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Abstract 

Obesity and ectopic fat accumulation in non-adipose tissues are major contributors to heart 

failure (HF) and cardiovascular disease (CVD). Adipocytes act as endocrine organs by releasing 

a large number of bioactive molecules into the bloodstream, which participate in a 

communication network between white adipose tissue and other organs, including the heart. 

Among these molecules, fatty acid binding protein 4 (FABP4) has recently been shown to 

increase cardiometabolic risk. Both clinical and experimental evidence have identified FABP4 

as a relevant player in atherosclerosis and coronary artery disease, and it has been directly 

related to cardiac alterations such as left ventricular hypertrophy (LVH) and both systolic and 

diastolic cardiac dysfunction. The available interventional studies preclude the establishment of 

a direct causal role of this molecule in CVD and HF and propose FABP4 as a biomarker rather 

than as an aetiological factor. However, several experimental reports have suggested that 

FABP4 may act as a direct contributor to cardiac metabolism and physiopathology, and the 

pharmacological targeting of FABP4 may restore some of the metabolic alterations that are 

conducive to CVD and HF. Here, we review the current knowledge regarding FABP4 in the 

context of HF and CVD as well as the molecular basis by which this protein participates in the 

regulation of cardiac function. 
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Introduction 

Heart failure (HF) is one of the most important health problems around the world (for a review, 

see (Hunt, et al. 2009)). The prevalence of HF is especially ominous in developed societies. 

Between the EU and the US, there are more than 20 million people afflicted with this pathology 

(Mosterd and Hoes 2007; Mozaffarian, et al. 2015). It is estimated that HF is currently the 

leading cause of hospitalisation in people over the age of 65 (Forman, et al. 2009), and 

approximately 108 billion dollars are spent each year on health costs associated with this 

pathology (Cook, et al. 2014; Neumann, et al. 2009; Stewart, et al. 2002). Despite advances in 

the treatment of HF and the amount of money invested to combating this pathology, the number 

of deaths as a consequence of HF is steadily increasing. It is predicted that up to 30% of HF 

patients will die within 1 year following hospitalisation, and half will die within 5 years of their 

initial diagnosis (Loehr, et al. 2008; Writing Group, et al. 2010). 

Increasing evidence has highlighted the role of metabolic diseases as important risk 

factors for HF. In particular, obesity has been proposed as one of the main contributors to the 

onset and progression of HF (Lavie, et al. 2009). Despite the obesity-related co-morbidities that 

may explain part of this association, a direct relationship between the risk of HF and adipokines 

has also been proposed (Baldasseroni, et al. 2012; Djousse, et al. 2013; Liu, et al. 2013). Among 

these adipokines, fatty acid binding protein 4 (FABP4) has recently been linked to 

cardiovascular and metabolic diseases. Additionally, FABP4 is highly expressed in 

macrophages, contributing to the development of atherosclerosis and cardiovascular disease 

(CVD). Here, we will review the current knowledge of FABP4 in HF and CVD as well as the 

molecular basis by which this protein participates in the regulation of cardiac function. 

 

Obesity as a risk factor for heart failure 
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Among the risk factors for HF, we identified the so-called metabolic syndrome, which 

encompasses multiple metabolic disorders, including high blood pressure, dyslipidaemia, 

insulin resistance and obesity (Wang, et al. 2010). Specifically, both overweight and obesity 

have been closely related to HF and other CVDs (Lavie et al. 2009). Recently, several studies 

have demonstrated a positive correlation between obesity/overweight and the risk of developing 

HF. A 5-7% increase in the incidence of HF per unit of increased body mass index (BMI) (Go, 

et al. 2014) was found in a seminal study from the Framingham Heart Study (Kenchaiah, et al. 

2009). Interestingly, a graded increase in the risk of HF was found across all BMI categories. 

Similar data were obtained from a Finnish study, showing a greater risk of HF in overweight 

and obese subjects than in normal-weight participants (Hu, et al. 2010). However, while some 

authors attribute these correlations to the downstream development of metabolic risk factors 

such as inflammation, insulin resistance or type 2 diabetes mellitus (Bahrami, et al. 2008; 

Ingelsson, et al. 2005; Voulgari, et al. 2011), the data from other studies report that obesity 

directly correlates with the risk of HF, independent of other metabolic risk factors (Morkedal, et 

al. 2014). Paradoxically, once HF has been established, obesity confers survival benefits 

(Oreopoulos, et al. 2008; Shah, et al. 2014). Despite the exploration of the role of confounding 

factors, the underlying mechanism that explains this finding remains unclear. Interestingly, this 

paradox is not evident in obese patients with diabetes (Zamora, et al. 2016). 

