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A New Approach for Accurate Prediction of
Subharmonic Oscillation in Switching

Regulators–Part I: Mathematical derivations
A. El Aroudi, Senior Member, IEEE

Abstract—This part of the paper takes a new look at the
stability of the fundamental periodic behavior and the associated
subharmonic oscillation boundary in dc-dc switching regulators
with fixed frequency pulse width modulation. After revisiting
different approaches applied to a unified reduced-order model of
switching regulators, the work presents a novel way of obtaining
such a boundary without any simplification nor order-reduction.
A new simple closed-form condition is then obtained using
the new approach which is valid for different strategies with
both trailing edge and leading edge modulation schemes. The
critical condition is obtained from the steady-state response using
an asymptotic approach without resorting to frequency-domain
Fourier analysis or using the monodromy or the Jacobian matrix
of the discrete-time model. Unlike the method based on the
Fourier series expansion, the proposed method does not require
the use of any transform and, most importantly, can be applied
to bilinear switching regulators. As a byproduct of the proposed
method, a singularity problem that is encountered in steady-
state, when the system involves integrators in the feedback loop,
is addressed and a solution is developed to achieve a closed-form
expression in the presence of such integrating feedback loops.

Index Terms—Circuit stability, DC-DC power conversion, Bi-
furcation, Bilinear systems, Nonlinear systems, Power electronics,
Switched mode power supplies, Time domain analysis.

I. INTRODUCTION

SWITCHING regulators are widely used for power sources
and power management systems in different applications

such as in portable devices, solid-state lighting drivers and
technologies for renewable energy production such as in PV
systems. However, despite their engineering use, one of their
main drawbacks is their inherent nonlinearity making them
prone to exhibit a large variety of complex dynamics and
undesired behaviors under parameter changes. For instance,
subharmonic oscillation in dc-dc switching regulators has been
well documented in the early 80’s [1]. Since then, its prediction
has been widely explored [2], [3]. However, most of the
used models simplify the regulator as a first-order system,
hence allowing to derive a simple closed-form expression
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to predict the subharmonic instability boundary. Assuming a
triangular (piecewise linear) inductor current, and based on the
analysis of how a perturbation of this current propagates within
a switching cycle, a slope-based criterion can be obtained
establishing that the boundary of subharmonic oscillation in a
switching converter under peak/valley Current Mode Control
(CMC) is given by [4]–[6]:

−m0 +ma

m1 +ma
= 1 (1)

which can conveniently be rewritten as follows [7]:

ma = −1

2
(m1 +m0) := ma,cri (2)

where m1 > 0 and m0 < 0 are the slopes of the control
signal during the charging (ON) and discharging (OFF) phases
respectively and ma > 0 is the slope of the ramp compensator.
For stability, the ramp slope ma must be greater than a certain
critical value ma,cri given by (2).

The previous equivalent critical conditions are only valid
for the inner CMC loop while ignoring any effect of the outer
voltage feedback and they fail short in predicting subharmonic
oscillation in the case of CMC with voltage loop closed [3] be-
cause in the process of their derivation the ripple of the output
voltage and the corresponding feedback signal is completely
ignored. These conditions also fail for a conventional Voltage
Mode Control (VMC) and average CMC because the control
signal waveform in this case is not triangular [8], [9].

Some early results concerning stability conditions for con-
stant switching frequency power converters under CMC, tak-
ing into account the interaction of the current and voltage
feedback loops, have been first derived in [1] and later in [10].
In an attempt to predict this phenomenon with small-signal
frequency domain models, an approach has been proposed in
[3] consisting of augmenting the dimension of the averaged
model by taking into account the sampling effects. Other
more advanced small-signal models and their equivalent circuit
representations are also proposed in [11] based on a linearized
describing function method extending the results obtained in
peak CMC to average CMC. Recent results based on the
same method proved that the approach of [3] still fail short in
predicting the behavior of ripple-based controlled converters
that use the output voltage in the fast loop [12], [13]. Taking
support from a bifurcation analysis approach, the prediction
of subharmonic oscillation has been mainly based on deriving
an accurate discrete-time model and then linearizing it in the
vicinity of the operating point. This approach has been used
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since the pioneering works in the 90’s and 00’s [14]–[26]. It
has been demonstrated that similar results can be obtained by
using Floquet theory combined with Filippov’s method and
the associated monodromy matrix [27]–[29].

Due to the importance of its prediction from both theoretical
and practical points of view, this phenomenon is receiving
increasingly more attention from many researchers [26], [29]–
[34]. Using discrete-time modeling and Filippov method, it
was demonstrated recently in [29] that the approach based on
the describing function models [11] is inaccurate for predicting
subharmonic oscillation in switching converters under V2 and
V2IC VMC strategies. Improved averaged models have also
been developed to approximately and numerically predict the
onset of this phenomenon in power electronics circuits [13],
[26], [35]. Nevertheless, to determine accurately, the boundary
of subharmonic oscillation in switching converters, appropriate
analytical methods are required. Determining analytically the
boundary by this procedure does not appear simple. The
analytical determination of this boundary can be tackled from
several points of view. Roughly speaking, it can be determined
either by:

• A dynamic approach: It consists first of deriving a
nonlinear model of the closed loop system, obtaining the
operating point, linearizing the model in the vicinity of
this point hence getting either the Jacobian matrix J or an
equivalent transfer function in the z-domain and tracking
the movements of the roots of the characteristic equation
evaluated at the steady-state operating point. The critical
boundary condition can be derived by imposing the
corresponding singularity in the characteristic equation
det(J−λI) = 0. Namely, at the subharmonic oscillation
boundary, one of the eigenvalues is equal to -1 and hence
the critical boundary condition is simply det(J + I) = 0.
Algebraic manipulation of the previous equation leads to
a closed-form expression in terms of the system state-
space model matrices. This procedure has been first used
in [36] and recently in [32].

• A static approach: It consists of analyzing the steady-
state response in the subharmonic regime. This approach
was first used in [36], [37] and recently in a series of
papers by the same author [33], [34], [38] and also in [8].
The feedback signal is first expanded as a Fourier series
and the switching conditions, are then used. With that ap-
proach an effort to transform the results from the Fourier
frequency-domain into the time-domain must be done.
In [33], [34], [38], this transformation was performed
based on elementary partial fraction decomposition of the
system linear loop gain after defining some elementary
cases in the Laplace s−domain and listing them in the
form of tables hence finally obtaining a more general
condition than (2). In [8], some well-known Fourier series
properties have been used to transform the condition for
subharmonic oscillation occurrence expressed in terms of
the system linear loop gain from the Fourier frequency-
domain to a matrix-form time-domain condition. The
approach in [8], [33], [34], [38] is only applicable for
those converters that can be formulated in the form of

a linear system subject to a periodic excitation generated
by the PWM process. Nevertheless, this kind of represen-
tation is the exception rather than the rule in switching
converters. It is a well known fact that the state-space
model of the wide class of dc-dc switching converters
such as boost, buck-boost, Čuk, SEPIC, flyback and many
others are described by bilinear models which include
the product of the driving signal and the state vector. We
will see in this paper that a steady-state analysis of the
solution in the time-domain can be applied in general to
both linear and bilinear converters. A new expression for
the stability boundary will be obtained without need to
use the Fourier series expansion and without having to
perform any transformation nor needing the calculation
of the Jacobian or the monodromy matrix.

