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Abstract

This paper examines different Brownian information structures over varying time

intervals. We focus on the non-limit case, and on the trade-offs between informa-

tion quality and quantity when making a decision whether to cooperate or defect in

a prisoners’ dilemma game. In the best-case scenario, the information quality gains

are strong enough so that agents can substitute information quantity with information

quality. In the second best-case scenario, the information quality gains are weak and

must be compensated for with additional information quantity. In this case, informa-

tion quality improves but not quickly enough to dispense with the use of information

quantity. For sufficiently large time intervals, information degrades and monitoring

becomes mostly based on information quantity. The results depend crucially on the

particular information structure and on the rate at which information quality improves

or decays with respect to the discounting incentives.

JEL: C73, D82, D86.

KEYWORDS: Repeated Games; Frequent Monitoring; Information Quantity; In-

formation Quality.

1 Introduction

Coordination and cooperation depend crucially on the frequency of interaction between the

involved parties. This fact affects the agents’ behavior and the stability of these relationships.
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In the simplest setting, with perfect information in which actions and monitoring occur

simultaneously at the same frequency, smaller time intervals facilitate cooperation by making

agents more patient, and as a consequence the deviation incentives decrease. Conversely,

large time intervals render cooperation more difficult because agents are less patient and the

incentives to deviate increase.

However, with imperfect monitoring, varying the time interval leads to different results,

because the length of the time interval between actions affects information quality (Abreu et

al., 1991; Fudenberg and Levine, 2007, 2009; Osório, 2012; Sannikov and Skrzypacz, 2007).

For instance, in small time intervals the deviations incentives are weak, but information

quality might be so low that coordination and cooperation are impossible. However, we may

also have situations in which information quality is high enough to make coordination and

cooperation possible.

In this context, information quality is critical to provide incentives and to determine

the equilibrium payoffs. Information quality depends crucially on how actions feedback

into signals - the information structure. Therefore, it matters whether actions affect the

fundamental value of a given variable or the variance (Fudenberg and Levine, 2007, 2009).

For instance, at moments of market stability, when an OPEC (Organization of the Petroleum

Exporting Countries) member country unilaterally decides to increase its oil supply, the oil

price (i.e. the fundamental value) is likely to decrease. However, at moments of market

instability and conflict, the same action may have an insignificant effect on the fundamental

value, but may instead induce additional market volatility (i.e. the variance). Therefore,

in the former case, the parties involved should monitor the fundamental value, while in the

latter case the parties involved should monitor the variance.

Is it more difficult for the agents to coordinate and cooperate when actions affect the

fundamental value or when they affect the variance? How do coordination and cooperation

depend on the length of the time interval between actions and monitoring activities?

This paper attempts to answer these questions. We examine how different information

structures depend on the time interval between actions and monitoring activities, which are

assumed to have the same frequency. We examine how information quality and quantity

vary with the length of the time interval between actions, and how they are used to provide

incentives (Mirrlees, 1974). Information quality refers to the signals’ precision, while infor-

mation quantity refers to the number of signals used to enforce cooperation. In this context,

the starting point is to acknowledge that the provision of incentives depends crucially on

how information quality improves or decays in relation to the deviation incentives (due to

discounting) and its actual level.
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The aim of this paper is not to present a general theory, which would be very complex,

but rather to illustrate some relevant aspects related to the use of information quantity

and quality in the provision of incentives. Contrary to the existing literature (Abreu et

al., 1991; Fudenberg and Levine, 2007; Sannikov and Skrzypacz, 2007), which has focused

exclusively on the limit case (i.e. when the length of the time interval between actions tends

towards zero), we consider the non-limit case (i.e. any length of the time interval other than

zero). While the limit case is interesting for theoretical and tractable reasons, the non-limit

case is more realistic, although it requires the use of numerical and computational methods.

Nonetheless, gaining an understanding of the existing information trade-offs justifies the use

of these tools.

Abreu et al. (1991) were the first to initiate the literature on frequent monitoring. In

a setting with Poisson signals, they have shown that cooperation can be sustained at the

limit when the observations of the process represent bad news, but not when they represent

good news. Nonetheless, in both cases, the best payoffs are not obtained at the limit (see

also Osório, 2015). More recently, Sannikov (2007) and Faingold and Sannikov (2007) have

renewed the interest in frequent monitoring by considering continuous time methods for

studying repeated games. Simultaneously, by studying the limit of the discrete time games

with Brownian signals, Fudenberg and Levine (2007) have considered several information

structures (see also Fudenberg and Levine 2009; Osório 2012; Sannikov and Skrzypacz 2007,

2010).1 They found that full efficient results are possible in the limit case if deviations

increase the noise of the process. In this respect, the present paper can be seen as a non-

limit extension to the Fudenberg and Levine’s (2007) limit analysis, and we hope it will

help to provide a better understanding of the strengths and the weaknesses of each of the

information structures discussed in the literature.

The provision of incentives depends crucially on the rate to which information quality

improves or decays relative to the deviation incentives (due to discounting) and the level

of information quality. In the ideal scenario, we would like to have simultaneously the

highest information quality and the lowest information quantity. However, with imperfect

information this objective is not attainable because in general information quality is limited.