Some pathological conditions that are present in obese patients may be involved in the 

elevated risk of HF. Both visceral obesity and ectopic fat accumulation in non-adipose tissues, 

including the heart, have been related to cardiac structure abnormalities and increased 

cardiometabolic risk (Britton and Fox 2011). Cardiac steatosis has been found in subjects with 

dilated cardiomyopathy (Graner, et al. 2014), and pericardial fat accumulation is independently 

correlated with left ventricular (LV) mass and is inversely correlated with LV mid-wall stress 

abnormalities in morbidly obese patients (Graner et al. 2014). As an endocrine organ, adipose 

tissue produces and secretes a wide range of bioactive factors known as adipokines, which take 

part in the network of communication between adipose tissue and peripheral organs, including 
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the heart (Kershaw and Flier 2004). The most studied adipokines are adiponectin, leptin, 

resistin, plasminogen activator inhibitor-1 (PAI-1) and tumour necrosis factor α (TNFα); 

however, increasing evidence has proposed fatty acid binding protein 4 (FABP4) as a new 

emerging adipokine involved in the development of metabolic disease and CVD. Apart from 

adipocytes, FABP4 is also highly expressed in macrophages and dendritic cells (Makowski, et 

al. 2001; Rolph, et al. 2006), further contributing to inflammatory-related alterations, such as 

metabolic syndrome and CVD. 

 

Fatty acid binding protein 4 

FABP4, also known as adipocyte FABP (A-FABP) or adipocyte P2 (aP2), belongs to a family 

of intracellular lipid chaperones that is expressed in active lipid metabolic tissues. Similar to 

other members of the FABP family, FABP4 is able to reversibly bind to hydrophobic ligands 

such as saturated and unsaturated long-chain fatty acids (FA), eicosanoids, and other lipids (Coe 

and Bernlohr 1998; Zimmerman and Veerkamp 2002), thus taking part in the regulation of lipid 

trafficking and responses at the cellular level (Furuhashi and Hotamisligil 2008; Furuhashi, et 

al. 2011). Specifically, FABPs have been proposed to actively facilitate the transport of FA to 

specific organelles in the cell, including mitochondria, peroxisomes, the nucleus and the 

endoplasmic reticulum. Therefore, FABPs take part in lipid oxidation, lipid-mediated 

transcriptional regulation and the signalling, trafficking, and synthesis of membranes (Furuhashi 

and Hotamisligil 2008). In addition, FABPs also take part in the regulation of the enzymatic 

activity and storage of lipid droplets in the cytoplasm (Furuhashi and Hotamisligil 2008), the 

conversion of FA to eicosanoids and the stabilisation of leukotrienes (Ek, et al. 1997; Zimmer, 

et al. 2004). Apart from FABP4, the FABP family is composed of eight other isoforms in 

mammals based on tissue distribution, including the liver (FABP1), intestines (FABP2), heart 

(FABP3), epidermis (FABP5), ileum (FABP6), brain (FABP7), myelin (FABP8), and testis 

(FABP9). Despite the wide range of sequence identity between the different members of the 

FABP family (15-70%) (Chmurzynska 2006), all members share similar three-dimensional 
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structures, including two orthogonal 5-stranded β-sheets and a 10-stranded anti-parallel β-barrel 

structure (Chmurzynska 2006; Furuhashi and Hotamisligil 2008; Marr, et al. 2006) (Figure 1). 