The accurate steady-state approach used and the closed-form
expression derived have the following advantages:

1) General: No matter how complicated the topology of
the circuit is, the same expression applies whenever the
system has two switching configurations. The approach
is therefore very general and might be applied to many
examples of switching converters with both linear and
bilinear power stages.

2) Simple: The closed-form stability condition contains
only the state transition matrices of the two configu-
rations of the switched converter, the state velocities
(vector fields) evaluated at the operating point and the
vector of feedback coefficients.

3) Direct: The expression is derived directly in the time-
domain without needing any transform.

4) Unified: The expressions can be applied to different
constant frequency PWM strategies with both Trailing
Edge Modulation (TEM) and Leading Edge Modulation
(LEM) schemes such as peak CMC, valley CMC, av-
erage CMC, and the recent schemes V1 VMC [39], I2

CMC (like a PI CMC) [40], [41], V2 VMC and V2IC
control [29], among others.

5) Powerful: The effect of the main and the parasitic
parameters can all be considered with little difficulty.
In particular, the effect of the integral action used in
many control schemes is explicitly revealed.

The rest of the paper is organized as follows. Section II
presents the general full-order model of fixed frequency dc-
dc switching regulators. In section III, a simplified reduced-
order model is derived by considering the feedback signal
the only state variable of the system. Using this model,
section III also revisits different dynamic approaches, both
in the time and in the frequency domains, to approximately
predict subharmonic oscillation in switching regulators under
fixed switching frequency control schemes. In section IV , it is
shown that the stability boundary in (1) or equivalently (2) can
be obtained by just performing a steady-state analysis either in
the frequency domain or in the time domain. A general unified
approach for accurate prediction of subharmonic oscillation is
presented in Section V extending the results of sections III and
IV to bilinear converters without any simplification nor order-
reduction. A new exact and simple closed-form expression
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TABLE I
THE INPUT AND THE OUTPUT VOLTAGES FOR THE THREE ELEMENTARY

SWITCHING CONVERTERS [42].

Buck Boost Buck-Boost
Input voltage vap vca vac
Output voltage vcp vpa vpc

for predicting subharmonic oscillation is then obtained from
this approach. Finally some concluding remarks and possible
extensions of this work are summarized in the last section.

II. MODELING OF CLOSED LOOP SWITCHING REGULATORS

A. A unified system description and its full-order bilinear
continuous-time model

Switching regulators comprise three elements: a power stage
to be controlled, a controller and a pulse width modula-
tor/compensator. The three elements are linked by a single
feedback loop in VMC and generally by two loops in CMC.
Fig. 1 shows the unified three-terminal circuit diagram of
elementary switching converters buck, boost and buck-boost
under PWM fixed frequency VMC and CMC strategies. The
terminals designations a, p, and c in Fig. 1 refer to active,
passive and common respectively [42]. The common node
between the switches S and S connects to the inductor whose
inductance is L. The switching element S is a diode in
unidirectional converters while it is a transistor in bidirectional
and synchronous converters. Table I shows the input and the
output voltages for the three elementary converters in terms
of the voltage between the terminals a, p, and c. Other high-
order converters such as Čuk and SEPIC can be represented
by the same circuit diagram after adding the pertinent filtering
components. Depending on the application, either the input or
the output (voltage or current) is the variable that must be con-
trolled. In conventional applications of switching converters,
the voltage to be controlled is the output voltage. However, in
some applications such as in renewable energy PV systems,
the variable to be controlled is the input voltage while the
output voltage is considered constant [43]. In LED driving
applications, the output current must be controlled [44], [45].

The system consisting of the power stage and the controller
can be described by a piecewise linear switched model. To
facilitate the state-space representation of the system, two
vectors are used: the state vector x and the input vector w. The
vectors are represented by boldface lower case letters and they
are column vector in general. When a row vector is needed,
the transpose operator ᵀ is applied to its corresponding column
vector. The matrices are boldface upper case. The dynamics
of a switching regulator is described by a state-space model
that can be written in the following form:

ẋ(t) = A1x(t) + B1w, for u = 1, (3a)
ẋ(t) = A0x(t) + B0w, for u = 0, (3b)
ẋi(t) = e(t). (3c)

where A0 ∈ RN×N , A1 ∈ RN×N , B0 ∈ RN×p and
B1 ∈ RN×p are the system state matrices and w ∈ Rp is

the vector of the external parameters of the plant and/or the
controller supposed to be constant within a switching cycle.
The signal u in the model (3a)-(3c) is the binary signal which
is generated by the PWM process and applied to the main
switch S. The variable xi in (3c) stands for the integral of
the sensed outer voltage error e in both VMC and CMC
with voltage loop closed but it can also represent the integral
of the sensed inner current error in CMC with voltage loop
open. This variable was deliberately separated from the rest
of state variables to start with a well-posed problem1 and to
avoid some matrix singularities appearing in the expressions
of the system trajectories and their steady-state values at the
switching time instants [9], [32]. It should be noted that in [32]
different examples of switching converters were considered
but the problem is mathematically ill-posed for those examples
involving an integrator in the feedback loop. Note, for instance,
that if the variable xi is included within the state vector x,
the inverse matrices A−11 and A−10 needed for calculating the
system state trajectories during a switching cycle will not exist.
In [32] and in a series of other works by the same author of
[32], to avoid such an ill-posedness problem, the integrator
dynamics is modified by converting it to a low pass filter with
a sufficiently small non-zero pole replacing the pole at zero
of the integrator. However, choosing an inappropriate value of
this parameter could give rise to serious numerical artifacts.
Moreover, with that approach the effect of the integrator is
hidden within the complete state-space representation. Here,
the nature of the integrator is maintained and its effect will
be clearly revealed. More details about other related matrix
singularities will be given in Section V.

The full-order switched model of a switching converter as
given in (3a)-(3c) can also be expressed as follows:

ẋ(t) = m0(x(t)) + (m1(x(t))−m0(x(t)))u(t), (4a)
ẋi(t) = e(t). (4b)

where m1(x(t)) = A1x(t)+B1w and m0(x(t)) = A0x(t)+
B0w are the state velocities (or vector fields) for u = 1
and u = 0 respectively. It is worth noting that, generally, the
previous model is bilinear unless the term m1(x) −m0(x)
multiplying the driving signal u is independent on the state x.
Although strictly speaking, this is only the case of the ideal
buck converter, it is also an approximate representation of most
switching converters under some specific conditions [46].