In this context, it is natural to think that information quantity and quality are substi-

tutes because ceteris paribus, higher information quality, at the margin, reduces the quantity

1A notable variation of the original model is Fudenberg and Olszewski (2011), who study repeated games
with stochastic asynchronous monitoring. Outside the limit case, Fudenberg et al. (2014) show that if players
wait long enough, then it is likely that everybody will have observed the same signal and a folk theorem may
be possible. Kamada and Kominers (2010) also consider a time-varying information structure. However,
their argument and information notions are different; see also Kandori (1992).
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of information needed, and vice versa. However, we found that substitution occurs only if

the information quality gains or losses are strong enough to dispense (positive substitution)

or require (negative substitution), respectively, the use of additional information quantity.

The reason is that variations in the length of the time interval between actions affect not

only the quality of information but also the deviation incentives. Consequently, there are

no ceteris paribus situations. We also found that when the information quality gains or

losses are weak, information quantity must be used to compensate for the weaknesses of

information quality in providing incentives. In this sense, compensation is a weaker form of

substitution in which information quantity and quality are jointly used in the same direction.

Since information quality depends crucially on how actions affect the distribution of the

Brownian public signals, we have considered three different information structures:

In section 4.1 we consider the case where actions affect the drift of the process (i.e.

the fundamental value). This information structure captures the most commonly observed

situations in real life. For instance, when a worker reduces its effort, the output is likely to

decrease, or when a firm increases its supply, the market price is likely to decrease. With this

information structure, information quality tends to improve with the time interval, except for

large time intervals. The intuitive argument is that reliable inference about the drift requires

a sufficiently large time interval.2 This observation is especially true for small time intervals

because increasing the length of the time interval leads to strong improvements in information

quality. Consequently, information quality substitutes information quantity. However, as

the time interval increases, the marginal improvement in information quality diminishes

to the point where it is not enough to decrease the number of signals used to provide

incentives. In this case, information quality needs to be complemented with information

quantity. Lastly, for large time intervals, and before the equilibrium degenerates, signals

become extremely noisy. In order to provide players with incentives, the falling information

quality is substituted by information quantity. This pattern, observed for large time intervals

and before the equilibrium degenerates, is common to all information structures.

However, if deviations affect the noise of the process (i.e. the variance), information

quality always decays with the length of the time interval between actions. Contrary to the

case in which actions affect the drift, the best inference about the noise parameter is obtained

in the smallest time intervals (Prakasa Rao, 1999).

In section 4.2 we consider the case where deviations increase the noise of the process.

This information structure captures situations in which the observation of extreme events,

2With this information structure Sannikov and Skrzypacz (2007) have shown that at the limit the equi-
librium degenerates. A different approach and implications are shown in Osório (2012).
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e2t = 1 e2t = 0
e1t = 1 g, g −u, g + u
e1t = 0 g + u,−u 0, 0

Table 1: The Prisoners’ Dilemma Stage Game Payoffs.

such as high market volatility or high sales variation, are associated with misbehavior or lack

of effort. With this information structure, for small time intervals, information quality is high

but decays with the length of the time interval between actions, at a rate that compensates for

the increase in deviation incentives.3 Therefore, while the information quality is sufficiently

high, it is possible to reduce the quantity of signals. For sufficiently large time intervals and

before the equilibrium degenerates, the deviation incentives increase and the signals become

extremely noisy (information quality is low); the falling information quality needs to be offset

by increasing the quantity of signals.

In section 4.3 we consider the case where deviations decrease the noise of the process.

This information structure captures situations in which the observation of stable events,

such as unchanging profits, are associated with a lack of effort or commitment. With this

information structure, we found that information quality is low and decays with the length

of the time interval.4 Efficient monitoring substitutes the falling information quality with

information quantity.

Section 5 concludes with additional comments, identifies possible information patterns

and discusses avenues for further research.

2 The model

We explore frequent monitoring in a simple prisoners’ dilemma-type game with two long-run

players i = 1, 2. At moments in time t = 0, τ, 2τ, ... players simultaneously choose whether

or not to provide effort, i.e. eit = 1 or eit = 0, respectively, where τ denotes the length of the

time interval between actions and monitoring, which have the same frequency. We consider

the stage game payoffs in Table 1, with g > u > 0 implying that no effort is a dominant

strategy for both players.5

3With this information structure Fudenberg and Levine (2007) have shown that full efficiency is possible
at the limit.

4With this information structure Fudenberg and Levine (2007) have shown that cooperation is possible
at the limit, but not full efficient payoffs.

