into account, we defined 

a score to rank the reliability of each metabolite on the base of sensitivity to each factors and 

to highlight the most stable metabolites during the procedure of formalin fixation and 

paraffin-embedding. To each metabolite was assigned a score to rank the reliability of its 
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concentration value in extract from FFPE samples. This score ranges from 0 to 3, and it is 

defined as the sum of the 3 parts. Each part is equal to 1 if the metabolite belongs at the least 

to one of the selected classes listed in Supplementary Table S6, otherwise is counted as 0. 

The basal set of metabolites, that is unchanged despite tissue processing, is represented by 

the metabolites ranked with a score equal to 0.

Reproducibility of metabolic data and consistency between FFPE and frozen 
samples—To evaluate data reproducibility in different biologic replicates, we performed 

correlation analyses among the shared metabolites in the 5 replicates of each cell culture set. 

Pairwise correlation coefficients were consistently high for both frozen and FFPE samples 

indicating a minimal variability among replicates. The correlation coefficients, calculated in 

FFPE cell line samples (an example in Fig. 1E, left plot), ranged between 0.904 and 0.986 

(median value of 0.956), which were slightly lower than those in frozen samples ranging 

between 0.968 and 0.994 (median value of 0.989).

To confidently expand metabolomic analyses to retrospective studies, metabolic data from 

FFPE samples need to be consistent with those obtained from frozen material. To test this, 

we correlated the relative concentration of metabolites between frozen and FFPE samples. 

The correlation coefficients, calculated in cell line samples, ranged between 0.550 and 0.709 

(median value of 0.651; an example is shown in Fig. 1E, right plot).

Finally, we compared the reproducibility in the detection of different metabolite classes 

between FFPE and frozen samples. We calculated the correlation coefficients for each 

metabolic class (i.e., energy, nucleotides, lipids, amino acids, carbohydrates, cofactors, and 

vitamins) between cell lines replicates. The results, shown in Fig. 1F, indicate that data 

reproducibility is maintained in all analyzed classes in both frozen and FFPE replicates. 

When we compared the correlation coefficients between frozen and FFPE samples, we 

observed good correlation for all the classes (median correlation value ranges between 0.676 

and 0.867) except for carbohydrates (correlation value of 0.322).

Detecting biologic differences between isogenic prostate cancer cell lines—
We next sought to use metabolic profiling to distinguish androgen-dependent LNCaP cells 

from their isogenic, androgen-independent LNCaP-Abl using both frozen and formalin-fixed 

samples. To perform a comparative analysis between LNCaP and LNCaP-Abl cells, we 

considered only the shared metabolites found with less than 25% missing values in both 

frozen and FFPE samples. From 189 metabolites retained for analysis, we applied the 

hierarchical clustering on the basis of the KODAMA dissimilarity matrix to show unique 

metabolic profiles of LNCaP and LNCaP-Abl cells. This unsupervised method was chosen, 

as it has been previously shown to be very robust even when applied to noisy data, such as 

those in metabolic profiling (1, 18). Using the 189 shared metabolites between frozen and 

FFPE samples, we were able to distinguish the 2 cell lines with a high degree of accuracy on 

the basis of their metabolic profiling, in both fixed and frozen states (Supplementary Fig. 

S3).

When LNCaP and LNCaP-Abl cells were compared, 108 metabolites in frozen samples and 

65 in FFPE samples were found to be significantly different. Forty-two metabolites were 
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significantly different in both frozen and FFPE samples (Fig. 2G). Almost the totality of 

these were concordant in the directionality of their expression (down- or upregulated). 

Interestingly, we observed that the levels of some amino acids, such as alanine (Pfrozen = 

7.94 × 10−3; PFFPE = 7.94 × 10−3), asparagine (Pfrozen = 7.94 × 10−3; PFFPE = 7.94 × 10−3), 

and glutamate (Pfrozen = 7.94 × 10−3; PFFPE = 7.94 × 10−3), were significantly decreased in 

androgen-independent LNCaP-Abl cells. This supports the observation that androgen 

signaling regulates amino acid metabolism, consistent with previous studies (23, 24). The 

complete list of metabolites is reported in Supplementary Table S7.

Human prostate cancer

Metabolite recovery in FFPE samples—Next, we collected OCT-embedded and FFPE 

tissue blocks from radical prostatectomy specimens from 12 patients with prostate cancer 

and compared metabolic profiling obtained from matched frozen and FFPE normal and 

tumor samples. Samples from 8 patients (training set) were used to confirm the previous 

characterization of the metabolome on the basis of FFPE material performed on isogenic 

prostate cancer cell lines and then to define the fingerprint of prostate cancer in FFPE human 

tissues. Details on tissue and patient features are summarized in Supplementary Table S8. 