B. Modeling the pulse width modulator

The driving signal u of the main switch S is the result of
comparing cyclically a control signal vcon depending on the
state variables and a T−periodic ramp signal vramp together
with additional logic rules dictated by an SR latch and a
clock signal to force a single switching per cycle. Some VMC
implementations do not use a latch but the approach presented
here is still valid for these cases provided that the T−periodic
orbit is characterized by one and only one switching within
the period T . In TEM strategies, the state of the main switch S
is forced to be ON (u = 1) at the beginning of each switching

1A mathematical problem is well posed if a solution exists and is unique.
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Fig. 1. Circuit diagrams of a switching converter under (a) VMC and (b) CMC. The voltage and/or the current controllers can be static or dynamic.

period and it is turned OFF (u = 0) whenever the control
signal vcon and the ramp signal vramp intersect. The state of S
is complementary to that of S. The previous logic is inverted
in LEM strategies. The main assumption in the approach of
this paper is that the converter is working in Continuous
Conduction Mode (CCM) with two switching configurations.
The switching condition that completes the model given in
(3a)-(3c) or equivalently (4a)-(4b) can be expressed as follows:

vcon(t) = vramp(t). (5)

where vramp is the ramp signal that can be expressed by:

vramp(t) = Vl +ma(tmod T ), (6)

where Vl is its lower value, ma = VM/T is its slope, VM
is its amplitude and T is its period. The ramp voltage is
used either for modulation or for slope compensation. For
instance, in conventional VMC, the ramp voltage is used for
modulation. In peak CMC, it is used for slope compensation
which can be achieved either by subtracting this signal from
the reference signal Rsiref or by adding it directly to the
voltage RsiL representing the sensed inductor current. Note
that both schemes are mathematically equivalent to the one
represented in Fig. 1-b in which the the ramp signal is
compared with the output of the current controller. The scheme
in Fig. 1-b is preferred because dynamic controllers for the
inductor current such as average CMC can also be covered.
When the ramp is not used, the approach is still valid by just
making vramp(t) = 0 in (5). Let us focus our study on TEM
strategies. Hence, the duty cycle dn of the signal u, at the
switching cycle (nT, (n+1)T ), (n ∈ N), is dictated cyclically
by the following switching condition:

vcon(dnT ) = Vl +ma(dnT mod T ). (7)

In order to cover different static and dynamic cases of VMC
and CMC, let us express the control signal as vcon = vr −
Kᵀx + Wixi, where vr is a constant and Kᵀ is a feedback
vector depending on the control mode used to be specified for
each case. Hence, the switching condition (7) becomes:

vr −Kᵀx(dnT ) +Wixi(dnT ) = Vl +ma(dnT modT ). (8)

which can be equivalently written in the following form:

Kᵀx(dnT )−Wixi︸ ︷︷ ︸
y(dnT )

= (ρ−ma(dnT mod T ))︸ ︷︷ ︸
r(dnT )

. (9)
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Fig. 2. A boost converter under a peak CMC with voltage loop open or closed
using a PI controller.

where ρ = vr − Vl. Therefore, the system switches from the
ON phase (u = 1) to the OFF phase (u = 0) at the switching
instant dnT decided by (9) which can be expressed as follows:

y(dnT ) = r(dnT ). (10)

To make the presentation more clear and to specify ρ, Kᵀ

and Wi, let us consider, in the next subsections, two different
examples. Note that once these parameters are specified, the
variables y and r can be determined according to (9).

C. Example 1: A boost converter under a peak CMC

Consider the boost converter under CMC depicted in Fig. 2
[47]. By applying KVL to the power stage we obtain the
following equations:

dv

dt
= − αv

RC
+
αiL
C

(1− u)− io
C
, (11a)

diL
dt

= −αv
L

(1− u)− (
r1
L
u+

r0
L

(1− u))iL +
vg
L
, (11b)

where, r1 = rL + rs + ron + αrC , r0 = rL + ron + αrC ,
α = R/(R+rC), R is the load resistance and rC is the equiv-
alent series resistance (ESR) of the output capacitor whose
capacitance is C. Note that with an ideal capacitor, rC = 0,
then α = 1 and vo = v. The parameters ron and ron are the
ON resistances of the switches S and S respectively while rs is
a small shunt resistance used for current sensing. The output
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current io can represent any load working as a current sink
such as, for instance, another downstream converter working
under CMC [48], [49]. All the other parameters appearing in
the previous model can be identified in the schematic circuit
diagram of Fig. 2. In terms of the general description given in
(3a)-(3b), the system matrices for this example are as follows:

A1 =

 − α

RC
0

0 −r1
L

 , B1 =

 − 1

C
0

0
1

L

 , (12a)

A0 =

 − α

RC

α

C
−α
L

−r0
L

 , B0 = B1,w =

(
io
vg

)
.(12b)

1) Voltage loop open: Let us consider first that the outer
voltage loop is open and therefore the current reference iref
is constant. This assumption is widely used to study the
stability of the inner current loop by neglecting the ripple
at the output of voltage controller [5]. Typically, the switch
current is is sensed using a small shunt resistance rs to
gather the information about the inductor current iL. The
voltage in the terminals of the shunt resistor is amplified
by a voltage amplifier with a gain N and its output gives
a voltage rsNis := Rsis, where (Rs = rsN ). The switch
is turned ON cyclically each switching period T and it is
turned OFF whenever Rsis + vramp reaches the signal Rsiref
or equivalently when Rsis reaches the signal Rsiref − vramp.
Hence, the switching condition can be written as follows:

Rsiref −Rsis(t) = vramp(t). (13)

Without loss of generality, let Vl = 0. According to (13),
and because during the ON state, the inductor current iL
coincides with the switch current is, the duty cycle dn at the
nth switching cycle is determined by the following switching
condition:

Rsiref −RsiL(dnT ) = ma(dnT mod T ). (14)

which can be adapted as in (9) by selecting x = (v, iL)ᵀ,
vr = Rsiref , ρ = vr − Vl = Rsiref , Kᵀ = (0, Rs). Because
the current loop does not involve an integrator in this case,
the integral variable must be inhibited and Wi = 0.

2) Voltage loop closed: In this case, the current reference
iref is provided by the output of the voltage controller. The
output voltage in the boost converter of Fig. 2 can be expressed
as follows:

vo(t) = α(v(t) + rCiL(t)(1− u(t))). (15)

Note that this voltage is discontinuous when rC 6= 0. The
voltage controller function is to compensate the error kvvref−
kvvo detected between a fixed reference voltage level kvvref
and the sensed output voltage kvvo. The voltage sensor gain
is implemented by a voltage divider consisting of the resistors
Ra and Rb. In this example, the voltage controller is a simple
PI regulator with a pole at the origin and a zero ωvz . The
controller transfer function can be expressed as follows:

Hv(s) = Wi
1 + s/ωvz

s
, (16)

where Wi is the integrator gain. In terms of the passive
components constituting the voltage sensor and controller, the
following relationships hold between the parameters:

kv =
Ra

Ra +Rb
, Wi =

1

RbCi
, ωvz =

1

RiCi
. (17)

According to the schematic diagram of Fig. 2, when the
voltage loop is closed, the current reference (scaled by Rs)
Rsiref can be expressed as follows:

Rsiref(t) =
kvWi

ωvz
(vref − vo(t)) + kvWi

∫
(vref − vo(t))dt.

(18)
Let xi =

∫
kv(vref − vo(t))dt and hence the following

differential equation is needed to complete the model of the
switching regulator:

dxi
dt

= kv(vref − vo(t)). (19)

The reference signal Rsiref can be expressed as follows:

Rsiref(t) =
kvWi

ωvz
(vref − vo(t)) +Wixi(t). (20)

Substituting the output voltage vo by its expression in (15),
the switching condition can be expressed as follows:

kvWi

ωvz
(vref − (α(v(t) + rCiL(t)(1− u)))) +Wixi(t)

− (Rsis(t) + vramp(t)) = 0. (21)

The switching from the ON to the OFF state takes place when
the following equality holds:

kvWi

ωvz
(vref − αv(dnT )) +Wixi(dnT )−RsiL(dnT )

− ma(dnT mod T ) = 0, (22)

which can also be adapted as in (9) by selecting x = (v, iL)ᵀ,
vr = Wikv/ωvzvref , ρ = vr, Kᵀ = (Wikv/ωvz, Rs). If
the controller involves more state variables such as in type-II
[4] or type-III [50] compensation schemes, the expression of
the switching condition can be adapted by just adding these
variables weighted by their corresponding gains.

