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Two popular calibration strategies are classical least squares (CLS) and inverse least

squares (ILS). Underlying CLS is that the net analyte signal used for quantitation is

orthogonal to signal from other components (interferents). The CLS orthogonality

avoids analyte prediction bias from modeled interferents. Although this orthogonal-

ity condition ensures full analyte selectivity, it may increase the mean squared error

of prediction. Under certain circumstances, it can be beneficial to relax the CLS

orthogonality requisite allowing a small interferent bias if, in return, there is a mean

squared error of prediction reduction. The bias magnitude introduced by an

interferent for a relaxed model depends on analyte and interferent concentrations

in conjunction with analyte and interferent model sensitivities. Presented in this

paper is relaxed CLS (rCLS) allowing flexibility in the CLS orthogonality con-

straints. While ILS models do not inherently maintain orthogonality, also presented

is relaxed ILS. From development of rCLS, presented is a significant expansion of

the univariate selectivity coefficient definition broadly used in analytical chemistry.

The defined selectivity coefficient is applicable to univariate and multivariate CLS

and ILS calibrations. As with the univariate selectivity coefficient, the multivariate

expression characterizes the bias introduced in a particular sample prediction

because of interferent concentrations relative to model sensitivities. Specifically, it

answers the question of when can a prediction be made for a sample even though

the analyte selectivity is poor? Also introduced are new component‐wise selectivity
and sensitivity measures. Trends in several rCLS figures of merit are characterized

for a near infrared data set.
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1 | INTRODUCTION

Multivariate calibration is a well‐established step in many analytical determinations on the basis of nonselective instrumental
measurements. Such measurements are typically spectra although responses from other first‐order analytical instruments, or
combinations of them, are also used. The property to be determined (measurand) is commonly analyte concentration, although
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indexes (eg, motor octane number in gasoline) or physical properties (eg, viscosity in polymers) are also modeled. All discus-
sions henceforth are based on spectroscopic calibration with analyte concentration as the quantity being modeled, but the
discussions are applicable to other techniques of instrumental analysis.

From a set of calibration samples with known instrumental responses and quantitative information of the analyte, there are 2
main approaches to stating a multivariate calibration model. These approaches are often referred to as direct (the classical least
squares [CLS] model being the most used, but CLS variations have been published1-5) and inverse (that include inverse least
squares [ILS] methods such as multiple linear regression, principal component regression, partial‐least squares [PLS] regres-
sion, and ridge regression [RR], among others).6,7 To provide accurate predictions from nonselective measurements, each
calibration approach sets constraints on the model relative to the non‐analyte components (interferents). The understanding
of such constraints has led to the concept of net analyte signal (NAS)8-13 and selectivity measures.8,14-20

It is well developed that CLS imposes strict orthogonality constraints while ILS methods do not.21 Specifically, depending
on the analyte and interferent concentrations in the calibration set as well as the spectral noise structure, different ILS models
will be obtained21-24 while nearly the same orthogonal CLS models are estimated.21 In essence, ILS models at appropriate
tuning parameter values (eg, latent variables for PLS and ridge parameter for RR) are the models most useful for prediction
and not orthogonal to interferents. However, ILS models at correct tuning parameter values are actually commonly nearly
orthogonal to the interferents.25 Proposed in this paper is relaxed CLS (rCLS), a method that relaxes the CLS orthogonality
constraints with relaxation parameters to form a family of models. The process is extended to form relaxed ILS (rILS) models.
In fact, the proposed relaxation parameters used to form rCLS and rILS models are related to the component‐wise selectivity
definitions proposed in reference21 and this relationship is elaborated in this paper.

Also presented in this paper is a unified definition of the selectivity coefficient. The selectivity coefficient is a measure used
in analytical chemistry developed for univariate calibration.26,27 It finds most use with ion‐selective electrode calibration.28,29

The selectivity coefficient (formally defined in Section 3.2 for univariate and Section 3.3 for multivariate) characterizes the
sensitivity of a method for an interferent relative to the sensitivity of the method to the analyte. To date, a definition of the selec-
tivity coefficient is nonexistent for multivariate CLS and ILS calibrations. Developed in this paper is a definition that applies to
both calibration processes and reduces to the usual univariate definition. With multivariate selectivity coefficients, it is possible
to assess the prediction quality expected from a model relative to the sample analyte and interferent concentrations. Thus, even
though the selectivity for the analyte can be poor, acceptable concentration predictions may still be possible.30 In addition to the
selectivity coefficient, new component‐wise selectivity and sensitivity measures are introduced.

This paper begins by discussing the underlying calibration model with respect to CLS and ILS and the orthogonality goals
between pure component spectra and model regression vectors. After this, an overview of estimating CLS and ILS models is
provided leading into presentations of the relaxed versions of CLS (rCLS) and ILS (rILS). With the relaxed multivariate cali-
bration methods established, selectivity coefficients are defined. This section begins with the classical univariate definition and
generalizes the definition to multivariate calibration. The rCLS process and selectivity coefficient definition are exemplified
using a small near infrared (NIR) calibration set of 2 species.
2 | SELECTIVITY ‐RELAXED CALIBRATION THEORY

For the following mathematical equations and expressions, scalars are represented as nonbold italic letters, column vectors as
bold lowercase letters, and matrices as bold uppercase letters. The hat (^) used in the literature over a variable to indicate
estimated quantity has been omitted for simplicity except for predicted quantities of the analyte; whether the magnitude is mea-
sured or calculated can be deduced from the context. The superscripts “T” and “+” denote transposition and a pseudoinverse,
respectively. The matrix I represents a properly dimensioned identity matrix. The L2 norm of a vector is symbolized by ‖·‖.
2.1 | Underlying model

Let r (P × 1) be the measured (background corrected) spectrum measured over P wavelengths of a sample with N responding
components. Let the subscript a denote the analyte of interest in a sample and i any other sample component, here regarded as
interferent for the determination of a. Throughout this paper, it is assumed that a sample spectrum is a linear combination of
analyte and interferent pure component spectra following the Beer‐Lambert law
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rT ¼ casTa þ∑icis
T
i þ eT

¼ cTST þ eT
(1)

where the columns of S (P × N) are the pure component spectra of the analyte sa and interferents si, c (N × 1) holds respective
concentrations of the analyte (ca) and interferents (ci), and e contains the measurement noise. For simplicity, this paper only
considers interfering components, but the developments can also be asserted for other sources of variation in r, such as mea-
surement temperature and instrument.