5We have restricted our analysis to the simplest setting. The results obtained in the following sections
generalize to other discount factors, payoff structures and games.
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In the subsequent period t+ τ, an imperfect public signal st+τ about the players’ actions,

taken in period t, is publicly observed by both players. Consequently players use the public

signal as a coordinating device. The public signal is generated by the arithmetic Brownian

motion (ABM) process:

st+τ − st = µtτ + σt

∫ t+τ

t

dWx, with Wt = 0 and t = 0, τ, 2τ, ..., (1)

where {Wx;x ≥ 0} is the standard Brownian motion, and st = 0 is the initial value. The

parameters µt and σt depend on the effort profile et = (e1t, e2t) and control, respectively,

the drift (i.e. the fundamental value) and the noise components (i.e. the variance) of the

process at time t. In sections 4.1, 4.2 and 4.3 we consider different assumptions regarding

how actions affect the drift and the noise components of the process (1).

Let St+τ denote the set of signals st+τ that suggest deviation or no effort. These are

observations of the process that fall inside a certain region bounded by one or more thresholds

(i.e. st+τ and/or st+τ ). In equilibrium these thresholds will depend not only on how actions

affect the drift and the noise of the process (1), but also on the length of the time interval

between actions. Consequently, the number of signals that are inside the set St+τ varies with

the time interval.

Given the effort profile et = (e1t, e2t) , the probability of punishment - the probability

that the state of the public process (1) falls inside the set St+τ - is Gaussian distributed and

given by:

p (e1t, e2t) = Pr (st+τ ∈ St+τ |et) =

∫
St+τ

exp(−(x− µtτ)2/(2σ2
t τ))/(2πσ2

t τ)1/2dx. (2)

Similarly, the no punishment probability - the probability that the state of the public process

(1) falls outside the set St+τ - is given by: 1− p (e1t, e2t) . In this case, signals are interpreted

as suggesting cooperation or mutual effort. Clearly, the higher the effort, the higher is this

probability, and vice versa.

The common discount factor is δ ≡ e−r(t+τ), where r ∈ (0,∞) denotes the discount rate.

We look at strategy profiles that form a strong symmetric perfect public equilibrium

(PPE).6 Since the equilibrium is stationary, the particular moment in time t is irrelevant.

For that reason, we will set t = 0 and refer only to the length of the time interval τ.

6A strategy is public if it depends only on the public history (of signals) and not on the private history
(of signals and of individual efforts). Given a public history, a profile of public strategies that induces a Nash
equilibrium on the continuation game from that time on is called a PPE.
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3 Equilibrium and Information Properties

In order to understand how information quantity and quality are simultaneously used to

enforce cooperation, we compute the value of the best strong symmetric equilibrium and

the associated incentive compatible constraint. In addition, in this section, we define the

meaning of information quantity and quality.

Equilibrium payoffs and equilibrium conditions

Our aim is to sustain the infinite repetition of the mutual effort profile e0 = (1, 1) . In this

setting, the best equilibrium payoff is attained by a ”grim” strategy that prescribes effort so

long as the public signal is outside the punishment region.

The normalized discounted value of the relationship when both players provide effort,

denoted as v, is given by (which, by symmetry, is the same for both players):

v = (1− δ) g + δ [(1− p(1, 1))v + p(1, 1)v] , (3)

where v is the normalized discounted value of the relationship in case of punishment, and

p(1, 1) is the probability of [mistaken] punishment. In expression (3), players receive the

mutual effort payoff g, plus a discounted expectation over the expected values v and v, that

are associated with the two types of signals that might be observed (i.e. signals suggesting

cooperation and defection, respectively).

Simultaneously, the equilibrium must be self-enforceable with respect to unilateral de-

viations, i.e. the profiles e0 = (1, 0) and e0 = (0, 1) , which are the same by symmetry.

Therefore, the normalized discounted value of the relationship, when both players provide

effort, has to be at least as good as the normalized discounted value of the relationship in

case of deviation, i.e.:

v ≥ (1− δ) (g + u) + δ [(1− p(1, 0)) v + p(1, 0)v] , (4)

where p(1, 0) is the probability of punishment in case of deviation. On the right-hand side

of inequality (4), the deviator receives the instantaneous payoff g + u, plus a discounted

expectation over the expected values v and v, that are associated with the two types of signals

that might be observed (i.e. signals suggesting cooperation and defection, respectively). In

order to minimize the probability of mistaken punishment, in equilibrium inequality (4) must

hold with equality.

Lastly, since the distribution of public signals is not convex, optimally requires an infinite

punishment length (Mirrlees, 1974; Porter, 1983), therefore, v = 0.
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To find the expression that characterizes the highest equilibrium payoff, we solve the

dynamic programming problem composed by expressions (3), (4) and v = 0. We apply the

bang-bang result of Abreu et al. (1986, 1990) to compute the best strongly symmetric

equilibrium payoff, which is given by:

v = g − u× p(1, 1)/(p(1, 0)− p(1, 1)) = g − u/(lτ − 1), (5)

where lτ = p(1, 0)/p(1, 1) is the likelihood ratio of correct punishment (with respect to

mistaken punishment). In addition, in order for mutual effort to be played in equilibrium,

expression (5) must be non-negative, i.e. v ≥ 0, and the following incentive compatible

condition must be satisfied:

g/u = (1− δ(1− p (1, 1)))/(δ(p (1, 0)− p (1, 1))). (6)

Otherwise, the mutual effort equilibrium fails to exist, i.e. the equilibrium degenerates -

players cannot sustain an equilibrium other than the infinite repetition of the stage game

Nash equilibrium et = (0, 0) in Table 1.7

In equilibrium, condition (6) will establish how information quality and quantity are used

to enforce cooperation while maximizing the expected payoff (5).