Specifically, the human FABP4 gene encodes a polypeptide 132-amino-acids long with 

a molecular mass of 14.6 kDa (GenBank accession number NM_024406). FABP4 expression is 

strongly induced during adipocyte differentiation (Bernlohr, et al. 1985a), which has led to 

proposals of this molecule as an adipocyte differentiation marker (Bernlohr, et al. 1985b; Smith, 

et al. 1988; Yang, et al. 1989). Similar to adipocytes, FABP4 expression is also induced during 

differentiation from monocytes to macrophages, and its expression in these cells is regulated by 

a wide range of proinflammatory stimuli (Fu, et al. 2000; Fu, et al. 2002; Kazemi, et al. 2005; 

Makowski et al. 2001; Pelton, et al. 1999; Wang, et al. 2011). In macrophages, FABP4 

increases the accumulation of cholesterol ester and induces foam cell formation as well as 

inflammatory responses through the activation of the IKK-NF-κB and JNK-AP-1 pathways 

(Hui, et al. 2010; Makowski, et al. 2005). FABP4 expression is controlled at the transcriptional 

level by CEBP (CCAAT/enhancer binding protein) (Christy, et al. 1989) and PPARγ 

(peroxisome proliferator-activated receptor γ) (Cabre, et al. 2007; Kletzien, et al. 1992). 

Additionally, cAMP (cyclic adenosine monophosphate) further controls FABP4 expression by 

relieving a negative regulatory element in the FABP4 promoter (Yang et al. 1989). As 

mentioned above, FABP4 acts as a lipid-binding chaperone for long-chain non-esterified fatty 

acids (NEFA) (Coe and Bernlohr 1998), which are transported via the interior water-filled 

binding cavity formed by the β-barrel (LaLonde, et al. 1994) (Figure 1). In addition, FABP4 

enhances the hydrolytic activity of hormone-sensitive lipase (HSL) by a molecular mechanism 

involving specific protein-protein interactions (Shen, et al. 2001). Furthermore, FABP4 

regulates PPARγ activity by taking part in delivering specific PPARγ agonists, including 

thiazolidinedione and linoleic acid, from the cytosol to the nucleus (Adida and Spener 2006; 

Gillilan, et al. 2007). Interestingly, the FABP4 nuclear localisation signal is only found in the 

three-dimensional structure of the protein when bound to PPARγ agonists (Ayers, et al. 2007; 

Gillilan et al. 2007); meanwhile, the binding of other FABP4 ligands that are not PPARγ 
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activators, including oleate or stearate, does not result in a stable nuclear localisation signal 

(Gillilan et al. 2007). 

Altogether, FABP4 is involved in the regulation of proteins that control both lipid 

metabolism and insulin sensitivity. Apart from its well-known role as a lipid chaperone in 

adipocytes, FABP4 has been detected in the bloodstream and is independently and strongly 

correlated with adiposity (Ishimura, et al. 2013; Xu, et al. 2006). Despite its lack of an N-

terminal secretory signal sequence (Furuhashi and Hotamisligil 2008), FABP4 has been 

reported to be released from adipocytes through additional mechanisms (Coe, et al. 1999; Mita, 

et al. 2015; Scheja, et al. 1999; Shen, et al. 1999) and acts as an adipokine in several organs, 

including the heart (Figure 2). 

 

FABP4 as a cardiometabolic predictor for CVD 

Apart from its well-known role as an adiposity biomarker (Ishimura et al. 2013; Xu et al. 2006), 

FABP4 has been associated with the following distinct components of metabolic syndrome 

based on a Third-Generation Framingham Heart Study cohort: BMI, triglycerides, total 

cholesterol, diastolic blood pressure, reduced HDL levels and impaired glomerular filtration rate 

(eGFR) (Kaess, et al. 2012). Additionally, despite the lack of an association between FABP4 

and prevalent diabetes (probably because of the low prevalence of diabetes in the studied 

cohort), this FA transporter was positively associated with insulin resistance and low-grade 

inflammation, which is consistent with the multifactorial pathogenesis of metabolic 

dysregulation. In addition, prospective studies have shown that FABP4 can predict the 

development of metabolic syndrome and type 2 diabetes (Tso, et al. 2007; Xu, et al. 2007). 