A wide range of modeling methods estimate the analyte concentration in a sample by

ĉa ¼ rTba; (2)

where ba contains the model regression coefficients for component a. In some cases, the concentrations of all components in the
calibration standards are known and it is possible to derive a vector of regression coefficients for each component. In this case,
all components are predicted simultaneously by

ĉT ¼ rTB; (3)

where B is a matrix of regression coefficients whose ath column is ba and ĉ is an estimate of c in Equation 1.
Because of unselective measurements, a common goal of calibration methods is to provide a model that predicts the analyte

concentration without being affected by the interferents. This can be expressed as

∂ĉa
∂ck

¼ δka δka ¼
0; if k ≠ a

1; if k ¼ a

�
; (4)

where ck is either the analyte a or an interferent i concentration and δka is the Kronecker delta. Figure 1 illustrates the expected
behavior according to Equation 4 where the prediction ĉa is the same as the concentration of a in the sample for any value of ca,

(ie,
∂ĉa
∂ca

¼ 1) and, at the same time, the prediction does not change with an increasing amount of interferents in the sample (ie,

∂ĉa
∂ci

¼ 0 ∀i ≠ a).
FIGURE 1 Ideal behavior of a fully selective calibration model with ca and ci denoting the analyte and interferent concentration. See text for
discussion
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Inserting Equation 1 into Equation 2 results in

ĉa ¼ casTaba þ∑icis
T
i ba þ eTba (5)

and applying Equation 4 gives

∂ĉa
∂ca

¼ sTaba ¼ 1

∂ĉa
∂ci

¼ sTi ba ¼ 0 ∀i
(6)

meaning that ba must be estimated such that sTaba ¼ 1 and at the same time, be orthogonal to the (usually unknown) spectra of
all interferents in the sample (sTi ba ¼ 0; ∀i ) and to the noise vector (eTba=0). Similar constraints can be stated for other
components in the sample acting as the analyte by redefining a and i.

Assuming Equation 1 is valid and taking all components into account simultaneously, then from Equation 3,

ĉT ¼ cTSTBþ eTB (7)

and

∂ĉT

∂c
¼ STB: (8)

For B to fulfill the requirement stated in Equation 4, then

STB ¼ I; (9)

where the identity matrix I arises from the Kronecker delta in Equation 4.
Estimating a regression vector ba satisfying Equation 6, or a matrix B fulfilling Equation 9 is the CLS working framework

and the ILS regression targets these equations.21 These points are further discussed in the next section.
2.1.1 | Net analyte signal

The requirement δka ¼
0; if k ≠ a

1; if k ¼ a

�
keeps interferences from biasing the prediction ĉa. A model that fulfills this requirement

has a null sensitivity for the interferents, or, equivalently, full selectivity for the analyte of interest. Such a model is said to main-
tain orthogonality and uses for prediction only that part of the analyte signal orthogonal to the interferent space also referred to
as the NAS.8 This definition pertains to CLS. A more encompassing definition that includes CLS and ILS is to define NAS as
that part of a sample signal used for prediction.10 As such, the NAS plays a fundamental role in the prediction of multivariate
models and influences the prediction variance. The NAS for a sample spectrum is commonly given by

r�a ¼ ĉas�a; (10)

where the net analyte sensitivity vector s�a, can be calculated as

s�a ¼
ba
bak k2 : (11)

The constraints in Equation 4 ensure that modeled interferents will not bias the prediction of the analyte. To fulfill
Equation 4, ba must be orthogonal to the spectra of the interferents, the CLS constraint. This is equivalent to saying that the
only contribution to the NAS of the unknown sample, r�a, must be generated by only the analyte of interest. The more similar
the analyte and interferent spectra become, Figure 2A,B show that the NAS decreases for the orthogonal projection of sa against
si (the s�a is restricted to be orthogonal to the interferent). Similarly, the NAS decreases as the degree of sample complexity
increases. All other things being equal, a small norm of the NAS encompasses a small signal‐to‐noise ratio, large prediction
variance and hence, large overall prediction errors.10,30 This realization leads to the awareness that strict adherence to the



FIGURE 2 Example net analyte
sensitivity s�a effecting the net analyte signal
(NAS) (Equation 10) at 2 measured
responses r1 and r2. A and B, The NAS
becomes smaller for the orthogonal
projection of sa against si as the similarity
between the analyte spectrum sa, and the
interferent spectrum si increases. C, Relaxing
the orthogonality constraint in Figure 2B
with respect to the interferent can lead to a
larger NAS
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defining relation in Equation 4 can lead to underperforming models. The underperformance is the price paid by CLS to avoid
the interferent from biasing the prediction independent of the interferent concentration.

A remedy for this CLS limitation is realizing that prediction bias caused by an interferent is the result of the model sensi-
tivity for the analyte, the model sensitivity for that interferent, and the amount of interferent in the sample. Hence, when the
amount of interferent is expected to be (or known to be) very low or the sensitivity for the interferent is low, a small prediction
bias due to the interferent can become acceptable if there is trade‐off for another prediction quality such as prediction variance,
the same bias/variance tradeoff premise for ILS. Under these circumstances, a null sensitivity for that interferent is not required
for CLS, and the orthogonality (ie, full selectivity) constraint of the analyte against all interferences in Equation 4 can be relaxed
to increase the NAS and decrease prediction uncertainty. In this case, s�a is not constrained to be orthogonal to the interferent.
Transitioning from Figure 2B to Figure 2C demonstrates the concept.
2.2 | Classical and inverse calibrations

Using a collection of calibration samples, Equation 1 is expressed as

R ¼ CST þ E

¼ casTa þ∑icis
T
i þ E;

(12)

where R (M × P) holds the measured spectra in rows, C (M × N) contains the known concentration of the components in the
standards, and E (M × P) is the error matrix associated with this decomposition. The calibration (training) step of CLS amounts
to estimating the pure component spectra as

ST ¼ CþR: (13)

In this paper, it is assumed that the calibration standards, and hence S, properly reflect the composite system of matrix
interactions.

Once S is known, the solution to Equation 9 gives direct access to the CLS regression coefficients satisfying Equations 4
and 6 and is written as

BCLS ¼ ST
� �þ

: (14)

With the matrix of regression vectors, concentrations for calibrated components can be estimated for a sample using Equation 3.
In some analytical problems, such as in the analysis of natural products or very complex mixtures, pure component spectra

are not known or cannot be estimated by Equation 13 because not all components concentrations are known even though
Equation 12 is the underlying model. In this case, ILS modeling (multiple linear regression, principal component regression,
PLS, RR, etc) uses only quantitative information of the analyte of interest for training and does not need pure component spec-
tra. With ILS, the sample prediction for the analyte occurs by Equation 2 by using a vector of regression coefficients for analyte
a obtained from the pseudoinverse of R expressed as

bILS;a ¼ Rþca; (15)

where R+ depends on the ILS method used. Note that if concentrations for more than one responding component are actually
known, the ILS model matrix can be computed by
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BILS ¼ RþC; (16)

where bILS,a is the analyte column in BILS.
Because of the unique differences between how regression vectors are obtained for CLS and ILS (Equation 14 versus