Remark (equilibrium computation) The correct and mistaken punishment probabilities,

p (1, 0) and p (1, 1) , respectively, depend on the same set of signals Sτ , which is bounded by

one or more thresholds, i.e. sτ and/or sτ (depending on the information structure). Conse-

quently, the equilibrium obtained is in ”threshold strategies”. In other words, we search for

the threshold root/s that make condition (6) holds with equality, and simultaneously maxi-

mize the value in Expression (5).8 For this reason, since the punishment probabilities p (1, 0)

and p (1, 1) are cumulative Gaussian distribution functions (see Expression (2)), the compu-

tation of the equilibrium thresholds requires the use of numerical and computational methods.

The threshold root or roots establish the interval of integration of the cumulative Gaussian

distribution.9

7A more detailed derivation of Expressions (5) and (6) can be found in Abreu et al. (1991) or Fudenberg
and Levine (2007), among others.

8Sannikov and Skrzypacz (2007) and Fudenberg and Levine (2007) have shown that the best equilibrium
is obtained with a ”grim” strategy that prescribes mutual effort as long as the public signal falls within the
region bounded by some critical threshold/s. Once these thresholds are crossed, i.e. the public signal falls
in the region defined by the set Sτ , the punishment stage is initiated.

9The results obtained are particularly robust. The predictions of the model do not depend significantly
on the value of the parameters. Nonetheless, clearly, the greater the difference between these parameters
(i.e. greater the impact of deviations in the drift or in the noise components of the process), the easier it is
to see the reported effects. Figures 1a, 1b, 2a, 2b, 3a and 3b are sufficiently representative of the information
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Information Quantity and Quality

We shall now define the meaning of information quantity and quality in our setting.

Definition 1 (information quantity) Information quantity is determined by the size of

the set Sτ . We say that information quantity increases if the size of the set Sτ increases,

and decreases if the size of the set Sτ decreases.

Information quantity is measured by the number of signals suggesting defection that are

used to monitor the players’ actions, and consequently to enforce cooperation. The optimal

choice of sτ and/or sτ , that satisfies v ≥ 0 and condition (6), determines the size of the set

Sτ .

Definition 2 (information quality) Information quality is determined by the likelihood

ratio lτ = p(1, 0)/p(1, 1). We say that information quality increases if the likelihood ratio lτ

increases, and decreases if the likelihood ratio lτ decreases.

Intuitively, information quality depends positively on the probability of correct pun-

ishment p(1, 0), where deviations are correctly punished, and depends negatively on the

probability of mistaken punishment p(1, 1), where no deviations are incorrectly punished

(Mirrlees, 1974). These probabilities are positively related by their common dependence on

the set Sτ . Consequently, information quantity and quality are necessarily linked.

Note also the positive and monotonic relationships between information quality and pay-

offs in Expression (5).

In the ideal scenario, we would like to have the highest possible information quality,

but using the lowest possible number of signals (information quantity). However, under

imperfect information, this goal is not possible because information quality is always limited

and information quantity is always needed to provide incentives. Consequently, information

quality and quantity must always be used simultaneously to provide incentives. In some

cases information quality and information quantity are substitutes, while in other cases

information quality and information quantity need to compensate for each other.

4 Information Structures

We now consider three different information structures that have been discussed in the

literature. The intuition and discussion is presented for an increasing time interval. The

structures considered in the present paper.
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reader is free to consider the opposite exercise. For instance, if for an increasing time interval

we have a situation of positive substitution, in the opposite direction, i.e. for a decreasing

time interval, we have a situation of negative substitution, and vice versa.

The crucial point here is to understand how much information quality improves or decays

relatively to the deviation incentives due to discounting, and the actual levels of information

quality. Strong/weak information quality gains/losses are therefore always relatively to the

deviation incentives and the level of information quality.

4.1 Information structure: deviations affect the drift

With this information structure, a deviation affects the drift µ0 of the process (1). This is

probably the most common structure in real life situations. For example, when a worker

reduces his or her effort, output is likely to decrease, or when a firm increases the supply,

the market price is likely to decrease.

In our context, we can capture these types of situations in several ways. For instance,

we can have µ0 = c (e10 + e20) with σ0 = σ > 0 constant, where c > 0 is a parameter.

In this case, a unilateral deviation reduces the drift of the process from c(2) to c (1) , and

increases both the mistaken and the correct probabilities of punishment, p(1, 1) and p(1, 0),

respectively.

Under this information structure, Sannikov and Skrzypacz (2007) and Fudenberg and

Levine (2007) have shown that one-sided threshold strategies are optimal for detecting de-

viations. In the case where a deviation reduces the drift of the process, players employ

a common one-sided threshold sτ to distinguish observations suggesting cooperation, i.e.