Since metabolic syndrome and insulin resistance are closely linked with CVD, a strong 

association between circulating FABP4 levels and this pathology has also been proposed (Bao, 

et al. 2011; Fuseya, et al. 2014; Miyoshi, et al. 2010; von Eynatten, et al. 2012; Xu, et al. 2010; 

Yeung, et al. 2007) (Figure 2). Recently, FABP4 plasma levels have been associated with 
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elevated CVD mortality in men with type 2 diabetes mellitus (Liu, et al. 2016). Decreased 

FABP4 expression as a consequence of a genetic variant of the FABP4 promoter (T-87C) 

results in reduced serum triglycerides and a lower risk of CVD (Tuncman, et al. 2006). In 

addition, FABP4 deficiency reduces aortic atherosclerotic lesions and increases the survival rate 

of apolipoprotein-E (ApoE)-deficient mice fed a high-fat atherogenic diet (Boord, et al. 2004; 

Makowski et al. 2001). The impact of FABP4 on atherosclerosis is mainly due to role of this 

molecule in macrophages rather than in adipocytes, as demonstrated by studies involving bone 

marrow transplantation (Makowski et al. 2001). Additionally, FABP4 from dendritic cells may 

further impact atherosclerosis, since it regulates inflammation and T-cell priming (Rolph et al. 

2006). Moreover, the pharmacological inhibition of FABP4 also significantly protected against 

atherosclerotic plaque formation in the ApoE-deficient animal model of atherosclerosis, 

suggesting that the pharmacological inhibition of FABP4 might have beneficial effects against 

CVD (Furuhashi, et al. 2007). In humans, FABP4 has been related to subclinical coronary 

atherosclerosis in type 2 diabetes mellitus subjects (Bagheri, et al. 2010), and circulating 

FABP4 levels are also associated with increased carotid intima-media thickness, ischaemic 

stroke, coronary atherosclerotic burden and the number of stenotic coronary arteries (Bao et al. 

2011; Doi, et al. 2011; Holm, et al. 2011; Huang, et al. 2013; Miyoshi et al. 2010; Rhee, et al. 

2009; Tso, et al. 2011; Xu et al. 2010; Yeung et al. 2007). Recently, FABP4 has been proposed 

as a prognostic biomarker in patients with acute coronary syndrome (Reiser, et al. 2015). In 

addition, FABP4 is an important predictor of cardiovascular outcomes in patients with either 

coronary heart disease or acute ischaemic stroke (Holm et al. 2011; von Eynatten et al. 2012). 

Along with its potential role as a biomarker, a 12-year prospective study performed in a cohort 

without previous CVD revealed that FABP4 is a potential independent risk factor that 

predisposes individuals to CVD, showing the predictive value of FABP4 over the predictions 

based on traditional risk factors (Chow, et al. 2013). FABP4 levels in atherosclerotic plaques 

have been further associated with an unstable plaque phenotype, which predicts the occurrence 

of an adverse cardiovascular event (Lee, et al. 2013; Peeters, et al. 2011). Specifically, unstable 

carotid plaques have been related to increased FABP4 expression in macrophages among 
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samples from human endarterectomy (Agardh, et al. 2011). Therefore, these findings support 

the role of FABP4 as a potential mediator of obesity/inflammation-related CVD. However, 

these studies precluded the establishment of a direct causal relationship between serum FABP4 

and atherosclerosis. 

 

FABP4, cardiac dysfunction and HF 

FABP4 has been directly related to cardiac alterations (Fuseya et al. 2014) (Figure 2). 

Specifically, FABP4 levels are associated with LVH as well as systolic and diastolic cardiac 

dysfunction (Baessler, et al. 2014; Balci, et al. 2012; Engeli, et al. 2013; Huang et al. 2013; Liu 

et al. 2013), even in an apparently healthy population (Fuseya et al. 2014). A positive 

correlation between FABP4 and both LV dysfunction and myocardial perfusion abnormalities 

was found in patients with coronary artery disease (Huang et al. 2013). In addition, Engeli et al. 

found a modest but significant independent correlation between FABP4 serum concentrations 

and the LV mass in overweight and obese women (Engeli et al. 2013). Interestingly, 

longitudinal systolic and diastolic function was reduced in subjects with high serum FABP4 

concentrations. The correlation between elevated serum FABP4 and the deterioration of LV 

function had previously been reported in non-obese patients who were hospitalised for acutely 

decompensated HF (Liu et al. 2013). However, others have failed to show an association 

between FABP4 and present (Balci et al. 2012) or future (Djousse et al. 2013) systolic 

dysfunction in subjects without prevalent cardiac disease (Liu et al. 2013). Altogether, these 

studies suggest only a marginal contribution of FABP4 to the development of early systolic 

dysfunction in obese humans. 