Equation 15 or 16), BCLS satisfies the orthogonality constraints while bILS,a and BILS do not. This conclusion is fully derived
in Brown.21 Thus, ILS processes strive to meet orthogonality and the final model is one that is useful for prediction. This near‐
orthogonality has been graphically characterized.25 It should be noted that in the hypothetical noise‐free measurement situation,
the ILS models do fulfill31 Equations 6 and 9.
2.3 | Selectivity‐rCLS
The selectivity requirements in CLS can be relaxed by setting Equation 4 to

∂ĉa
∂ck

¼ lkj; (17)

where l is the relaxation parameter relative to k and j that represents either the analyte or an interferent as the situation dictates
and is read as the relaxation parameter for the kth component on the jth component with −∞ < lkj<∞. A relaxation param-
eter represents the change in predicted analyte concentration per unit change in the respective interferent concentration and
allows the analyte concentration prediction to be affected by the interferent (ie, introduces prediction bias). Better relaxation
parameters are those that slightly increase bias for lower prediction variance. The matrix L containing these relaxation
coefficients lkj replaces the identity matrix I in Equation 9 resulting in new regression coefficients for relaxed models BL

expressed as

∂ĉT

∂c
¼ STBL

¼ L ¼
laa … lai

⋮ ⋱ ⋮

lia … lii

2
664

3
775
: (18)

Solving Equation 18 for the rCLS coefficients in BL results in

BL ¼ ST
� �þL ¼ BCLSL: (19)

The BL coefficients deviate from BCLS by the amount defined by L. It is seen that rCLS is a generalization that converges to
CLS when full selectivity is imposed by L = I and hence, BL = BCLS.

Expanding Equation 19, the regression coefficients in rCLS are seen to be

bL;a ¼ bCLS;alaa þ∑ibCLS;ilia;

bL;i ¼ ∑ibCLS;alai þ bCLS;ilii;
(20)

where bL,a and bL,i are respective vectors of regression coefficients in BL. Using bL,a to predict the analyte concentration
results in

ĉa ¼ rTbL;a;

¼ casTa þ∑icis
T
i þ eT

� �
bL;a;

¼ casTa þ∑icis
T
i þ eT

� �
bCLS;alaa þ∑ibCLS;ilia
� �

:

(21)

Because of the CLS orthogonality constraints, sTabCLS;a ¼ 1, sTabCLS;i ¼ 0, sTi bCLS;a ¼ 0, and sTi bCLS;i ¼ 1, Equation 21 reduces to

ĉa ¼ calaa þ∑icilia þ e (22)
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Assuming laa = 1 in Equation 22, then the bias is 0 when lia = 0 (ie, full model selectivity); otherwise, the cilia terms introduce
bias in ĉa. As shown in the selectivity coefficient sections (Sections 3.2 and 3.3), this bias, however, will be lower if the concen-
tration of the interferent in the sample is low and/or if the instrument sensitivity for the interferent is also low. In turn, ĉa can
benefit from a lower variance if the L2 norm of bL,a is smaller. As shown in Section 6, other combinations of laa and lia are pos-
sible leading to other bias/variance trade‐off situations for the relaxed BL.

Depending on the sample and degree of relaxation from orthogonality, the selectivity‐rCLS model can have an improved
prediction performance compared to the CLS model. Values for lkj must be optimized for the dataset at hand, since the
interferent spectral characteristics (interferent wavelength sensitivities and similarities with the analyte spectrum) and concen-
trations differ from one dataset to another. Also, note that for a given analyte, only the corresponding column of L must be
optimized. One approach to solve for L (or the la column) is to use a cross‐validation strategy while systematically varying
L. Depending on the number of components and hence values in L, this process is probably not feasible and an optimization
algorithm such as simulated annealing or genetic algorithm could be used. For both situations, the optimal L is sought that
minimizes prediction error. Neither approaches were studied in this paper and only trends in measures of model quality are
reported as relaxation parameters varied.
2.3.1 | Analysis of rCLS as a basis change from CLS

To sustain Equation 12 (R=CST+E), the corresponding relaxed expression is expressed as

R ¼ CLL−1ST þ E

¼ CLSTL þ E
; (23)

where CL=CL and STL ¼ L−1ST. By inserting the invertible matrix L, the solutions are not unique (ie, multiple solutions with
the same fit E can be obtained). Algebraically, the measured sample spectra (R) can be expressed as their coordinates on a given
vector base. The column vectors in S represent N independent basis vectors that span the space of all possible mixtures of the N
components where the linear model is valid. Hence, by setting the base to the pure component spectra at unit concentration, the
coordinates of each sample in R for this pure component base are the concentrations of each component in the respective mix-
ture spectra. These concentrations are contained in C and mathematically expressed by Equation 1.

The N column vectors in SL also span a vector space for spectra in R (apart from noise). The coordinates of the spectra
R in this basis set are now given by CL. Thus, L

−1 is the transformation matrix from the S basis set to an SL basis set.
Depending on L (degree of relaxation or transformation), different basis vectors can be formed and, respectively, the
corresponding rCLS models in BL. The components of SL can be thought of as pseudo‐components where a pseudo‐com-
ponent is a basis vector made up of mixtures of pure components that serves the same purpose as the pure component basis
vectors.

The creation of pseudo‐components from pure components amounts to relaxing the selectivity constraints of the CLS
model. The concentration estimate of the analyte in a sample by rCLS (bcL;a ) is an unbiased estimate of the amount of the
pseudo‐component sL,a but a biased estimate of the amount of the pure component sa. As an example, it is possible to tune
the relaxation (transformation) parameters in order for the pseudo‐component to be almost the same as the pure component
spectrum (eg, a two‐component situation with sL,a=0.99 sa+0.01si). In this situation, the solution bcL;a is as a biased estimate
of ca due to a small contribution from the interferent.

The transformation of the basis vectors in S by L−1 is equally matched by transformation of the BCLS basis vectors (the N
column vectors) to the new basis set BL with L being the transformation matrix. These basis vector changes are illustrated in
Figure 3 (patterned after the general situation in Vainchtein32). From Figure 3, it is recognized that S and BCLS have the special
property of being reciprocal basis vectors (STBCLS = I) as do SL and BL (STLBL ¼ I). Because of this reciprocal nature within
CLS and rCLS, the respective calibrations and predictions can be expressed as covariant and contravariant components with
additional special relationships.32-34

Shown in Figure 4 is a geometric depiction (a rendition from the generic portrayal in Vainchtein32) for a two‐component
CLS system (analyte and interferent) for a single spectrum from R. The sample spectrum r is not only represented as linear
combination of the basis vectors in S but also as a linear combination of the reciprocal basis vectors from BCLS. The compo-
nents for the linear combination of the S basis vectors are respective concentrations. Using Equation 1 with only one interferent,
the relationship is written as