{sτ > sτ} , from observations suggesting defection, i.e. Sτ = {sτ ≤ sτ} .10 Since a devia-

tion reduces the drift of the process, with lower value signals becoming more likely, optimal

monitoring establishes a region composed of lower value signals as the one that suggests

deviation.

Figure 1a provides an illustration. The dark green line denotes the optimal threshold

strategy for varying time interval τ. The light green shaded region corresponds to the set

Sτ for varying time interval τ, i.e. the measure of information quantity (Definition 1). In

this context, as the length of the time interval between actions varies, the optimal threshold

strategy, and consequently, the number of signals used to sustain cooperation rises.

10In the case where a deviation increases the drift of the process, the common one-sided threshold sτ , which
is employed to distinguish the observations that suggest mutual effort {sτ < sτ} from the observations that
suggest deviation Sτ = {sτ ≥ sτ}, has a symmetric intuition.
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(a) Information quantity.
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(b) Information quality.

Figure 1: Deviation decreases the drift - (a) Information quantity, measured by the set
Sτ (light green shaded area), and the optimal one-sided threshold strategy for varying time
interval τ (dark green lines). (b) Information quality, measured by the likelihood ratio. The
cooperation equilibrium ceases to exist for τ below τ 1 = 0.46 and above τ 4 = 4.62.

Figure 1b provides a numerical illustration of how information quality measured by the

likelihood ratio (Definition 2) varies with the length of the time interval τ.

The following result shows the efficient use of information quantity and quality in pro-

viding incentives under the information structure in this subsection.

Proposition 3 When deviations affect the drift, as the length of the time interval between

actions increases:

(∅) 0 < τ ≤ τ 1 : the equilibrium degenerates,

(i) τ 1 < τ ≤ τ 2 : the strong gains in information quality substitute information quantity

(positive substitution),

(ii) τ 2 < τ ≤ τ 3 : the weak gains in information quality are compensated with information

quantity (positive compensation),

(iii) τ 3 < τ ≤ τ 4 : the strong losses in information quality are substituted by information

quantity (negative substitution),

(∅) τ 4 < τ <∞ : the equilibrium degenerates,

where 0 < τ 1 ≤ τ 2 ≤ τ 3 ≤ τ 4 <∞ are time interval cutoffs.

The result is valid regardless of whether deviations increase or decrease the drift of

the process. Figures 1a and 1b provide numerical illustrations of Proposition 3 for µ0 =
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6 (e10 + e20) , σ0 = 12, r = 0.1, g = 3 and u = 1. In this case, the time interval cutoffs are

τ 1 = 0.46, τ 2 = 0.76, τ 3 = 3.59 and τ 4 = 4.62.

As in Sannikov and Skrzypacz (2007) and Fudenberg and Levine (2007), we found an

equilibrium degeneracy for small time intervals (this situation occurs for 0 < τ ≤ τ 1).

In other words, it is not possible to sustain mutual effort and cooperation for small time

intervals. Despite the low deviation incentives (due to discounting), information quality is

so bad that monitoring is impossible (see the likelihood ratio in Figures 1b).

This observation is related to the fact that reliable inference about the drift of the process

requires a sufficiently large time interval (Prakasa Rao, 1999). Note that the drift of the pro-

cess (1) is multiplied by the length of the time interval (see also Expression (2)). Therefore,

for small time intervals, it becomes difficult to distinguish whether the drift carries mutual

effort or not. In order to illustrate this argument, note that for small τ it is difficult to

separate c(2)τ from c (1) τ, i.e., we have c(2)τ ≈ c (1) τ. However, for sufficiently large τ, it

becomes clear that c(2)τ > c (1) τ.

However, there is a limit on how much information quality improves with the length

of the time interval between actions (this situation occurs for τ 1 < τ ≤ τ 3), because for

sufficiently large time intervals the process becomes extremely noisy. In other words, the

noise component in Expression (1) dominates the drift component, and it becomes more

difficult to distinguish the players’ actions. Consequently, for τ 3 < τ ≤ τ 4, information

quality, measured by the likelihood ratio decays.

Regarding the efficient use of information quantity and quality in the provision of incen-

tives, for time intervals in the region τ 1 < τ ≤ τ 4, we found three different situations:

(i) As we move away from the limit case, information quality improves and mutual

effort is possible if the information quality improvements are enough to compensate for the

deviation incentives (due to the decreasing discount factor). In this case, as the time interval

increases, incentives are sustained with fewer, but more precise signals (this situation occurs

for τ 1 < τ ≤ τ 2). Information quantity is smoothly replaced by information quality. This is

a situation of positive substitution because the increasing information quality improves the

payoffs (see Expression (5)).

(ii) At a certain point, the informational quality improvements are not sufficiently strong

to compensate for the increasing deviation incentives. Consequently, the weak information

quality improvements must be compensated for by an increasing number of signals (this

situation occurs for τ 2 < τ ≤ τ 3). This is a situation of positive compensation because the

increasing information quality improves the payoffs (see Expression (5)).
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(iii) At a certain point, the informational quality decays. In order to provide incentives

for cooperation and mutual effort, the monitoring technology substitutes the decreasing

quality with an even stronger increase in the quantity of signals (this situation occurs for

τ 3 < τ ≤ τ 4). This is a situation of negative substitution, because the decreasing information

quality reduces the payoffs (see Expression (5)).