Samples from the other 4 patients were used as an independent set (validation set). A 

schematic diagram of the sample collection is shown in Fig. 2A. For the training set, we 

collected 3 samples for each FFPE tissue type and 1 sample for each OCT-embedded tissue 

type. For the validation set, we collected 1 biopsy punch sample for both FFPE and OCT-

embedded tissue.

A total of 352 and 140 metabolites were detected in frozen and FFPE 2-mm biopsy punch 

samples, respectively (Fig. 2B). Although FFPE tissue blocks were aged between 3 and 7 

years, we did not find any statistically significant association between the metabolite 

concentrations and the age of the FFPE blocks. As shown in Fig. 2C, we confirmed that only 

some classes of metabolites were preserved in FFPE material in human tissue as well. 

Again, we used Fisher exact test to evaluate differences between metabolite categories 

detected or not detected in FFPE samples. Significant differences are listed in 

Supplementary Table S9. As expected from our cell line experiments, almost all of peptides 

were not detectable in FFPE samples (3%, P = 1.57 × 10−8; FDR = 1.25 × 10−7). Again, we 

observed a heterogeneous behavior for the lipid class, with metabolites with good 

detectability such as fatty acids (68%, P = 4.07 × 10−3; FDR = 5.29 × 10−2) and others like 

fatty acid esters (19%, P = 7.23 × 10−2; FDR = 2.36 × 10−1) and steroids (0%, P = 8.15 

×10−2; FDR = 2.36 × 10−1) that were poorly detectable. The presence of specific chemical 

substituents seems to have a clear importance with regards to the ability to detect of 

metabolites in FFPE samples as suggested by the inferior levels of lysophosphatidylcholines 

(36%, P = 1.00; FDR = 1.00) when compared with lysophosphatidylethanolamines (89%, P 
= 4.01 × 10−3; FDR = 3.07 × 10−2). Significant differences between frozen and FFPE 

samples, using both cell and human samples, are listed in Supplementary Table S10.

Akin to the results in cell lines experiments, correlation coefficients between metabolite 

concentrations from replicates in human FFPE samples ranged between 0.920 and 0.994 
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(median value of 0.979), whereas those between frozen and FFPE samples from the same 

patient ranged between 0.471 and 0.698 (median value 0.609), as shown in Fig. 2D.

Detecting differences between human prostate cancer and normal tissue—For 

distinguishing benign from malignant prostate tissue, we used 112 metabolites shared by 

frozen and FFPE samples with less than 25% missing values. Hierarchical clustering based 

on KODAMA dissimilarity matrix distinguished normal and tumor prostate tissues (Fig. 2E) 

both in OCT-embedded and in FFPE material.

A total of 48 of 112 metabolites were significantly different between normal and tumor 

tissue in FFPE samples, and 61 of 112 metabolites were significantly different in frozen 

samples. Thirty-two metabolites were statistically significant in both frozen and FFPE 

samples (Supplementary Table S11). Among the perturbed metabolites found in both OCT-

embedded and FFPE samples, 17 were increased in tumor tissue and 13 were 

downregulated. Agreement in the direction of metabolite abundance in frozen and FFPE 

comparisons unequivocally indicates reliability of metabolite detection in FFPE samples. 

Next, we correlated the coefficient of probabilistic quotient normalization (14) of each 

sample with the signal intensity of each metabolite before the normalization step 

(Supplementary Table S12). We identified cytidine 5′-diphosphocholine (r = 0.905, P = 2.77 

× 10−18; FDR = 1.55 ×10−16) as a candidate housekeeping metabolite to adopt in orthogonal 

metabolic profiling when tissue weight cannot be available for normalization as in the case 

of FFPE material. An example of the ratio of 2 statistically different metabolites between 

normal and tumor tissue and cytidine 5′-diphosphocholine is reported in Supplementary Fig. 

S4 and Supplementary Table S13.

Then, we used the OSC-PLS to model the metabolic profile of prostate cancer in frozen and 

FFPE samples. OSC-PLS is a supervised algorithm that aims to maximize the variance 

between groups in the latent variable in the output data (i.e., score) and it calculates 

metabolites’ loadings that measure importance of the variables in the discrimination between 

2 groups. The OSC-PLS loadings for the discrimination between normal and tumor tissues 

are shown in Fig. 2E (on the left of the heatmaps). In this analysis, positive OSC-PLS 

loadings indicate the metabolites with higher concentration in tumor tissue and vice versa. 