FIGURE 3 The classical least squares (CLS) covariant (S) and reciprocal contravariant (BCLS) basis vectors with the respective changes to the
relaxed classical least squares (rCLS) basis vectors. Example depicts a two‐component situation for the analyte a and the interferent i

FIGURE 4 Relationship between classical least squares (CLS) covariant and contravariant basis vectors and the net analyte signal. A similar
relationship can be characterized for the relaxed classical least squares (rCLS) basis vectors. The NAS (r*) and corresponding L2 norm of r*
(ca/‖bCLS,a‖) are shown
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rT ¼ casTa þ cisTi : (24)

The concentrations are known as the contravariant components of r in the covariant basis vectors sa and si. These components
are estimated individually by ĉa ¼ rTbCLS;a and ĉi ¼ rTbCLS;i or simultaneously by ĉT ¼ rTBCLS. The CLS regression vectors
are sometimes referred to as the contravariant vector (or contravariant spectrum) because when the inner product (dot product)
is taken between r and a regression vector bCLS, the corresponding contravariant component (concentration) is obtained. The
contravariant vectors are reciprocal basis vectors to the covariant basis vectors in S.

The components for the linear combination of the BCLS basis vectors are known as the covariant components. A sample
spectrum in this basis set is expressed by
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rT ¼ vabTCLS;a þ vibTCLS;i; (25)

where va and vi represent the covariant components. These components are computed individually by va = rTsa and vi = rTsi or
simultaneously by vT = rTS. The vectors in S can be labeled the covariant vectors because when the dot product is taken
between r and a pure component spectrum s, the corresponding covariant component is obtained.

A similar depiction in Figure 4 can be made for the transformed basis vectors SL and BL by substituting the respective
transformed basis vectors for S and BCLS. Equally, the following equations represent the transformed contravariant and
covariant situation rT ¼ cL;asTL;a þ cL;isTL;i;

¼ vL;abTL;a þ vL;ibTL;i:
(26)

From Figure 4, the relationship between the contravariant basis set and the NAS is clarified. Specifically, the contravariant
component ca can be found from either the component ca‖sa‖ shown in Figure 4 or the projection of r onto the contravariant
vector bCLS,a. This projection is the NAS labeled r* with the L2 norm ‖r*‖= ca/‖bCLS,a‖. Not as useful from an analytical
chemist's perspective, Figure 4 shows the covariant components.

The ambiguity in the decomposition R ¼ CLSTL þ E results from the lack of constraints on L in Equation 23. Thus, any
invertible L is a solution as demonstrated in Section 6 and many solutions (regression vectors) with no physical interpretation
are possible that form effective predictions,22-24 ie, the models just work. Similarly, without constraints, CL and SL are not easy
to chemically interpret. Regardless, the pseudo‐components, by definition, meet the CLS hard constraints of STLBL ¼ I giving

ĈL ¼ CLþ EBL.
Because ILS models are not reciprocal basis vectors with pure component spectra in S (the ILS regressions are not

unique21,22), an ILS regression vector is not a true contravariant vector. Thus, a sample spectrum cannot be represented as a
linear combination of all respective ILS regression vectors (one for the analyte and one for each response forming interferent,
BILS) and simultaneously, a linear combination of S. This is also true for the basis vectors transformed by L−1 and L. However,
it should be noted that while the reciprocal basis set description (the covariant, contravariant, and orthogonality strictness) does
not hold for ILS, many of the computations (NAS, net sensitivity vector) are still relevant. These points are further elaborated in
the next section.
2.4 | Selectivity‐rILS
By expressing ILS in a relaxed format (rILS), insight can be gained on how close an ILS solution comes to satisfying the CLS
selectivity constraints. Even though all sample components are not known when using inverse models, it can still be assumed
that the Beer‐Lambert law (Equations 1 and 12) characterizes the underlying model generating the measured spectra.

Using Equation 2, the fitted concentrations for a sample using an ILS calibration is

ĉa ¼ rTbILS;a

¼ casTabILS;a þ∑icis
T
i bILS;a þ e

(27)

Applying the relaxed parameter definition to Equation 27 results in

∂ĉa
∂ca

¼ sTabILS;a ¼ laa

∂ĉa
∂ci

¼ sTi bILS;a ¼ lia ∀i ≠ a
; (28)

where the derivative in the second equation is taken for every interferent i. As already noted, ILS models implicitly relax
the orthogonality constraint to maintain a bias/variance trade‐off relative to respective minimization criteria,16 ie, laa ≠ 1
and lia ≠ 0. Variations of sTabILS;a and sTi bILS;a (now termed laa and lia) as ILS tuning parameters vary has been graphically
characterized.25 Specifically, theses terms were used to characterize the bias/variance tradeoff in selecting tuning
parameters.
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An rCLS model is formed from a linear combination of all analyte and interferent CLS models. Similarly, an rILS model is
formed from a linear combination of all ILS models. This combination to form the rILS models BQ is expressed as

BQ ¼ BILSQ; (29)

where Q denotes a matrix of coefficients to form a linear combination of BILS. Note that Q is different from the L used in
rCLS. With CLS, there is an inverse relationship between ST and BCLS and hence, the L matrix used in Equation 19 to form
the relaxed models BL as the linear combinations of BCLS is the same L matrix obtained in Equation 18 for the inner products
of the pure component spectra with BL (Figure 3 is a diagram of the inverse basis relationship). With ILS, the inverse relation-
ship between ST and BILS does not exist. For example, given the generic situation of Equation 9 (STB = I), the only B
satisfying this equality is BCLS.

As with rCLS, the degree of deviations of L from I for the rILS models in BQ depend on the coefficients in L shown by

∂ĉT

∂c
¼ STBQ

¼ L
(30)

relative to prediction by ĉT ¼ cTSTBQ þ eTBQ, similar to Equation 7 for CLS.The more L for a particular modeling process
deviates from I, the greater the deviation from obtaining an orthogonally constrained model. WhenQ is the identity matrix, then
the rILS models are the ILS models and L has the relaxation coefficients expressing the amount of orthogonality obtained for
the ILS models. This statement agrees with previous work where the matrixW = STBILS − I is defined16 and can be rearranged
to W = L − I. Note that this second equation is true for both rCLS and rILS. The W can be interpreted as a measure of
departure from the CLS.

Prediction of the analyte in a sample by a particular rILS model is expressed by

ĉa ¼ rTbQ;a

¼ casTa þ∑icis
T
i

� �
bQ;a þ e;

¼ calaa þ∑icilia þ e:

(31)

The more of S that is known, the better the assessment of the interferent effects defined by L for particular rILS model.
Interpretation of the respective rILS laa and lia values is the same as for rCLS; lia values denote the change in predicted analyte
concentration per unit change in the respective interferent concentrations relative to the model used for prediction. This aspect is
further commented on in the Selectivity section.