Finally, at a certain point, for larger time intervals (i.e., for τ > τ 4), the deviation incen-

tives are so strong (and the information quality so weak) that the mutual effort equilibrium

degenerates.

4.2 Information structure: deviations increase the noise

With this information structure, a deviation causes an instantaneous increase in the variance

of the process (1). This information structure fits with situations in which the observation

of extreme events is interpreted as bad news. For example, events such as high market

volatility, high instability or high sales variation are associated with misbehavior.

In our context, we can capture these types of situations in several ways. For instance,

we can have an action dependent noise component of the form σ0 = σ (k − e10 − e20) , where

σ > 0, k > 2 and the drift µ0 = c ≥ 0 are constants. In this case, a unilateral deviation

increases the noise parameter σ0 from σ (k − 2) to σ (k − 1) , and increases both the mistaken

and the correct probabilities of punishment, p(1, 1) and p(1, 0), respectively.

With this information structure Fudenberg and Levine (2007) have shown that the opti-

mal provision of incentives is achieved by means of a two-sided threshold strategy that dis-

tinguishes observations suggesting equilibrium play, i.e. {sτ < sτ < sτ} , from observations

suggesting defection, i.e. Sτ = {sτ ≤ sτ ∪ sτ ≥ sτ} . Since deviations increase the volatility

of the process, extreme observations become more likely; optimal monitoring considers the

signals that are farther away from the mean as the ones that suggest deviation. On the

contrary, the observations that are closer to the mean suggest mutual effort.

Figure 2a provides an illustration. The dark green lines denote the two-sided optimal

threshold strategy sτ and sτ for varying time interval τ. The light green shaded regions

(above and below the zero-mean) correspond to the set Sτ for varying time interval τ, i.e.,

the measure of information quantity (Definition 1). In this case, as the length of the time

interval between actions varies, thus the optimal threshold strategy, and consequently, the

number of signals used to sustain cooperation, thus rise.

Similarly, Figure 2b illustrates how information quality, measured by the likelihood ratio

(Definition 2), varies with the time interval τ.
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Figure 2: Deviation increases the noise - (a) Information quantity, measured by the set
Sτ (light green shaded area), and the optimal two-sided threshold strategy for varying time
interval τ (dark green lines). (b) Information quality, measured by the likelihood ratio. The
cooperation equilibrium ceases to exist for τ above the dashed line.

The following result shows the efficient use of information quantity and quality in pro-

viding incentives under the information structure in this subsection.

Proposition 4 When deviations increase the noise, as the length of the time interval be-

tween actions increases:

(i) 0 < τ ≤ τ 1 : the weak losses in information quality compensate information quantity

(negative compensation),

(ii) τ 1 < τ ≤ τ 2 : the strong losses in information quality are substituted by information

quantity (negative substitution),

(∅) τ 2 < τ <∞ : the equilibrium degenerates,

where 0 < τ 1 < τ 2 <∞ are time interval cutoffs.

Figures 2a and 2b provide numerical illustrations of Proposition 4 for µ0 = 0, σ0 =

5 (4− e10 − e20) , r = 0.1, g = 2 and u = 1. In this case, the time interval cutoffs are

τ 1 = 1.62 and τ 2 = 2.21.

Note that while we assume that a zero drift is not necessary, that drift can be non-zero

and the results hold as long as it does not depend on the actions. A drift other than zero

would simply result in a geometric rotation around the fixed point (0, 0), in Figure 2a, in

the direction determined by the drift. Similarly, in Figure 2b, a drift other than zero would

result in a geometric transformation without implications for the results. These observations

are also true in the next section.
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This is the information structure proposed by Fudenberg and Levine (2007). In this case,

information quality is maximum at the limit (when τ approaches zero), but decays with time.

The likelihood ratio lτ converges to infinite at the limit, and then is strictly decreasing in

τ (see Figure 2b). Consequently, the full efficient equilibrium, in which expected payoffs

converge to g, is possible at the limit.

In intuitive terms, reliable inference about the noise parameter can be obtained in small

time intervals (Prakasa Rao, 1999). This is the case because Brownian motion is (almost

surely) an infinitesimal variation process with continuous paths. Monitoring extreme events

at small time intervals is easier because these events are unlikely. Consequently, efficient

monitoring has sufficient freedom to establish a cutoff threshold that is infinitely more likely

to be reached if there was a deviation than if there was no deviation.11 However, this freedom

is restricted as the time interval between actions increases. Inference becomes more difficult

because the noise component of the process becomes increasingly important. Consequently,

extreme observations of the process become increasingly likely, regardless of whether there

was a deviation or not.