D. Example 2: A buck converter under a type-III VMC

Fig. 3 shows the circuit diagram of a dc-dc buck converter
under VMC with a type-III compensator. The compensation
network comprises an error amplifier with the reference volt-
age kvvref on the non-inverting pin and the sensed output kvvo
from the buck converter on the inverting pin. The voltage
sensing is carried out by a simple voltage divider using
the resistances Ra and Rb. The activation of the switch S
and S is carried out as follows: the sensed error voltage
e = kv(vref − vo) is processed by means of the type-III com-
pensator, and the output vcon of this compensator is connected
to the inverting pin of the comparator whereas a T−periodic
ramp signal vramp is applied to the non-inverting pin. The
output of the comparator is connected to the reset entry of
an SR flip-flop while a T−periodic clock synchronized with
the ramp signal is connected to its set entry in such a way
that the switch S is turned ON (therefore u = 1) at the
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Fig. 3. Schematic circuit diagram of a dc-dc buck converter under VMC with
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starting of each period and it is turned OFF (u = 0) whenever
vcon = vramp. The switch S is driven complementarily to S.
Let r1 = ron + αrC and r0 = ron + αrC . By applying KVL
to the power stage we obtain the following equations:

dv

dt
= −α v

RC
+
αiL
C
− io
C
, (23a)

diL
dt

= −αv
L
− (

1

L
(r1u+ r0(1− u)))iL +

vg
L
u, (23b)

where α = R/(R + rC). All the parameters appearing in
the previous model can be identified in Fig. 3. The transfer
function of a type-III controller can be expressed as follows:

Hv(s) =
Wi

s

(s/ωz1 + 1)(s/ωz2 + 1)

(s/ωp1 + 1)(s/ωp2 + 1)
. (24)

where Wi is the integrator gain, ωz1 and ωz2 are two zeros and
ωp1 and ωp2 are two poles to be placed appropriately according
to the rules detailed in [50]. Namely, the zeros are placed close
to the LC resonant frequency of the buck converter power
stage, one of the poles is placed at one half of the switching
frequency and another pole is placed at the zero caused by
the ESR of the output capacitor [50]. The zeros, the poles and
the integrator gain are given by the following expressions in
terms of the passive elements in the network of Fig. 3:

ωz1 =
1

R2C2
, ωz2 =

1

(R1 +R3)C3
, ωp1 =

C1 + C2

R2C1C2
,

ωp2 =
1

R3C3
, Wi =

1

R1(C1 + C2)
. (25)

Performing a partial fraction decomposition on (24), it can be
rewritten in the following form:

Hv(s) =
Wi

s
+

Wp1

s+ ωp1
+

Wp2

s+ ωp2
, (26)

where Wp1 and Wp2 are feedback coefficients corresponding
to the state variables vp1 and vp2 of the controller. These
coefficients can be expressed as follows:

Wp1 =
Wiωp2(ωz1ωz2 − ωp1(ωz1 + ωz2) + ω2

p1)

ωz1ωz2(ωp1 − ωp2)
, (27a)

Wp2 = −Wiωp1(ωz1ωz2 − ωp2(ωz1 + ωz2) + ω2
p2)

ωz1ωz2(ωp1 − ωp2)
.(27b)

−

+

kvvo

+

kvvref

e

1
s+ωp1

Wp1

Wi
1
s

vp1

vi

1
s+ωp2

Wp2

vp2 vcon

Fig. 4. An equivalent block diagram of a type-III compensator.

Fig. 4 shows an equivalent block diagram of a type-III com-
pensation network according to the partial fraction decompo-
sition of (26). The state variables vp1 and vp2 of the controller
are shown in the same figure. Let x = (v, iL, vp1, vp2)ᵀ be
the vector of the state variables. In terms of the description
given in (3a)-(3b), the system matrices are as follows:

A1 =


− α

RC

α

C
0 0

−α
L

−r1
L

0 0

−αkv −αkvrC −ωp1 0
−αkv −αkvrC 0 −ωp2

 , (28a)

A0 =


− α

RC

α

C
0 0

−α
L

−r0
L

0 0

−αkv −αkvrC −ωp1 0
−αkv −αkvrC 0 −ωp2

 , (28b)

B1 =


− 1

C
0

0
1

L
0 0
0 0

 ,B0 =


− 1

C
0

0 0
0 0
0 0

 ,w =

(
io
vg

)
.

(28c)

According to the equivalent block diagram in Fig. 4, the
control voltage can be expressed as vcon = W1vp1 +W2vp2 +
Wixi. The duty cycle dn at the nth switching cycle can be
determined as in (9) by selecting vr = 0, ρ = vr − Vl = −Vl,
Kᵀ = (0, 0, −W1, −W2).

III. PREDICTING SUBHARMONIC OSCILLATION FROM
REDUCED-ORDER DYNAMIC MODELS

This section bridges the gap between the different tech-
niques for analytically deriving a closed-form mathematical
expression for subharmonic oscillation boundary and show
that they all lead to the same condition (1) or equivalently
(2). To make the presentation easy to follow at this stage, a
reduced-order model is used to illustrate the different existing
approaches. The novel approach of this work will also be
detailed separately in Section IV for the reduced order model
and in Section V by using the full-order model.

A. Reduced-order switched continuous-time model

At this stage, let us ignore the integral action in the feedback
loop (Wi = 0). Let us take the feedback signal y = Kᵀx
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the only state variable of the system while considering all the
remaining state variables coincident with their averaged values
(constant). According to (4a), the signal y is governed by the
following differential equation:

ẏ(t) = Kᵀ(m0(x(t))+(m1(x(t))−m0(x(t)))u(t)) := m(t).
(29)

Let m1 = Kᵀm1(x(t)) and m0 = Kᵀm0(x(t)) which are
the slopes of the feedback signal y during the ON and the
OFF phases respectively. With a practically piecewise linear
waveform of y, the slopes m1 and m0 are slowly varying
or constant in steady-state regime and the right hand side
of (29) can be represented in this regime by a square-wave
signal m = m0 + (m1 − m0)u whose upper value is m1

for u = 1 and lower value is m0 for u = 0. The previous
assumptions are widely used in the literature for analyzing
the stability of the inner current loop of switching converters
under peak CMC [4]–[6], [51]. Here, it is generalized for
any control scheme satisfying the previous conditions. Note
that under those conditions, the m-to-y transfer function is
linear and according to (29) it is a simple integrator. Although
strictly speaking this is an approximation for those switching
converters including a filtering capacitance and a resistive load,
it is also a representation of most switching converters feeding
a constant voltage load such as a battery or a dc bus [52].

It should be noted that the reduced-order model given in
(29) cannot predict all kinds of instabilities that could be
exhibited by the system for which a full-order model is needed.
If only subharmonic oscillation is of concern, the reduced-
order model can be used to approximately predict the onset of
this phenomenon. Different methods will be revisited below
by using this reduced-order model to show the different ways
to obtain (2).

B. Derivation from the time-domain discrete-time model

T

dn+1T

u(t)

r(t)

y(t)

clock

nT (n + 1)T (n + 2)T (n + 3)T (n + 4)T

−ma

dnT dn+2T dn+3T

yn yn+1 yn+2 yn+3 yn+4

m1
m0

ρ

Fig. 5. The ramp signal r, the waveforms of the feedback signal y at the
T− periodic regime when a reduced-order model is valid.