Values in L are not as simple for rILS as for rCLS. This complexity can be seen by expanding Equation 29 for a simple
situation with an analyte and one interferent to

bQ;a ¼ bILS;aqaa þ bILS;iqia;

bQ;i ¼ bILS;aqai þ bILS;iqii;
(32)

where bQ,a and bQ,i are the vectors of regression coefficients in BQ. Using bQ,a expressed in Equation 32 to predict the analyte
concentration results in

bca ¼ rTbQ;a;

¼ casTabQ;a þ cisTi bQ;a þ e ;

¼ ca sTabILS;aqaa þ sTabILS;iqia
� �þ ci sTi bILS;aqaa þ sTi bILS;iqia

� �þ e:

(33)

From comparing Equation 33 to Equation 31, the laa and lia values are written as

laa ¼ sTabILS;aqaa þ sTabILS;iqia;

lia ¼ sTi bILS;aqaa þ sTi bILS;iqia:
(34)
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Equation 34 shows that the final laa and lia values depend on the relationship between the base ILS models being used and
amount (or weight) of the base ILS models combined to form the final analyte model vector bQ,a. If Q = I, then laa ¼
sTabILS;a and lia ¼ sTi bILS;a.

As with rCLS, a systematic variation ofQ or optimization algorithm can be used to determine appropriateQ values (or the qa
column) for rILS. However, because all the ILS models are rarely known for the analyte and each interferent, then the practicality
of using rILS is nearly nonexistent. It is interesting to note that Equation 29 can be thought of as a more general regression strategy
based on stacked regression35-37 where a collection of analyte regression models are used. For example, using a set of analyte

models for a B, a simple stacked regression gives ca ¼ Rbqa ¼ RBqa ¼ Ĉqa. Least squares can be used to solve for qa.
3 | SELECTIVITY

While selectivity is the focus in this section, analyte and interferent sensitivities are key figures of merit20,38 that selectivity
depends on. In particular, the accuracy of analytical determinations can be adversely affected by other species present in the
sample and/or variations of analytical conditions (eg, changes in temperature in NIR spectra) that alter the instrument response
for the sample. Sensitivity and selectivity are 2 figures of merit balanced in forming calibration models.18,25 Approaches to
measure and quantify sensitivity and selectivity have been provided (previous works18-20 and references therein). Regarding
selectivity, Ridder and Brown17 state “a method is fully selective against a particular interferent if the result it renders is inde-
pendent of the concentration of the interferent. If a method is not fully selective, then the results it produces will depend on the
concentration of the interferent.” In this work, a selectivity definition is proposed based on rCLS and is applicable to the usual
multivariate CLS and ILS calibration models and reduces to the standard univariate definition. Because sensitivity is key to
defining selectivity, a brief overview of univariate sensitivity is given next.
3.1 | Sensitivity in univariate calibration

Sensors are designed to respond to the amount of a component of interest (the “analyte” a) in a sample. The “sensitivity” of the
sensor for analyte a, sa, is defined39 as the change in the measured response r per unit change of concentration of a (ca)
expressed as

dr
dca

¼ sa: (35)

In univariate CLS calibration with narrow concentration ranges, the relationship between response and concentration should be
describable by a straight line. In this situation, sensitivity is constant over the concentration range and is the slope of the regres-
sion line.39 If the relationship is not linear, then the sensitivity changes depending on the value of ca. The sensitivity can also
depend on the sample matrix, in which case the standard addition method is used. In addition to the analyte, the sensor can also
respond to the presence of other components in the sample (interferents) and hence, the measured response is a mix of responses
generated by the analyte and interferents. The degree of contribution from an interferent signal depends on how sensitive the
sensor is to the interferent (si). This sensitivity can be obtained by measuring samples with increasing known amounts of
interferent when available.
3.2 | Selectivity and the selectivity coefficient in univariate CLS

In univariate calibration, the (background corrected) measured response is assumed to follow the linear model

r ¼ casa þ e (36)

with prediction by
ĉa ¼ r

sa
;

¼ rba;

¼ casaba þ eba;

(37)
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where ba=1/sa is defined for clarity. Imposing the condition in Equation 4 on Equation 37 gives

∂ĉa
∂ca

¼ saba

¼ 1
: (38)

If unexpected interferents contribute to the measured response of the unknown sample, Equation 36 is now written as

r ¼ casa þ∑icisi þ e (39)

and prediction with Equation 37 is given by ĉa ¼ ca þ∑icisiba þ eba: (40)

A nonzero sensitivity of the sensor for interferent i (si≠ 0) introduces a bias in the prediction ĉa in the amount cisiba. This bias
depends on the amount of the interferent i (ci) and on the sensitivity for the analyte (ba = 1/sa) and for the interferent (si).

Figure 5 depicts the situation for one interferent. Mathematically,
∂ĉa
∂ca

¼ saba ¼ 1 is true, but the interferent conditions in

Equation 4 are not followed and
∂ĉa
∂ci

¼ siba ≠ 0 for each interferent.

The absolute sensitivity of the sensor for an interferent is not as important as the relative sensor sensitivity for the interferent
compared to the analyte sensitivity. In this sense, “selectivity” for an analyte means lack of sensitivity (low enough sensitivity)
for a potential interferent compared to that for the analyte. Accordingly, the univariate “selectivity coefficient” for analyte a in
the presence of interferent i is defined as

Ka;i ¼ siba
saba

¼ si
sa

(41)

with −∞ < Ka,i < ∞. In univariate calibration with spectroscopic data, the sensitivities in Equation 41 are usually positive, but
for other systems of analysis, negative values are possible. The selectivity coefficient is used to quantitate the model sensitivity
towards the interferent relative to the analyte model sensitivity.18,26,27 With the selectivity coefficient now defined, then divid-
ing Equation 39 by sa and Equation 40 by saba with rearrangement gives, respectively,

ĉa ¼ ca þ∑iciKa;i þ eba (42)

The analyte prediction error is obtained by subtracting the true analyte concentration value from Equation 42 producing
FIGURE 5 Bias introduced by an interferent in a prediction not only depends on the sensitivity of the sensor for the interferent but also the
sensitivity of the sensor for the analyte (through the slope of the calibration line)
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ĉa−ca ¼ ∑iciKa;i þ eba (43)

and expressed as a relative error by

ĉa−ca
ca

¼ ∑i
ci
ca

Ka;i þ eba
ca

(44)

Equations 43 to 44 show the crucial significance of selectivity coefficients for quantitating the effect each interferent
has on a particular analysis. For example, a Ka,i = 0.001 means that the sensor is 1000 times more sensitive to the analyte
than the interferent. Also shown in Equations 42 and 43 is the direct effect analyte sensitivity has on the prediction
variation due to random error e. Specifically, the greater the analyte sensitivity, the smaller the effect. Selectivity, like
sensitivity, is continuous and when it is stated that “a sensor is selective for the analyte of interest,” actually what is meant
is that the sensor is selective enough such that errors caused by the sensitivity to the interferent become irrelevant. A
sensor can be checked for a number of potential interferents followed by calculating the selectivity coefficient Ka,i for each
interferent. The greater the number of low Ka,i values, the more the sensor can be considered globally selective for the
analyte.