FABP4-related heart remodelling and cardiac dysfunction may directly contribute to the 

development of HF (Liu et al. 2013). Liu et al. provided the first clinical evidence 

demonstrating that serum FABP4 concentrations are significantly higher in patients with HF 

than in non-HF subjects, and this association was significantly increased with the severity of HF 
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(Liu et al. 2013). Interestingly, this association was further confirmed by others (Huang et al. 

2013; Liu et al. 2013). In addition, FABP4 positively correlates with the serum levels of N-

terminal fragment of pro-B-type natriuretic peptide (NT-proBNP), a well-established and 

powerful marker of HF risk (Tang, et al. 2007), and with all echocardiograph parameters, 

especially LV ejection fraction (LVEF) (Liu et al. 2013). Moreover, using logistic regression 

analysis, the authors proposed FABP4 as an independent risk factor for HF (Liu et al. 2013). 

These data were reported during the review process of a study performed by members of our 

team that demonstrates a strong correlation between FABP4 and NT-proBNP in HF patients 

(Cabre, et al. 2013), thus confirming the data first reported by Liu et al. (Liu et al. 2013). Since 

NT-proBNP has been proposed as an indicator for HF follow-up therapy and prognosis 

(Lainchbury, et al. 2009; Olsson, et al. 2007), the parallel association of FABP4 and NT-

proBNP supports the role of FABP4 as an HF biomarker (Cabre et al. 2013). Actually, an 

association between the FABP4 and NT-proBNP plasma levels was also found during treatment 

and follow-up, suggesting that an improvement in HF status was associated with a reduction in 

both the NT-proBNP and FABP4 concentrations (Cabre et al. 2013). Moreover, a large-scale 

prospective study reported that the FABP4 plasma levels predicted a higher risk of HF during a 

median follow-up period of 10.7 years (Djousse et al. 2013). However, while some authors 

support that FABP4 is directly associated with heart function (Liu et al. 2013), data from other 

studies suggest that circumstances other than myocardial function determine the association 

between FABP4 and HF markers (Cabre et al. 2013; Djousse et al. 2013). Thus, these 

contradictory data initially proposed FABP4 as a biomarker rather than as an aetiological agent 

in HF development. Nevertheless, additional reports have suggested that FABP4 may also 

promote heart dysfunction through its direct action on cardiomyocytes. Increased FABP4 

expression has been reported in human epicardial adipose tissue from metabolic syndrome 

patients (Vural, et al. 2008), suggesting a paracrine effect on cardiac cells. Additionally, a recent 

study by Furuhashi et al. showed that FABP4 that is locally produced by epicardial/perivascular 

fat and macrophages contributes to the development of coronary atherosclerosis (Furuhashi, et 

al. 2016), highlighting the potential paracrine role of this adipokine. Interestingly, Lamounier-

Page 10 of 26



11 

 

Zepter showed that FABP4 induced a cardiodepressant effect in experimental models of isolated 

rat cardiomyocytes (Lamounier-Zepter, et al. 2009; Lamounier-Zepter, et al. 2015), thus 

showing the first evidence of a cause-effect relationship between FABP4 and cardiomyocyte 

physiology. Recently, it has been shown that FABP4 is also expressed in cardiomyocytes, and 

the overexpression of cardiac FABP4 exacerbates the cardiac hypertrophic response induced by 

pressure overload (Zhang, et al. 2016). Conversely, FABP4 deficiency attenuates 

ischaemia/reperfusion-induced myocardial injury and improves LV function in both non-

diabetic and streptozotocin-induced diabetic mice (Zhou, et al. 2015). Therefore, FABP4 

secreted from epicardial fat tissue, subcutaneous and/or visceral adipose tissue or macrophages 

may influence heart dysfunction in a paracrine or endocrine manner. However, the underlying 

molecular mechanisms by which FABP4 regulates cardiomyocyte function are only just 

beginning to emerge. 