Let yn = y(nT ). By integrating (29) for the two different
values of the driving signal u (Fig. 5), the discrete-time control
signal yn at time instant nT can be described by the following
recurrence equation:

yn+1 = yn +m1dnT +m0(1− dn)T with 0 ≤ dn ≤ 1. (30)

For instance in peak CMC, the signal y corresponds to the
controlled inductor current iL. Note that we can make y to

coincide with iL by appropriately selecting the entries of the
feedback vector K. Namely, the component corresponding to
the variable iL will be equal to 1 while all the remaining
entries in K will be set to 0. In general, y is a linear
combination of all the state variables involved in the feedback
loop. It can be demonstrated from Fig. 5 that the duty cycle
dn at the nth switching period is given by:

dn =
ρ− yn

(m1 +ma)T
. (31)

The stability depends on the eigenvalue λ of the closed-loop
system (30)-(31), which, in this reduced-order case, is the total
derivative of yn+1 with respect to yn. According to (30)-(31),
the expression of λ is as follows:

λ :=
dyn+1

dyn
=
∂yn+1

∂yn
+
∂yn+1

∂dn

∂dn
∂yn

=
m0 +ma

m1 +ma
. (32)

The condition for subharmonic oscillation occurrence is λ =
−1 which results in (1) or equivalently (2). Note that the
previous approach is equivalent to the one based on the
analysis of the perturbed control signal, explained in many
textbooks, research works and application notes [4]–[6].

C. Derivation from the z-domain model

The reduced-order model (30)-(31) can be decomposed into
a transfer function H(z) representing the power stage in the
discrete-time domain consisting of a simple digital integrator
(see (30)) and a PWM modulator whose z−domain dn-to-yn
transfer function Fm(z) can be readily obtained from (31).
Therefore, the system total loop gain L(z) is given by:

L(z) =
m1 −m0

m1 +ma

1

z − 1
. (33)

The characteristic equation of the closed loop system is
1 + L(z) = 0. The condition of an eigenvalue λ = −1 is
equivalent to 1 + L(−1) = 0, i.e., L(−1) = −1 which leads
to (1) or equivalently (2).

D. Derivation from Floquet theory and Filippov method

Another way to derive the stability boundary is by using
Floquet theory combined with Filippov method [27], [29].
For this technique to be applied we need the system state-
space equations for the two system configurations that can
be deduced from (29) by putting u = 1 and u = 0. We
also need the normal η to the switching boundary defined
by σ := y − r = y − ρ − ma(t mod T ) = 0 and the
time derivative σ̇ of σ within a switching period T . For TEM
schemes, η := ∂σ/∂y = 1 and σ̇ := ∂σ/∂t = ma. In general,
this technique gives the expression of the monodromy matrix
[27], [28]. However, when applied to the reduced-order model,
it gives directly the expression of the eigenvalue which can
be expressed according to Filippov method as follows: λ =
φ2Sφ1, where φ1 and φ2 are the state transition terms for the
two circuit configurations and S = 1+(m0−m1)η/(ηm1+σ̇)
is the saltation term due to switching at time instant DT
(see [27], [28] for more details). Because the reduced-order
system can be described by a simple integrator for each
switch state, the state transition terms φ1 and φ2 are unity,
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(φ2 = φ1 = 1). Therefore, the eigenvalue of the reduced-
order model coincides with the saltation term S and can be
expressed as follows:

λ ≡ S = 1 +
m0 −m1

m1 +ma
. (34)

Imposing λ = −1 in (34) also leads to (1) or equivalently (2).

IV. APPROXIMATE PREDICTION OF SUBHARMONIC
OSCILLATION FROM THE REDUCED-ORDER MODEL USING

THE STEADY-STATE RESPONSE

T

(D + εt)T

u(t)

(D − εt)T (D + εt)T

r(t)

y(t)

y(0)

y(T )

clock

nT (n + 1)T (n + 2)T (n + 3)T (n + 4)T

y(2T ) = y(0)

y((D − εt)T ) y((1 +D + εt)T )

−ma

(D − εt)T

ρ

Fig. 6. The ramp signal r, steady-state waveforms of the feedback signal y
and the driving signal u(t) at 2T− periodic regime when a reduced-order
model is valid.

Let D the steady-state value of the duty cycle. Since our
concern is the occurrence of the first subharmonic oscillation,
consider a switching regulator working under subharmonic
regime with a 2T -periodic orbit (see Fig. 6). This behavior
is normally characterized by the exhibition, during two con-
secutive cycles in steady-state, of a narrow pulse, of duration
(D − εt)T , and another wide pulse, of duration (D + εt)T ,
in the driving signal u and also in other square-wave signals
such as the inductor voltage vL and more specifically in the
signal m. The parameter εt is a small quantity that vanishes
at the onset of subharmonic oscillation [36], [37]. During two
consecutive switching periods in the time interval (0, 2T ), let
the crossing between the feedback signal y and the T−periodic
signal r occurs at t = (D−εt)T and at t = (1+D+εt)T (see
Fig. 6). From the switching conditions at these two instants,
one has that:

y((D − εt)T ) = ρ−ma(D − εt)T, (35a)
y((1 +D + εt)T ) = ρ−ma(6 1 +D + εt)T. (35b)

Then, by subtracting (35b) from (35a), one obtains:

y((D − εt)T )− y((1 +D + εt)T ) = 2maεtT. (36)

Like in Section III and IV, the boundary of subharmonic
oscillation can be located by taking the limit in (36) when
the parameter εt → 0 [36], [37]. Therefore at the onset of this
instability, the following equality holds:

lim
εt→0

1

2εtT
(y((D − εt)T )− y((1 +D + εt)T )) = ma. (37)

Different approaches can be used to obtain the steady-state
response y at time instants (D − εt)T and (1 +D + εt)T in

(37) and hence to determine analytically the subharmonic os-
cillation boundary. Because the total loop gain of the reduced-
order system is linear as explained before, linear system theory
perfectly applies. The only nonlinear term responsible for
subharmonic oscillation is the PWM process which is taken
into account separately in (35a)-(35b) from the rest of the
closed-loop system model.

A. The steady-state response from the Fourier analysis

Consider a linear time invariant system (LTI) with transfer
function H(s) subject to an nT−periodic excitation m with
Fourier coefficient Mk. It is very known form linear system
theory that the steady-state response y of such a system is also
an nT−periodic signal [53, p. 228]. The relationship between
the Fourier coefficients of the input and the output signals is
given by [53, p. 228]:

Yk = MkH(jk
2π

nT
) for k ∈ Z. (38)

This is the result that was applied in [37] and used later in
[33], [34], [38] for p = 2. The approach based on expanding
the left hand side of (36) as a Fourier series using (35a)-
(35b) and (38) was repeatedly called harmonic balance in
the previous references by the same author. Exhibiting a 2T -
periodic regime, the feedback signal y can be represented by
the following Fourier series:

y(t) =

∞∑
k=−∞

Yke
jk πT t, (39)

where Yk is the corresponding Fourier coefficient. Then, by
using (39), (37) becomes:

lim
εt→0

∞∑
k=−∞

Yk
2Tεt

ejDkπ((−1)kejkπεt −e−jkπεt) = ma. (40)

From (38), the Fourier coefficient Yk of the feedback signal y
in the 2T−periodic regime can be written as follows:

Yk = MkH(j
kπ

T
), (41)

where H(s) = 1/s is the m-to-y transfer function and Mk

is the Fourier coefficient of the signal m at the 2T -periodic
regime which is given by:

Mk =
1

2T

∫ 2T

0

m(t)e−jk
π
T tdt. (42)

Calculating the previous integral leads to:

Mk =
j(m1 −m0)

kπ
×

( −1− (−1)k + e−jDkπ(ejkπεt + (−1)ke−jkπεt)),

(43)

where j is the imaginary unit and k 6= 0 is the harmonic order.
For k = 0, the corresponding coefficient is M0 = Dm1+(1−
D)m0 = 0. Then, by using (43), (40) becomes:

m1 −m0

2π

∞∑
k=−∞

(ejk2πD − 1)
j

k
+

j

(k − 1
2 )

= ma. (44)
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By calculating the sum in (44), the condition for the first
subharmonic oscillation occurrence becomes as follows:

(m1 −m0)(D − 1

2
) = ma. (45)

Because Dm1 + (1 − D)m0 = 0, the previous equation
also coincides with (1) or equivalently (2). One can observe
that the result is obtained after going back and forth from
time to frequency domains. The previous procedure can be
significantly shortened by directly treating (37) in the time-
domain as will be shown next.