Applying notation previously developed for selectivity assessment in multivariate ILS16 to the univariate situation and
starting with Equation 40, the prediction error is written as

ĉa−ca ¼ ca saba−1ð Þ þ∑icisiba þ eba
¼ cawa þ∑iciwi þ eba
¼ ∑iciwi þ eba

(45)

where wa= saba− 1 and wi= siba and because in this univariate situation, ba = 1/sa, then wi = Ka,i. The corresponding univariate
selectivity indicators developed for multivariate ILS16 (presented in the next section) are for the analyte

SELIND
a ¼ 1= 1þ w2

a

� �
(46)

and each interferent

SELIND
i ¼ 1= 1þ w2

i

� �
: (47)

The interferent prediction problem shown in Equations 42 to 44 does not exist with multivariate CLS. In this situation, the
regression vector cancels the effect of the interferent (sTi ba ¼ 0) to fulfill the orthogonality constraint.
3.3 | Selectivity, sensitivity, and the selectivity coefficient in multivariate rCLS and ILS

3.3.1 | Selectivity coefficient

For congruence with univariate calibration, a definition for the selectivity coefficient in multivariate calibration should consider
how nonmodeled interferents affect the prediction from the multivariate calibration model. Moreover, the selectivity coefficient
should also be defined for modeled interferents since they also affect the model's prediction performance by decreasing the NAS
and increasing the prediction variance.

Applying Equation 41 for the univariate situation to the multivariate case gives the selectivity coefficient as

Ka;i ¼ sTi ba
sTaba

;

¼ lia
laa

;

(48)

where the generic model vector ba notation indicates any analyte model vector via CLS, rCLS, ILS, rILS, or other method and
−∞ < Ka,i < ∞ with values approaching zero denoting an optimal selectivity situation as with the univariate definition. Using
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the generic model, Equation 22 (rCLS) and Equation 32 (rILS) are generalized to

ĉa ¼ calaa þ∑icili;a þ e (49)

and incorporating Equation 48 for the selectivity coefficient definition into Equation 49 produces

ĉa ¼ laa ca þ∑iciKa;i
� �þ e; (50)

which is the multivariate representation of univariate situation in Equation 42. If a model is accurately predicting the analyte, the
model is doing a good job of making the contributions sum to the analyte concentration in Equation 49. Specifically, while
regression vectors can have uniquely different shapes and magnitudes, the analyte concentration predictions are similar.21-24

The corresponding multivariate prediction error equations to univariate Equations 43 and 44 are, respectively,

ĉa−ca ¼ ca laa−1ð Þ þ laa ∑iciKa;i þ e; (51)

ĉa−ca
ca

¼ laa−1ð Þ þ laa ∑i
ci
ca

Ka;i þ e
ca

: (52)

With selectivity coefficients, Equations 50 to 52 show the effect an interferent will have on the analyte prediction (or prediction
error) for a sample. Different from the univariate situation, the prediction does depend on the relaxation parameter for the
analyte (laa) where for the univariate case, laa = 1.

With respect to the approach taken in Brown and Ridder,16 Equation 47 for univariate calibration becomes for multivariate
calibration

ĉa−ca ¼ cawa þ∑iciwi þ e

¼ ca laa−1ð Þ þ∑icilia þ e
(53)

Unlike the univariate situation, wi ≠ Ka,i for multivariate calibration and Equation 53 written to include the selectivity coeffi-
cient is

ĉa−ca ¼ cawa þ laa ∑iciKa;i þ e: (54)

The selectivity coefficient for a particular interferent and model can also be represented by the ratio of the L2 norms of the
net sensitivity interferent s�i and analyte s�a vectors that are the projections of the respective pure component spectra onto the
model vector. With this notation, the selectivity coefficient is written as

Ka;i ¼
s�i

�� ��
s�a

�� �� : (55)

For comparison to Equation 48, the absolute value of Equation 48 can be used if a negative value is used or results for one of the
relaxation parameters.
3.3.2 | Selectivity and sensitivity

The CLS component‐wise net sensitivity vector was presented and discussed using Equation 11 can be modified for rCLS and
others as

s�a ¼
ba
bak k2 laa; (56)

where again the ba notation indicates any analyte model vector via CLS, rCLS, ILS, rILS, or other method. The scalar selec-
tivity is
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SELa ¼ s�a
�� ��
sak k

¼ laa
sak k bak k

(57)

with the corresponding sensitivity written as
SENa ¼ s�a

�� ��;
¼ sTaba

bak k;

¼ laa
bak k:

(58)

Respective interferent selectivity and sensitivity measures SELi and SENi relative to the analyte regression vector are obtained
by using lia and si instead of laa and sa in Equations 57 and 58. The selectivity measures proposed in Equations 46 and 47 only
depend on respective relaxation parameters (deviation from orthogonality for a model). The selectivity measures proposed
here depend on both the relaxation parameters and the full sensitivity of the analyte or interferent relative to the particular ana-
lyte model. Equivalently, the selectivity defined in Equation 57 for the analyte and the corresponding definition for the
interferent are respective cosθ values for the angular relationships between pure component analyte and interferent spectra
and the model. In the case of rCLS, the corresponding cosθ values are computed by cosθa ¼ sTabL;a= sak k bL;a

�� ��� �
and

cosθi ¼ sTi bL;a= sik k bL;a
�� ��� �

. To avoid negative SEL and SEN values for the analyte and interferent when a negative value
for a relaxation parameter is obtained, absolute values can be used.

In many calibration situations, it is unlikely to know S or the full C and ILS is commonly used in these situations. To
characterize the model analyte sensitivity, the best approximation is probably the usual SENa ¼ 1

bILS;ak k . Even though S

may not be known, the interferent or non‐analyte space (N) space can be estimated and used to span the interferent space. In
this case, for ILS, it has been suggested and evaluated25 to project the ILS model vector onto the space spanned by N to form

bN and define the model selectivity as the cosine of the angle between these 2 vectors computed by cos β ¼ bNk k
bILS;ak k . A value

close to 0 indicates good model selectivity towards the analyte. Equivalently, the ILS model vector could be projected orthog-
onally to N to formb⊥N and the model selectivity becomes sinβ ¼ b⊥N

�� ��= bILS;a
�� ��with a value close to one denoting good model

selectivity for the analyte relative to the N used.
4 | MEAN SQUARE ERROR OF PREDICTION

Using the approach set out in other works,16,21 the expected mean square error of prediction (<MSEP>) for an arbitrary ba
model is expressed as

<MSEP> ¼ wTΨwþ bTaΣba; (59)

where Ψ denotes the expected concentration covariance for the population of samples being considered, Σ symbolizes the
expected measurement error covariance, and w is the (N × 1) vector with analyte value wa = laa − 1 and respective values
for each interferent are wi = lia. The first term in Equation 59 is termed bias, and the second term is the variance contribution.
With this derivation of <MSEP>, the influence of the relaxation parameters in the bias contribution are directly obtainable. The
influence of the relaxation parameters on variance for rCLS can be distinguished from Equation 59 by replacing the generic ba
with bL,a calculated from Equation 19.