Considering time intervals in the region 0 < τ ≤ τ 2, we found two different situations:

(i) For small time intervals, incentives are provided with a large quantity of high quality

signals. However, as the length of the time interval increases, information quality deteriorates

and deviation incentives due to low discounting increase (this situation occurs for 0 < τ ≤
τ 1). However, since information quality decays slowly - at a rate that is still enough to

compensate for the increasing deviation incentives - efficient monitoring reduces the number

of signals needed to sustain mutual effort, and consequently, reduces the probability of

punishment. Therefore, we observe a simultaneous decrease in information quality and

quantity, which is possible because, in this region, the level of information quality is still

high, and the deviation incentives are still low. This is a situation of negative compensation

because information quality and quantity move in the same direction and payoffs decrease

monotonically (see Expression (5)).

(ii) Since information quality degrades and the deviation incentives increase with the

length of the time intervals, there is a point beyond which the decreasing information quality

needs to be reinforced with an increasing number of signals (this situation occurs for τ 1 <

τ ≤ τ 2). This is a situation of negative substitution because information quantity substitutes

the falling information quality and payoffs decrease monotonically (see Expression (5)).

Finally, for larger time intervals (i.e. for τ > τ 2), the deviation incentives are so strong

11In technical terms, the difference in results between Section 4.1 and this section is related to the fact
that the noise component converges to zero slower (at rate τ1/2) than the drift component, which converges
to zero faster (at a rate τ). This aspect is crucial at the limit.
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(and the information quality so weak), that the mutual effort equilibrium degenerates.

4.3 Information structure: deviations decrease the noise

With this information structure, a deviation causes an instantaneous decrease in the variance

of the process (1). This information structure represents situations in which the observation

of stable events, such as, no change in profits, could be associated with a lack of effort or

commitment.

We can capture this type of situations in several ways. For instance, we can have an

action dependent noise component of the form σ0 = σ (k + e10 + e20) , where σ > 0, k ≥ 0

and the drift µ0 = c ≥ 0 are constants. Then, a unilateral deviation would decrease the noise

parameter σ0 from σ (k + 2) to σ (k + 1) , and increases both the mistaken and the correct

probabilities of punishment, p(1, 1) and p(1, 0), respectively.

With this information structure Fudenberg and Levine (2007) have shown that the opti-

mal provision of incentives is achieved with a two-sided threshold strategy that distinguishes

observations suggesting mutual effort, i.e. {sτ ≤ sτ ∪ sτ ≥ sτ} , from observations suggest-

ing defection, i.e. Sτ = {sτ < sτ < sτ} . In the case of deviation, less extreme observations

become more likely because a deviation decreases the volatility. Consequently, optimal mon-

itoring considers the signals that are closer to the mean as the ones that suggest deviation.

On the contrary, extreme realizations of the process suggest mutual effort.

Figure 3a provides an illustration. The dark green lines denote the symmetric two-sided

optimal threshold strategy sτ and sτ for varying time interval τ. The light green shaded

region (around the zero-mean) corresponds to the set Sτ for varying time interval τ, i.e., the

measure of information quantity (Definition 1).

Similarly, Figure 3b illustrates how information quality, measured by the likelihood ratio

(Definition 2), varies with the time interval τ.

The following result shows the efficient use of information quantity and quality in pro-

viding incentives under the information structure in this subsection.

Proposition 5 When deviations decrease noise, as the length of the time interval between

actions increases:

(i) 0 < τ ≤ τ 1 : the strong losses in information quality are substituted by information

quantity (negative substitution),

(∅) τ 1 < τ <∞ : the equilibrium degenerates,
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Figure 3: Deviation decreases the noise - (a) Information quantity, measured by the set
Sτ (light green shaded area), and the optimal two-sided threshold strategy for varying time
interval τ (dark green lines). (b) Information quality, measured by the likelihood ratio. The
cooperation equilibrium ceases to exist for τ above the dashed line.

where 0 ≤ τ 1 <∞ are time interval cutoffs.

Figures 3a and 3b provide numerical illustrations of Proposition 5 for µ0 = 0, σ0 =

5 (e10 + e20) , r = 0.1, g = 2 and u = 1. In this case, the time interval cutoff is τ 1 = 2.01.

Note that in Section 4.1 equal size decreases and increases in the drift were equivalent.

However, proportional decreases and increases in the noise parameter (in this section and

Section 4.2, respectively) are not equivalent exercises.

Fudenberg and Levine (2007) have shown that the highest payoffs are obtained at the

limit. However, the payoff values depend on the relative impact of deviations in the noise

parameter. If the impact is sufficiently strong, we may get arbitrarily close to efficiency.

However, if the impact is smooth, we may be unable to establish incentives for any frequency

of play. In this case, we would have τ 1 = 0 and the interval 0 < τ ≤ τ 1 would be empty.

The following remark discusses this issue in more detail.

Remark (no equilibrium) In the limit we have that v approaches g−uσ0 (1, 0) /(σ0 (1, 1)−
σ0 (1, 0)), where σ0 (1, 0) and σ0 (1, 1) are the noise parameters under defection and coopera-

tion, respectively. Note that if v < 0 the mutual effort equilibrium fails to exist (not only in

the limit, but for any length of time τ), which occurs for σ0 (1, 1) /σ0 (1, 0) < (g+ u)/g, i.e.,

when deviations have small impact in the noise parameter. In the numerical example of Fig-

ures 3a and 3b, we do not have this situation because σ0 (1, 1) /σ0 (1, 0) = 2 > (g+u)/g = 3/2,

consequently, τ 1 = 2.01 > 0.