Both OSC-PLS models built on frozen and FFPE sample data showed similar OSC-PLS 

loadings values. We observed a high correlation between the values of OSC-PLS loadings of 

the models built on frozen and FFPE samples (r = 0.57).

Next, we used MSEA to determine metabolic pathways that were significantly altered 

between prostate tumors and normal tissue. We observed a positive enrichment of α-linoleic 

acid and linoleic acid metabolism in both frozen and FFPE tumor tissues (P = 0.012 and 

FDR = 0.064 in frozen tissues and P = 0.050 and FDR = 0.166 in FFPE tissues), whereas the 

protein synthesis pathway was statistically significant only in FFPE samples (P = 0.009 and 

FDR = 0.048).

Prediction of prostate cancer fingerprint

FFPE biopsy punch samples—We investigated whether the metabolic profile could be 

used to discriminate tumor versus normal tissue using an OSC-PLS model. The OSC-PLS 
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scores plots of the training set samples are shown in Fig. 3A for both OCT-embedded and 

FFPE samples. We thus performed a modified leave-one-out cross-validation to evaluate the 

accuracy of the discrimination between tumor and normal tissue in the training set. A 

schematic diagram of the cross-validation procedure is provided in Supplementary Fig. S5. 

The cross-validated accuracy was 100.0% and 75% for OCT-embedded and FFPE samples, 

respectively. When the average of the predicted values of each replicate in FFPE samples 

was used to classify the tissue type, the accuracy increased to 87.5%.

For the validation set, we collected biopsy punches from normal and tumor tissues. When 

we applied the OSC-PLS model previously built on the training set, we correctly classified 

normal and tumor tissue samples. The resulting OSC-PLS scores plots are shown in Fig. 3B.

FFPE tissue sections—We have investigated whether limited amount of material, such 

as FFPE sections, could be utilized to obtain an accurate metabolic fingerprinting. To 

address this, we obtained 20-μm sections from FFPE biopsy punches of the validation set 

and performed manual macrodissection to generate samples enriched for normal or tumor 

tissue (Fig. 3B). Akin to FFPE biopsy punches, when we applied the OSC-PLS model 

previously built on the training set, we correctly classified normal and tumor tissue samples. 

Taken together, these data suggest that a separation between normal and tumor metabolic 

fingerprint is still possible using a reduced amount of material, such as a tissue section.

Metabolite correlations with stroma and epithelia content—Next, we investigated 

whether metabolites could be correlated with stroma and epithelia content. Following 

metabolite extraction, FFPE tissue sections were stained with hematoxylin and eosin (H&E). 

Staining evaluation confirmed that the tissue architecture was preserved. A semiautomated 

algorithm was then used to quantify the cell number and the area of the epithelial and stroma 

compartments (Fig. 3C and D) in both normal and tumor tissues. The complete information 

relative to image analysis is provided in Supplementary Table S14.

We applied NMF (14, 21) to decipher metabolic signatures from stroma and epithelium. We 

identified 6 metabolic signatures (Supplementary Fig. S6) across the 16 FFPE samples of the 

validation set (8 biopsy punch samples and 8 tissue section samples). Despite the limited 

sample size, the analysis showed a correlation (albeit weak) between the signatures 1 and 4 

with the stroma and epithelium tissue percentages, respectively (Supplementary Fig. S7), 

suggesting that stroma and epithelium may be characterized by different metabolomic 

profiles. In particular, fructose seems to be linked to a higher presence of epithelial tissue in 

the sample (r = 0.74, P = 3.60 × 10−2; FDR = 2.65 × 10−1) as described in Supplementary 

Table S15.

Discussion

Over the past decade, the majority of metabolomic studies have been successfully conducted 

using frozen or fresh tissues. Promising, albeit very preliminary data supporting the 

technical feasibility of using FFPE material for metabolomic study has been recently 

provided, opening up the possibility of utilizing MS-based metabolic profiling in routinely 

processed tissue (9, 12). However, these studies were limited in the characterization of 
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metabolites lost during formalin fixation and paraffin embedding and following extraction. 

These studies did not address specifically chemical groups of metabolites and their relative 

preservation through tissue processing. Here, we show a comprehensive analysis of all the 

classes of metabolites that are preserved after tissue processing, comparing cell lines and 

human tissues. Differences in the number of detectable metabolites may be ascribed to their 

wide variety of physical–chemical properties that can be susceptible to FFPE processing. 

Indeed, during the multistep procedure of fixation and embedding in paraffin, there are 

factors, such as solvents used in the procedure or reactive groups of certain molecules, 

which can affect the preservation of metabolites that survive tissue processing. While 

solvents may reduce the concentration of both polar and non-polar metabolites, dipeptides 

characterized by the presence of the carboxamide functional group may react with formalin 

making their detection post-processing impossible.