The bias term in Equation 59 depends on the selectivity and sensitivity of the calibration model and features of the popu-
lation samples being predicted, eg, relative amounts of the interferent compared to the analyte. However, in the CLS case with
full orthogonality, wG is a zero vector causing removal of the bias term. Calculated in this paper is the MSEP for the analyte
based on observed values for Ψ = CTC/(M) and w (la).
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5 | EXPERIMENTAL

5.1 | Algorithms and data preprocessing

All algorithms were written by the authors using MATLAB 8.1 (The Math Works, Natick, Massachusetts). Calibration samples
are mean‐centered relative to the calibration set. New samples are mean‐centered to the calibration set mean prior to prediction.
For simplicity, Σ = σ2I and σ2 = 1 are assumed when computing MSEP.
5.2 | The rCLS relaxation values

Graphical results presented are based on varying the laa relaxation parameter value from 2 × 10−17 to 1.98 with the first value
being 2 × 10−17 and the second starting at 0.02 incrementing to 1.98 by 0.02 for 100 values. Simultaneously, lia values range
from −0.975 to 1.000 in increments of 0.025 for 80 values. For example, when computing the rCLS models for an analyte by
Equation 20, 8000 bL,a relaxed regression vectors are obtained. The CLS regression vector is calculated when laa = 1 and lia = 0.
Similarly, the corresponding 8000 bL,i interferent relaxed regression vectors are determined by Equation 20. The analyte and
interferent relaxed regression vectors are then used to compute respective measures of model quality for the graphical assess-
ments. The BCLS regression vectors used in Equation 20 are obtained from Equation 14 using estimated matrix effected pure
component spectra from Equation 13.
5.3 | Near infrared data

In addition to pure component methanol and water samples, 9 mixtures of methanol and water were prepared with methanol
concentrations in increments of 10% (by volume) ending40 at 90%. The water concentrations were such that summed sample
concentrations are 100%. Spectra of the 9 mixtures plus pure water and methanol were measured in a 0.5‐mm flow cell using
an NIRSystem model 6500 NIR spectrophotometer. Spectra were recorded from 1100 to 2500 nm in 2‐nm increments for 700
points per spectrum. All samples weremeasured over 1 hour. The spectra are plotted in Figure 6.Methanol is the analyte, and due to the
sample set size, leave‐one‐out cross‐validation (LOOCV) was used for CLS and rCLS modeling. For all studies, only the 9 mixtures
were used. As noted previously, estimated matrix effected pure component were calculated from Equation 13 using the 9 mixtures.
6 | RESULTS AND DISCUSSION

To graphically assess the trade‐offs between different measures of model quality (bias, variance, MSEP, Ka,i, sample‐wise pre-
diction errors, etc) for rCLS, a simple two‐component system (an analyte and interferent) was studied. In this case, only 2 relax-
ation parameters are needed (laa and lia) and observations from images of model quality measures are possible as the 2
relaxation parameters vary across a range of values. See Section 5 for ranges. With more than 2 analytes, such images are
not possible.
6.1 | Prediction error, bias, and variance

Shown in Figure 7 are the mean values from LOOCV for the root mean square error of calibration (RMSEC), RMSE of cross‐
validation (RMSECV), MSEP, bias, and the model vector L2 norms (‖bL,a‖). The RMSEC, RMSECV, and bias images indicate
FIGURE 6 Plot of sample mixtures and pure components methanol (black solid) and water (red dash)



FIGURE 7 Mean images of analyte
methanol root mean square error of
calibration (RMSEC), RMSE of cross‐
validation (RMSECV), log(MSEP), bias, and
the model vector L2 norm ‖bL,a‖. Respective
calibration and validation bias and log
(MSEP) mean images are the same and only
one is shown to represent calibration (Cal)
and validation (Val)
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that no relaxation from CLS (laa = 1 and lia = 0) can provide smaller prediction errors and bias over all the samples. However,
the MSEP image (log values displayed) shows the minimum MSEP occurs for a slightly rCLS model. In this case, the relaxation
parameters for the rCLS model bL,a=bCLS,ala at the minimum MSEP are laa = 0.920 and lia = 0.050. Lower MSEP values
occur for rCLS because the minimum model vector L2 norm shown in Figure 7 is at an rCLS model with low laa and lia values.
It should be noted that mean MSEP images over the LOOCV images are the same for the calibration and validation sets and
hence, only one is shown in Figure 7. This statement is also true for the respective mean bias images. However, while the indi-
vidual sample‐wise RMSEC and ‖bL,a‖ images are essentially the same across the LOOCV, sample‐wise RMSECV, bias, and
MSEP images do vary depending on the sample left out.
FIGURE 8 Sample‐wise images of analyte methanol root mean square error of cross‐validation for each sample left out. The ca values correspond
to the sample left out



FIGURE 9 Three of the 9 sample‐wise analyte methanol validation bias images when the respective sample (ca value) is left out as the validation
sample
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Inspection of the sample‐wise RMSECV and bias images shown, respectively, in Figures 8 and 9 reveals that RMSECVand
bias values track similarly as the relaxation parameter values vary. Because of this similarity, only 3 of the 9 bias images are
represented. Also noteworthy is that for a given sample, many models will predict equivalently agreeing with previous
work.22,24 For the situations presented, the bL,a models in the deep blue zones primarily differ by respective L2 norm values
(magnitude), not by changes in shape (direction). Figures 8 and 9 show that when the interferent to analyte ratio is low,
acceptable rCLS predictions are possible when the laa values are nearly 1 regardless of the value of lia. Conversely, when the
analyte to interferent ratio is high, the laa values can now range while the value of lia must be close to 0 for an acceptable
prediction error.

From Figure 8, it is observed for all samples that the orthogonality constraints can be relaxed and increases in prediction
errors are obtained because of adding bias to the prediction relative to the CLS prediction at laa = 1 and lia with a variance
reduction (the ‖bL,a‖ image in Figure 7). However, most notable, it is also possible to achieve an equivalent prediction error
with a reduction in the variance. In this case, lia increases in value relative to 0 with a corresponding decrease in the laa value
from 1. Conversely, equivalent predictions errors are possible with increases in variance (nondesirable solutions) where now the
lia values are more negative with corresponding increases in the laa value above 1.