 

FABP4 and the cardiac fuel supply 

Given the role of FABP4 as an FA carrier, the effect of this protein on cardiomyocyte 

contraction and myocardial remodelling may be by regulating substrate uptake for energy 

production in cardiomyocytes. Interestingly, the energy requirements in a healthy heart are 

mainly met by FAs (70%) (Gray and Kim 2011) and, to a lesser extent, glucose (20%), with 

lactate and ketone bodies composing the remainder of the fuel sources for the heart (Huss and 

Kelly 2005; Lopaschuk, et al. 2010). Substrate uptake from the circulation to cardiomyocytes is 

a process that is carefully regulated by capillary endothelial cells (ECs). Compared to sinusoidal 

ECs that have large fenestrations that allow for the passage of particles that include albumin and 

chylomicron remnants, FA transport in the capillary ECs from the heart involves proteins with a 

high affinity for FA in the capillary endothelial cytoplasm (van der Vusse 2009; van der Vusse, 

et al. 2000). Thus, FABP4 may contribute to the dysregulation of cardiac metabolic disorders, 

leading to deficient contractile function and HF by regulating the transport of the external 

supply of substrates, such as FAs, to cardiomyocytes (Figure 3). Actually, both FABP4 and 
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FABP5 have been found to be expressed in capillary ECs in several tissues, including the heart 

(Elmasri, et al. 2009; Masouye, et al. 1997), suggesting that both molecules may have redundant 

roles in regulating transendothelial FA transport. Specifically, using FABP4/5 double-knockout 

mice (Fabp4/5 DKO), Iso et al. showed that these molecules are essential for the regulation of 

substrate uptake into the heart. Whereas FA uptake was reduced in the Fabp4/5 DKO compared 

with that in wild-type mice, glucose uptake was remarkably increased (Iso, et al. 2013). Since 

FABP4 is transcriptionally regulated by PPARγ, this nuclear receptor may contribute to 

transendothelial FA transport by regulating FABP4 and other FA transporters in ECs (Goto, et 

al. 2013; Kanda, et al. 2009). PPARγ activation induced FA uptake into human cardiac 

microvessel ECs via the transcriptional regulation of both FABP4 and fatty acid translocase 

(FAT)/CD36 (Goto et al. 2013). Interestingly, knockdown of either FABP4 or CD36 partially 

inhibited the effect of PPARγ-induced FA uptake, suggesting that both PPARγ targets are 

involved in this process (Goto et al. 2013). Nevertheless, further research is required to fully 

clarify the role of FABP4 in regulating substrate uptake and its subsequent utilisation in the 

heart. 

 

FABP4 as a potential therapeutic target for HF and CVD 

Given that FABP4 has been proposed as a contributor for the development of metabolic-related 

CVD, pharmacological regulation of this molecule may be considered as a potential therapeutic 

approach for treating CVD and HF. Since individuals with decreased FABP4 expression show a 

reduced risk of CVD (Tuncman et al. 2006), strategies have been focused on inhibiting or 

reducing the circulating levels of FABP4. In a U.S. Food and Drug Administration (FDA) 

screen for approved drug repurposing, several drugs were discovered as FABP4-binding 

molecules, including the broad-spectrum antibiotic levofloxacin as a high-affinity FABP4 

inhibitor, among others (Wang, et al. 2014). Additionally, several synthetic FABP4 inhibitors 

have been developed to date (Barf, et al. 2009; Chen, et al. 2014; Furuhashi and Hotamisligil 

2008; Hertzel, et al. 2009; Lan, et al. 2011; Lehmann, et al. 2004; Liu, et al. 2011; Ringom, et 
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al. 2004; Sulsky, et al. 2007; Xu, et al. 2012). Among them, BMS309403, an active small 

molecule that impedes the binding of FAs to the FABP4 FA-binding cavity (Furuhashi and 

Hotamisligil 2008; Furuhashi et al. 2007; Sulsky et al. 2007), has been shown in several 

experimental models to protect against insulin resistance, diabetes mellitus, fatty liver disease, 

and atherosclerosis (Furuhashi et al. 2007; Lee, et al. 2011). Additionally, HTS01037, another 

FABP4 inhibitor, attenuated the proinflammatory profile in macrophages (Xu, et al. 2015), 

showing the potential effect of FABP4 inhibitors on inflammatory-related diseases. Other 

approaches have targeted circulating FABP4 using neutralising antibodies as well as improving 

insulin sensitivity and glucose homeostasis (Cao, et al. 2013; Miao, et al. 2015). Similar effects 

were found by directly targeting FABP4 expression with short-hairpin RNAs (shRNAs) in 

adipose tissue from obese diabetic mice (Won, et al. 2014). Thus, although further studies are 

needed to determine the efficacy and safety of FABP4 inhibitors for clinical use, the 

experimental evidence strongly supports FABP4 inhibition as an emerging approach for the 

treatment of CVD-related metabolic diseases. 