B. Using the steady-state response directly in the time domain

Because the dynamics of the signal y is governed by a
simple integrator, it can be deduced from (29) that

y((1 +D + εt)T ) = y((D − ε)T ) +

∫ (1+D+εt)T

(D−ε)T
m(t)dt

= y((D − ε)T ) +m0(1−D + εt)T

+ m1(D + εt)T. (46)

Hence, (37) becomes as follows:

− lim
ε→0

1

2εT
(m0(1−D)T+m1DT+m0εtT+m1εtT )) = ma.

(47)
Because m1D + m0(1 − D) = 0, (47) can be simplified as
follows:

− lim
ε→0

1

2εtT
(m1 +m0)εtT = ma ⇔ −

1

2
(m1 +m0) = ma,

(48)
which coincides with (2) or equivalently (1) evidencing the
accuracy of the new proposed approach. Note that this direct
approach in the time domain is much shorter and simpler than
the one based on Fourier series expansion. Now that it is clear
that all the methods lead to the same result and that only the
steady-state response of the system is necessary to locate the
subharmonic instability boundary, it may be concluded that
there is no reason for pursuing this steady-state analysis in
the frequency domain and it will be much easier to deal with
the problem directly in the time domain when using a full-
order model. This is what will be done in the next section for
a general converter topology and control strategy.

V. A NEW UNIFIED APPROACH FOR ACCURATE
PREDICTION OF SUBHARMONIC OSCILLATIONS IN LINEAR

AND BILINEAR SWITCHING REGULATORS USING THE
FULL-ORDER MODEL

A. A unified bilinear continuous-time model for switching
regulators working in CCM

The model of a dc-dc converter presented in (3a)-(3c) can
also be expressed in the following general bilinear form:

ẋ(t) = (A1 −A0)u(t)x(t) + (B1 −B0)uw

+ A0x(t) + B0w. (49a)
ẋi(t) = e(t). (49b)

Note that when A1 = A0, the bilinear term (A1 − A0)ux
vanishes and the open loop model becomes linear. Regardless

of wether A0 = A1 or not, for each phase, the system
equations are LTI and can be solved in closed-form. The
expression of the solution x(t) at time t of the system starting
at an initial condition x(t0) at time instant t0 takes the
following form [54]:

x(t) = eAu(t−t0)x(t0) +

∫ t

t0

eAu(t−τ)dτBuw, (50)

where t0 = nT for u = 1 (t ∈ (nT, nT + dnT )) and t0 =
nT +dnT for u = 0 (t ∈ (nT +dnT, (n+ 1)T )). The greater
part of this work requires only a very moderate knowledge
of nonlinear dynamics and bifurcation theory. What is chiefly
required is just an understanding of the previous solution and
simple matrix algebra.

Remark 1: We can compute the integral term∫ t
t0
eAu(t−τ)dτ in several ways. When the state matrix

Au is invertible, one has the analytical formula:∫ t

t0

eAu(t−τ)dτ = A−1u (eAu(t−t0) − I). (51)

However, in many converter topologies, the matrix Au could
be singular and therefore non invertible. It should be noted
that two kinds of singularities may arise in switched converters
which are detailed below:
• A non structural singularity which takes place only theo-

retically and that can be avoided by just adding parasitic
elements. This is the case, for example, of boost, buck-
boost, flyback, SEPIC and Čuk converters during the
charging (ON) phase. Another elegant approach to solve
this type of singularity problem without adding parasitics
is by using the augmented state vector technique [29],
[54], [55].

• A structural singularity that cannot be avoided by just
adding parasitics which arises when the system has an
integral action in the feedback loop. In this case, the
expression (51) cannot be used despite the fact that
the integral term exists and it is well defined even in
the case when the matrix Au is not invertible. Having
said that, in the switched model given in (3a)-(3c) or
equivalently in (49a)-(49b) and the expression in (51),
as it was repeatedly mentioned in this paper, the state
variable corresponding to the integrator was separated
from the rest of the state variables to avoid this structural
singularity.

B. Steady-state response in the T−periodic regime

Let x(0) be the steady-state value of the periodic orbit of
the system at the beginning of the period and x(DT ) its value
at time instant DT . Fig. 7 shows the illustrative waveforms
of the T−periodic ramp signal r and the feedback signal
y := Kᵀx − Kvixi when the system behavior in steady-
state is T−periodic. Let Φ1 = eA1DT , Φ0 = eA0(1−D)T ,
Ψ1 =

∫DT
0

eA1tdtB1w and Ψ0 =
∫ (1−D)T

0
eA0tdtB0w. The

steady-state periodic orbit can be obtained by forcing that the
state vector x(t0 + T ) after a complete switching cycle to
be equal to the initial state x(t0). The same applies for the



IEEE TRANSACTIONS ON POWER ELECTRONICS VOL. XX, NO. Y, MONTH., YEAR. 10

r(t) y(t)

u(t)

T

DT

y(0)

y(DT ) y(0)

clock

nT (n + 1)T (n + 2)T (n + 3)T (n + 4)T

−ma

ρ

Fig. 7. The ramp signal r and steady-state waveforms of the feedback signal
y at T−periodic regime.

integral variable xi. Hence, in steady-state, the vector of the
non-integral state variables at the instant DT is given by:

x(DT ) = (I−Φ)−1Ψ (52)

where Φ = Φ1Φ0 and Ψ = Φ1Ψ0 + Ψ1. Similarly, one
can obtain that x(0), the value of the periodic orbit at the
beginning of the switching period is as follows:

x(0) = (I−Φ)−1Ψ (53)

where Φ = Φ0Φ1 and Ψ = Φ0Ψ1 + Ψ0.
Remark 2: Because the integrator was separated from the

rest of system dynamics, x(DT ) and x(0) will exist and are
unique whenever the matrices I−Φ and I−Φ are invertible.
This will not be the case if the integral variable was included
in the vector of state variable x because the problem will
be ill-posed. According to the functional analysis, the inverse
of these matrices exist whenever the spectral radius of the
matrices Φ and Φ are less than unity [56] which is the
case in all practical converter topologies since these matrices
are the product of two matrix exponentials corresponding to
dissipative circuit configurations.