Overall 55% and 40% of metabolites were retained in FFPE cell lines and human tumors 

when compared with their matched frozen specimens, but preservation of metabolites varied 

significantly with class categories. Specifically, there was a better retention of lipids and a 

negligible preservation of peptides with FFPE processing. Lipids were characterized by a 

heterogeneous behavior, with metabolites with good detectability such as fatty acids and 

others like fatty acid esters and steroids that were poorly detectable. This has to be kept in 

consideration, when designing MS-based metabolic profiling experiments in archival tissues.

Despite the loss of a fair number of metabolites, we successfully used metabolic profiling in 

FFPE material to accurately distinguish isogenic prostate cancer cell lines with different 

biologic characteristics and hormonal-dependent status. We also were able to accurately 

distinguish benign from malignant tissue in archival human prostate cancer specimens 

characterizing some metabolic pathways altered in malignant tissue. For instance, the 

upregulation of α-linoleic acid and linoleic acid metabolism, seen in prostate cancer samples 

compared with their benign counterpart and retained in FFPE material, was confirmed in a 

recent study showing that among patients with prostate cancer, prostatic α-linoleic acid, 

independent of the diet, was significantly and positively associated with biomarkers of 

aggressive disease, that is, both higher prostate-specific antigen (PSA) and tumor 

proliferation rates (25). These results demonstrate that metabolic profiling in FFPE is both 

feasible and useful.

Finally, we show that it is feasible to perform methanol extraction of metabolites directly 

from FFPE tissue sections preserving their architecture. These can subsequently be stained 

and subjected to image analysis to determine the cell type composition that contributes to the 

metabolic profile and to identify metabolic features unique to different cell compartments 

(e.g., stroma vs. epithelium). This result suggests that it is possible to profile metabolites in 

tissue section in addition to other molecular techniques in FFPE material, such as histologic 

imaging analyses, to identify novel metabolic biomarkers and biologic relevant metabolic 

pathways.

Overall, FFPE tissue section metabolomics shows promise to be applied to determine 

diagnostic, prognostic, or predictive markers in archival specimen used in routine diagnosis 

with excellent preservation of morphology.
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Figure 1. 
Isogenic cell lines. A, Schematic overview of the protocol used to prepare frozen and FFPE 

cell samples. The steps are discussed in Supplementary Methods. B, Venn diagram showing 

the intersection between frozen and FFPE metabolomic data in the experimental settings. C, 

Box-and-whisker plot representing the relative signal intensity of all shared metabolites 

found in frozen and FFPE samples. D, Bar plot of the metabolite number found in frozen 

and FFPE samples. The metabolites are categorized according to the class membership. The 

percentage above each bar represents the number of detectable metabolites (of each class) 

found in FFPE compared with frozen samples. E, Correlation plots between FFPE cell 

replicates and between frozen and FFPE cell samples. F, Box-and-whisker plots of the 

correlation coefficients, categorized to the class membership, between frozen replicates, 

FFPE replicates, and frozen and FFPE samples. G, Heatmap of selected metabolites from 

cell line samples. Hierarchical clustering (Ward method) based on KODAMA dissimilarity 

matrix is used for unsupervised classification. The phenotypic labels of the samples (i.e., 

LNCaP and LNCaP-Abl) are indicated as a colored band on top of the heatmap.
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Figure 2. 
Human prostate. A, Schematic diagram of the human samples used. B, Venn diagram 

showing the intersection between frozen and FFPE metabolomic data in the experimental 

settings. C, Bar plot of the metabolite number found in frozen and FFPE samples. The 

metabolites are categorized according to the class membership. The percentage above each 

bar represents the number of detectable metabolites (for each class) found in FFPE 

compared with frozen samples. D, Correlation plots between FFPE cell replicates and 

between frozen and FFPE cell samples. E, Heatmap of selected metabolites from cell line 
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samples. Hierarchical clustering (Ward method) based on KODAMA dissimilarity matrix is 

used for unsupervised/semisupervised classification. The phenotypic labels of the samples 

(i.e., normal and tumor tissue) are indicated as a colored band on top of the heatmap.
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Figure 3. 
Prostate cancer fingerprint. A, Schematic overview of the samples analyzed in the training 

set. On the right side, OSC-PLS scores plot of the FFPE biopsy punches of the training set. 

B, Schematic overview of the samples analyzed in the validation set (i.e., FFPE biopsy 

punches and section). On the right side, OSC-PLS projection scores plot of the FFPE 

samples of the validation set. C, Tissue images for tissue segmentation analysis. D, Tissue 

images for tissue segmentation analysis.
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