 

Conclusions 

Recent studies have identified FABP4 as a novel adipokine that is involved in HF and CVD. 

FABP4 has been associated with several components of metabolic syndrome, atherosclerosis, 

insulin resistance and low-grade inflammation, and thus, it has been proposed as a 

cardiometabolic predictor for CVD. Additionally, FABP4 has been directly related to cardiac 

alterations, and it is directly related to well-established hallmarks for HF, such as NT-proBNP. 

Thus, it has been proposed as an independent predictor for HF. Experimental studies support 

that FABP4 directly contributes to altered cardiac function. However, the underlying molecular 

mechanisms involved in the FABP4-induced cardiac dysfunction are only just beginning to 

emerge. It has been proposed that FABP4 controls myocardial function by regulating the 

transendothelial fuel supply to cardiomyocytes. Nevertheless, the role of FABP4 has not been 

explored in insulin-resistant cardiomyocytes/hearts. It is currently unknown whether FABP4 
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may regulate cellular signalling in the absence of fatty acids in cardiac cells. In addition, it is not 

clear if this molecule can be internalised by cardiomyocytes and take part in the regulation of 

cellular responses, such as inflammation, lipid oxidation or lipid droplets storage, among other 

processes. Although further research is required to fully understand the role of FABP4 in 

cardiac regulation, the evidence reviewed here supports the claim that this molecule is a 

potential target for new therapeutic strategies against cardiac disturbances that lead to HF.  

Despite evidence supporting that pharmacological inhibition of FABP4 confers 

protection towards several metabolic-related disturbances, different aspects should be addressed 

before considering FABP4 inhibition as a realistic option for the treatment of CVD and HF. 

First, FABP4 inhibitors have not been explored in experimental models of HF. Apart from the 

potential effects of the FABP4 inhibitors on preventing/improving HF, additional studies must 

be done to determine the safety of these drugs. Therefore, to fully exploit the potential of 

FABP4 inhibitors for the therapeutic intervention against CVD and HF, the pharmaceutical 

industry will have to employ new drug-development strategies to guarantee the efficacy and 

safety of these molecules.  

In summary, while FABP4 has been identified as a novel molecule related to HF and 

CVD, further research is warranted to fully understand the role of this molecule in the cellular 

responses underlying these processes. Additionally, there are still some concerns regarding the 

development of selective and safe FABP4 inhibitors. Although data from preclinical studies 

seem promising, the development of new drugs is required before FABP4 inhibition can be 

considered a realistic therapeutic approach for the clinical treatment of HF and CVD. 
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Figure 1. Three-dimensional structure of human FABP4 complexed with palmitic acid. The 10-

stranded anti-parallel β-barrel structure of FABP4 is shown. The bound palmitic acid in the pocket of 

the β-barrel structure is shown. The images were rendered from the PDB file 2HNX, which contains 

the crystal structure of human FABP4. 

 

Figure 2. Endocrine and paracrine effects of FABP4 linked to obesity-induced HF and CVD. Both 

visceral and cardiac fat accumulation are important sources of FABP4, which is released into the 

bloodstream and targets several organs, including the heart. Additionally, macrophages and 

cardiomyocytes are relevant producers of FABP4. FABP4 is associated with coronary atherosclerosis, 

the number of stenotic coronary arteries, increased carotid intima-media thickness and ischaemic 

stroke. FABP4 exerts a cardiodepressant effect and has directly been linked to LVH and LV 

dysfunction. Thus, FABP4 directly contributes to CVD and HF development. 

 

Figure 3. Cardiac transendothelial FA transport is regulated by FABP4. Endothelial cells are also an 

important source of FABP4, which increases transendothelial transport of FAs to the surrounding 

tissues including the heart. Given the sensitivity of cardiomyocytes in the use of FAs as an energy 

substrate, this may be one of the potential mechanisms by which FABP4 contributes to the 

dysregulation of cardiac metabolism and myocardial function. 
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