In the interesting case where the interval 0 < τ ≤ τ 1 is non-empty, information quality

decreases with the length of the time interval, i.e. lτ is strictly decreasing with τ (Figure 3b).

17



Since the level of information quality is already low, information quality losses are strong in

relative terms. This is the main difference compared to Section 4.2. The intuitive argument is

similar, in the sense that the best inference about the value of the noise parameter is obtained

in the smallest time intervals (Prakasa Rao, 1999). However, in the present section there are

additional inference difficulties because deviations create an inward movement in the noise of

the process. Since Brownian motion is (almost surely) an infinitesimal variation process with

continuous paths, monitoring non-extreme events is more difficult than monitoring extreme

events, because the former are likely to occur, regardless of whether there was a deviation or

not. For that reason, the level of information quality is much lower than the one in Section

4.2. Nonetheless, as we have seen before, information quality might be enough to sustain the

mutual effort equilibrium; it all depends on the impact of deviations in the noise parameter.

Regarding the efficient use of information quantity and quality in the provision of incen-

tives, we found one single scenario (i.e. for 0 < τ ≤ τ 1): (i) In small time intervals, incentives

for cooperation are provided by a small number of signals. However, as the length of the

time interval between actions increases, mutual effort requires an increasing quantity of sig-

nals (Figure 3a). This pattern remains until the equilibrium collapses. There is a negative

substitution of decreasing information quality for information quantity, and payoffs decrease

monotonically for all frequencies of play (see Expression (5)).

Finally, for larger time intervals (i.e. for τ > τ 1), the deviation incentives are so strong

(and the information quality so weak), that the mutual effort equilibrium degenerates.

5 Conclusion and further comments

Conclusions regarding the efficient use of information depend crucially on how information

quality improves or decays relatively to: (i) the deviation incentives (due to discounting),

and (ii) the actual level of information quality.

Nonetheless, payoffs only increase if information quality improves. Otherwise, even if

there is a reduction in the quantity of signals used to provide incentives, payoffs do not

improve. In this sense, our results are in line with Kandori (1992) and Mirrlees (1974).

Detailed conclusions depend on how each information structure uses information quality

and quantity to provide incentives to mutual effort and cooperation. We have considered

three information structures discussed in the literature.

When actions affect the drift (Section 4.1), information quality improves with the length

of the time interval between actions (except for large time intervals, in which case the noise
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component of the process dominates). The intuitive argument is that reliable inference about

the direction of the drift requires a sufficiently large time interval. This is the case because

the drift component converges to zero relatively fast (at rate τ). Therefore, in small time

intervals, it is difficult to infer whether the drift carries mutual effort or not.

On the other hand, if actions affect the noise parameter, information quality decays with

the length of the time between actions (Sections 4.2 and 4.3). This decay occurs because the

noise component of the process becomes increasingly important as the time interval grows,

which makes the distinction between actions more difficult, and increases the probability of

punishment.

Contrary to the drift, the best inference about the noise parameter is obtained in the

smallest time intervals. Nonetheless, we must distinguish between the cases in which devia-

tions increase and decrease the noise parameter. Since Brownian motion is an infinitesimal

variation process with continuous paths, in small time intervals, monitoring extreme events

(i.e. the case in which deviations increase the noise) is easier than monitoring non-extreme

events (i.e. the case in which deviations decrease the noise). The former are less likely to

occur than the later, regardless of whether there was a deviation or not. For this reason,

when deviations increase the noise, efficient monitoring has more freedom to establish a cut-

off threshold that is infinitely more likely to have been reached if there was a deviation than

if there was no deviation. On the contrary, when deviations decrease the noise, the inward

movement in the process makes it more difficult to detect if there was a deviation or not.

We also found that information quality and quantity could be combined in different

ways to provide incentives to mutual effort and cooperation. These combinations depend

crucially on the relative strength of the information quality gains and losses for varying time

interval. We found that information quality and quantity substitute for each other when the

information quality gains or losses are sufficiently strong in relative terms. However, when

the information quality gains or losses are weak in relative terms, information quantity must

be used to compensate for the poor information quality.

For instance, as the length of the time interval between actions increases (for large time

intervals), we observe - in all information structures - a negative substitution of information

quality by information quantity. The reason is twofold: the incentives for deviations (due to

discounting) are high and the signals become extremely noisy for large time intervals. This

pattern remains until the cooperation equilibrium ceases to exist.

The study of the trade-offs between information quality and quantity seems to have been

consistently ignored in the literature. We call for a research agenda on these issues. Despite

the complexity of the topic, the present paper is an attempt in this direction. We hope
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that our findings will help researchers and practitioners to better understand the role played

by actions and monitoring frequency on the individuals’ incentives to cooperate when there

is imperfect monitoring. In particular, our results may guide researchers and practitioners

choosing the modelling approach that better fits each concrete situation.
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