The value of the steady-state duty cycle D is generally
imposed by the voltage conversion ratio between the output
and the input voltages of the converter. If there is no integral
action in the loop, D must be determined by solving (in
general numerically) the switching equation given in (9). In the
presence of an integral variable in the feedback loop, since the
steady-state value of the average controlled variable coincides
with the reference signal vref , the value of D is imposed by
this reference. For instance, if the voltage to be controlled
is the output voltage vo, the steady-state value of the integral
variable xi at the final of the switching cycle can be calculated
as follows:

xi(T ) = xi(0) +Wi

∫ T

0

kv(vref − vo(t))dt. (54)

By enforcing T−periodicity on xi(t), i.e., by making xi(0) =
xi(T ), the following condition for the system to have periodic
behavior is obtained:

kvTvref − kv
∫ T

0

vo(t)dt = 0, (55)

(D + εt)T

u(t)

(D − εt)T (D + εt)T

r(t)y(t)

y(0)
y(T )

y(0)

y((D − εt)T ) y((1 +D + εt)T )

−ma

(D − εt)T

T

clock

nT (n + 1)T (n + 2)T (n + 3)T (n + 4)T

ρ

Fig. 8. The ramp signal r and steady-state waveforms of the feedback signal
y at 2T−periodic regime.

which implies that the average (dc) value Vo of the output
voltage vo is equal to the reference voltage vref , i.e.,

Vo :=
1

T

∫ T

0

vo(t)dt = vref . (56)

Therefore, the dc value of the output voltage is uniquely
determined by vref . Since the steady-state duty cycle D in
any switching converter is uniquely determined by the ratio
between the average input and output voltages, there is no need
to solve the switching equation given in (9) to determine D in
the presence of an integral action in the output feedback loop.
Once D is obtained from the voltage conversion ratio of the
converter, the values of x(DT ) and x(0) are straightforward
from (52) and (53).

C. Steady-state response in the 2T− subharmonic regime

Let us consider that the system is working in subharmonic
regime manifesting itself by a 2T -periodic orbit in steady-
state. Fig. 8 shows illustrative waveforms of the ramp signal
r and the feedback signal y when the system behavior in
steady-state is 2T−periodic. During a switching cycle of
duration 2T , the system has four phases defined by the system
matrices (A1,B1), (A0,B0), (A1,B1) and (A0,B0) respec-
tively. Therefore, during two consecutive switching periods
in the interval (0, 2T ), let the crossing between the signals
y and r (equivalently between vramp and vcon ) occurs at
t = (D − εt)T and at t = (1 + D + εt)T . Exhibiting a 2T -
periodic regime, the sampled steady-state values of the state
variables at the switching instants (D−εt)T and (1+D+εt)T
can be obtained by using (50) and forcing 2T−periodicity. In
doing so, these values can be expressed as follows:

x((D − εt)T ) = (I−Φ−(εt))
−1Ψ−(εt), (57a)

x((1 +D + εt)T ) = (I−Φ+(εt))
−1Ψ+(εt). (57b)

where

Φ−(εt) = Φ1Φ4Φ3Φ2, (58a)
Φ+(εt) = Φ3Φ2Φ1Φ4 (58b)
Ψ−(εt) = Φ1Φ4Φ3Ψ2 + Φ1Φ4Ψ3 + Φ1Ψ4 + Ψ1 (58c)
Ψ+(εt) = Φ3Φ2Φ1Ψ4 + Φ3Φ2Ψ1 + Φ3Ψ2 + Ψ3 (58d)
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and

Φ1 = Φ1e
−A1εtT , Ψ1 =

∫ (D−εt)T

0

eA1τdτB1w (59a)

Φ2 = Φ0e
A0εtT , Ψ2 =

∫ (1−D+εt)T

0

eA0τdτB0w (59b)

Φ3 = Φ1e
A1εtT , Ψ3 =

∫ (D+εt)T

0

eA1τdτB1w (59c)

Φ4 = Φ0e
−A0εT , Ψ4 =

∫ (1−D−εt)T

0

eA0τdτB0w(59d)

D. A direct time-domain derivation of subharmonic oscillation
boundary

Let r− = ((D − εt)T ) and r+ = ((D + εt)T ) From
the switching conditions at time instants (D − εt)T and
(1 +D + εt)T , imposed by the control mode and the modu-
lation strategy, the following equalities hold (see Fig. 8):

Kᵀx((D − εt)T )−Wixi((D − εt)T ) = r−(60a)
Kᵀx((1 +D + εt)T )−Wixi((1 +D + εt)T ) = r+(60b)

Subtracting (60b) from (60a), one obtains:

Kᵀ(x((D − εt)T ) − x((1 +D + εt)T ))

− Wixi((1 +D + εt)T )

− Wixi((D − εt)T ) = 2maεtT (61)

While in [33], [34], [37], the previous equation is expressed
in the Fourier domain only for ideal buck converters for which
one has A1 = A0 without showing the explicit dependence on
the integral term, in this paper this equation is directly treated
in the time-domain for the general case of bilinear converters
characterized by A1 6= A0 without any extra effort to go
back from the Fourier frequency-domain into the time-domain
and by explicitly evincing the effect of the integral action in
the feedback loop. Like in section IV, the The boundary of
subharmonic oscillation can be located by taking the limit in
(61) when the parameter εt → 0. Therefore at the onset of
this instability, the following equality holds:

mP +mI = ma, (62)

where the terms mP and mI are two limits given by:

mP = Kᵀ lim
εt→0

x((D − εt)T )− x((1 +D + εt)T )

2εtT
, (63a)

mI = −Wi lim
εt→0

xi((D − εt)T )− xi((1 +D + εt)T )

2εtT
. (63b)

Because the state equations of the integral variable xi is a
simple integrator, the expression of xi((1 + D + εt)T ) in
steady-state is as follows:

xi((1 +D + εt)T ) = xi((D − εt)T ) +

∫ (1+D+εt)T

(D−εt)T
e(t)dt.

(64)
At the boundary between periodic and subharmonic regime,
the integral of the error voltage during one complete period of

length T is zero as demonstrated in (55). Therefore, the term
mI is given by:

mI = Wi lim
εt→0

1

2εtT

∫ (1+D+εt)T

(D−εt)T
e(t)dt. (65)

This term, which shows the effect of the integral action on
the subharmonic oscillation boundary, is straightforward from
(65) and can be expressed as follows:

mI = Wie(DT ). (66)

On the other hand, by using (57b)-(57a), the term mP in (63a)
becomes:

mP = − lim
εt→0

(I−Φ+)−1Ψ+ − (I−Φ−)−1Ψ−
2εtT

. (67)

where dependence on εt has been omitted in the expressions
of Φ+ and Φ− for simplicity. Following the same procedure
of [57], mP can be derived by calculating the limit in (67)
hence obtaining:

mP = −Kᵀ(I + Φ)−1Φ1(m1(x(0)) + m0(x(0))), (68)

and finally the subharmonic oscillation boundary in (62) taking
into account the integral action in the feedback loop can
expressed as follows:

−Kᵀ(I+Φ)−1Φ1(m1(x(0))+m0(x(0)))+Wie(DT ) = ma.
(69)

Hence, if subharmonic oscillation is of concern, the proce-
dure to obtain its boundary from (69) can be summarized as
follows: (i) represent the regulator (power stage and compen-
sator) using a state-space model as in (3a)-(3c) and identify
the linear vector fields m1 and m0, (ii) obtain the steady-state
values x(DT ) and x(0) from (52) and (53) respectively, (iii)
use the control strategy to identify the vector of the feedback
coefficients K, (iv) evaluate the subharmonic condition (69)
and plot the critical curve in terms of suitable parameters.
Note that all the steps in the previous procedure are analytical
except the evaluation of the matrix exponentials which could
require a numerical computation. The value of the matrix
exponential can be found analytically only for low dimensional
cases. Analytical computation of the matrix exponentials will
lead to cumbersome expressions even for a two-dimensional
case. However, it is much better from a practical point of
view to have a simple analytical expression than to solve the
entire problem numerically. Moreover, to gain more insights,
approximations can be performed under some practical con-
ditions and the results can be interpreted using slope-based
or ripple-based criteria as in [46]. In part II of this paper, the
procedure for plotting the subharmonic oscillation boundary in
a practical example of switching regulator will be illustrated
using a MATLAB c© code where the matrix exponentials are
computed by the function expm which uses a scaling and
squaring algorithm.

Remark 3: The subharmonic oscillation condition in (69)
is expressed in terms of the compensating ramp slope ma.
However, it can also be interpreted in terms of many other
parameters as will be detailed in Part II of this paper. The
results can also be adapted for all LEM strategies by simply
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changing the steady-state duty cycle D by its complementary
1−D.

It is worth mentioning here that in [32], a differently
expressed condition was obtained using a dynamic approach
based on solving the eigenvalue problem of the characteristic
equation for the same boundary condition. Although they are
expressed differently, the critical ramp slope for subharmonic
oscillation given in (69) and the one derived in [32] are
coincident. However, differently to [32], the effect of the
integral action is explicitly shown in the new expression (69).

Remark 4: While it was conjectured in [28] that the integral
action has no effect on the subharmonic oscillation boundary,
(69) shows that this will be the case only when mI = 0, i.e,
e(DT ) = 0. It turns out that in the buck converter under VMC
considered in [28], the error voltage at time instant DT is very
small (e(DT ) = kv(vref − vo(DT ) = vref − v(DT )) ≈ 0)
making the term mI negligible in front of mP and effectively
the integral term has very little effect on the subharmonic
oscillation boundary in this case. In general, the integral term
corresponding to voltage feedback can be neglected in any
practical converter. In fact, it can be demonstrated that the
upper bounds of the terms e(DT ) are the T−periodic ripple
amplitude of the controlled variable, i.e., e(DT ) < ∆iL
and e(DT ) < ∆vo, (Fig. 9). Without loss of generality, let
kv = 1. The voltage ripple is very small in any practical
design (less than 1%) and its corresponding term Wie(DT )
could be neglected without a significant alteration of the results
as will be shown in Part II of this paper using different case
studies. This is not the case when Wie(DT ) corresponds to
current integrator because the term e(DT ) almost coincides
with the current ripple amplitude ∆iL (Fig. 9(e) and Fig. 9(f))
which could be significant in practical switching converters
(up to 30%). Therefore, while in VMC, the integral action
can be ignored for predicting subharmonic oscillation, the
integral action in the current loop could have a significant
effect on this phenomenon [58]. Note that when the output
voltage is discontinuous at the switching instants due to
parasitic parameters such as in the boost converter with an
ESR (Fig. 9(d)) or in the buck converter with an ESL in the
output capacitor (Fig. 9(c)), the ripple must still be maintained
at very low values and hence the corresponding integral term
mI can also be ignored in these cases. This is also the case
when the output voltage ripple have a triangular shape such
as in ripple-based control methods in buck converters with
a dominant ripple due to the ESR of the output capacitor
(Fig. 9(b)).

Remark 5: In the presence of a small propagation delay δT
(δ < D), the same condition (69) is still valid by multiplying
its left hand side by e−A1δT and replacing e(DT ) by e((D−
δ)T ). The previous considerations in Remark 4 also apply in
the presence of such a propagation delay.

VI. CONCLUSIONS, CONTRIBUTIONS, EXTENSION TO
OTHER INSTABILITIES AND CONTROL SCHEMES

Subharmonic instability boundaries of switching converters
in terms of the system parameters can be used for design
purposes in order to guarantee a stable periodic regime and

satisfactory performances. Power electronics designers have
traditionally used approximated design-oriented expressions
for such boundaries. In this part of the paper a direct static
approach was presented for the accurate prediction of this
phenomenon obtaining a simple closed-form condition. Hence,
the effect of the different parameters of the system upon the
steady-state behavior can be unveiled. The simple expression
was derived without the need of the Jacobian matrix and
without expressing the system trajectories in the Fourier
frequency-domain. The general-purpose derived expression
can be applied to different examples of PWM converters
under different modulation strategies and control modes and
is not limited to those converters characterized by a linear
power stage. Therefore, the method presented here generalizes
the recently reported results in [33], [34], [38] to bilinear
switching converters. Yet, the new simple static approach used
in this paper mathematically shows that an appropriate analysis
of the steady-state response in the time domain can be used to
obtain the boundary of subharmonic oscillation in switching
converters with both linear and bilinear power stages. In con-
trast to previous studies, the effect of the integral action in the
feedback loop was explicitly revealed. The proposed approach
separates the integral state variable from the power stage and
other state variables in the controller. Whilst this arrangement
is consistent with the fact that the integral variable converges
to a steady-state value only once the corresponding loop is
closed, the implied dynamics separation between this variable
and the rest of state variables resulted on revealing clearly
the effect of the integral action on the subharmonic oscillation
boundary while allowing to start the approach with a well-
posed problem. The derived expression is dependent upon the
system state transition matrices and different power stages and
control strategies could be evaluated by suitably specifying
the respective system matrices and feedback coefficients. The
derived expression can be used as an off-line tool to evaluate
the stability boundary in switching converters.

The contributions of this work are as follows:

• The work demonstrated that a careful analysis of the
system steady-state orbit in the time domain can be used
to derive an exact critical condition for subharmonic os-
cillation occurrence in switching converters. A new exact
matrix-form expression was obtained for that purpose
without needing to calculate the Jacobian matrix or to
expand the state variables in a Fourier series.

• The effect of the integral action in the feedback loop on
the subharmonic oscillation was explicitly revealed.

As supported by different case studies considered in Part II
[59], the derived expression can accurately predict the onset
of subharmonic oscillation in switching converters under all
fixed frequency control strategies. It should also be noted that
although the focus of this work is on subharmonic oscillation
boundary, (69) can be easily adjusted to predict saddle-node
bifurcation by just changing the sum m1(x(0)) + m0(x(0))
by the difference m1(x(0)) −m0(x(0)) and the sum I + Φ
by the difference I −Φ. More details are in [57], [60], [61].
The method presented in this study can also be easily adapted
to deal with switching converters under variable frequency
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(d) Output voltage (Dominant ESR), boost-type.
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(e) Inductor current with voltage mode open.
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(f) Inductor current with voltage mode closed.

Fig. 9. Illustrative waveforms of the output voltage ripple (a, b, c and d) and the inductor current of a switching converter (e,f). (a) curved waveforms that
could represent the output voltage of a buck converter with ideal capacitor. (b) piecewise linear but continuous waveform representing the output voltage of a
buck converter with dominant ripple due to ESR of the capacitor. (c) discontinuous output voltage ESL in the buck converter. (d) discontinuous output voltage
due to ESR of the capacitor in the boost converter. (e) inductor current of a switching converter and its fixed reference (with voltage loop open). (f) inductor
current of a switching converter and its reference dictated by the outer voltage loop (with voltage loop closed).

control strategies such as constant ON time and constant OFF
time schemes.
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