The images in Figures 9 and 7 reveal that the sample‐wise bias/variance trade‐off has several potential combinations
depending on the interferent to analyte concentration ratio. Possible are increased bias for a decrease in variance (a goal of
rCLS, but the tradeoff should not be significant), a bias increase for an increase in variance (undesirable models), and lastly,
apparently, no change in bias accompanied by decrease in variance (a desirable model).

Displayed in Figure 10 are the sample‐wise MSEP images. The trends are like those seen in Figure 8 for the RMSECV
images with the exception that each rCLS model is unique relative to the MSEP. For all samples, the orthogonality constraints
can be relaxed to obtain reduced MSEP values. Specifically, reducing laa values from 1 while increasing the lia values from 0.
Thus, while each sample can be predicated with low errors and bias by several respective rCLS model, only one sample‐wise
rCLS model has the smallest MSEP.



FIGURE 10 Sample‐wise images of analyte methanol log(MSEP) for each validation sample left out. The ca values correspond to the sample left
out

FIGURE 11 Mean calibration analyte methanol bias and log(MSEP) images for two simulated calibration sets with reduced analyte concentration
ranges (indicated on top row of images) for the validation sample with methanol concentration at 10% and water at 90%
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Because of the sample‐wise variations, 2 simulated calibration ranges were made for the validation sample with the greatest
interferent to analyte concentration ratio with the interferent at 90% and the analyte at 10%). Shown on the left in Figure 11 is
one calibration situation where the 8 samples in C have the analyte concentration equally incremented from 1% to 50% instead
of from 20% to 90% as in Figures 9 and 10 to more closely span the analyte concentration for this particular validation sample.
As with the full calibration range, the interferent concentration varies to maintain a concentration sum of 100% in the 8 simu-
lated calibration samples. The bias and MSEP images are obtained using Equation 59 with the same bL,a and laa and lia ranges
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used with full calibration range. The only change is the analyte and interferent reduced C ranges and hence, a concentration
covariance matrix more closely centered around the validation sample. The second simulated calibration case is shown on
the right of Figure 11 where now the analyte concentration range is further reduced to more closely span the analyte concen-
tration in the same validation sample. In this case, the analyte concentration varies from 1% to 11% in equal increments and
the interferent concentration, respectively, varies to maintain the concentration sum at 100% in the eight calibration samples.
In comparing the bias and MSEP images in Figures 9 and 10 for the full calibration range to those in Figure 11, it is
observed that as the calibration concentration range decreases to more closely bracket the validation sample situation, the
calibration bias and MSEP images converge to those of the specific validation sample. Using local calibration ranges for
specific samples allows for better matrix matched calibration samples to the specific samples, thereby leveraging the advan-
tages of rCLS. Using the mean MSEP of the local calibration set now allows proper selection of the relaxation terms for
the validation sample where the MSEP are small. Thus, the more a calibration set is descriptive of a new sample for quan-
titation, the more likely the selection of the best la by the MSEP for the calibration set will match the optimal la for the
new sample.
6.2 | Sensitivity and selectivity

By using the relaxed sensitivity measures in Equation 58, the trade‐off between maximizing the model sensitivity towards the
analyte and minimizing the model sensitivity to the interferent is possible. This trade‐off is demonstrated in Figure 12 where it
is also observed from the top image that the traditional sensitivity measure does not provide this trade‐off information. In con-
junction with prediction errors in Figure 8 and MSEP values in Figure 10, rCLS models associated with greater sensitivity have
lower prediction errors and MSEP values. It is also seen that if the sensitivity is low for the analyte, predictions of new samples
with acceptable prediction error are still possible. However, if the interferent to analyte ratio is high, then the MSEP can be poor
FIGURE 12 Mean sensitivity images relative to the analyte methanol relaxed classical least squares (rCLS) calibration models across the leave‐
one‐out cross‐validation (LOOCV) for the general measure 1/‖bL,a‖ (shown is log(1/‖bL,a‖)) and the relaxed version (Equation 58) relative to
respective relaxation parameter values (absolute for SENi due to the allowed negative values for lia)



FIGURE 13 Mean selectivity
(Equation 57) images relative to the analyte
methanol relaxed classical least squares
(rCLS) calibration models across the leave‐
one‐out cross‐validation (LOOCV) (absolute
for SELi due to the allowed negative values
for lia). Also shown is the mean log(|Ka,i|)
with white at lia = 0.0. The selectivity
measures from Brown and Ridder16 are the 2
images in the bottom row (Equations 46 and
47, respectively)
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compared to when the interferent to analyte concentration ratio is low. Because the mean sensitivity values (absolute for SENi

due to the allowed negative values for lia) presented in Figure 12 are essentially the same as the sample‐wise images, only the
mean image is shown.

When the relaxed selectivity measures defined in Equation 57 are used, the corresponding images in Figure 13 (absolute for
SELi due to the allowed negative values for lia) are similar to the respective sensitivity trends shown in Figure 12 except the
selectivity values range between 1 and 0. Similar interpretations to the trends made for RMSECV and MSEP and sensitivity
can be stated for the selectivity values. Conversely, the selectivity measures defined by Equations 46 and 47 are shown in
the bottom row of Figure 13 and the trends with RMSECVand MSEP are not obvious. These selectivity definitions only depend
on the respective relaxation parameters (deviation from orthogonality). The selectivity measures proposed here not only depend
on the relaxation parameter values but the selectivity values are also dictated by sensitivity of the analyte relative to the model.
Depending on the interferent to analyte concentration ratio, the selectivity may be low for the analyte, but predictions of samples
with acceptable prediction errors are still possible. This trade‐off is well characterized by the selectivity coefficient proposed in
Equations 48 and 55 and imaged in Figure 13. As with the sensitivity images in Figure 12, the sample‐wise selectivity values
shown in Figure 13 are essentially the same as those for the mean images.

The selectivity coefficient values displayed in Figure 13 in conjunction with the RMSECV images in Figure 8 show
that if the interferent concentration is large relative to the analyte concentration, acceptable predictions are possible when
the selectivity coefficient is low. It is possible to also have low prediction errors where the selectivity coefficients are large.
Low prediction errors can occur because the laa values are small thereby compensating for the large interferent prediction
bias. Again, the sample‐wise selectivity images are essentially the same as the mean image in Figure 13 and only the mean
image is shown.
7 | CONCLUSION

With rCLS, a family of CLS models can be formed. Some rCLS models leverage interferent concentrations into the prediction
to increase bias with an improvement in variance. Other combinations of relaxation parameters are possible that vary the degree
of the bias/variance trade‐off and hence, the MSEP, ie, numerous models can be formed that predict well, but only one has the
lowest MSEP relative to the variance. It was shown that the more local the calibration set (concentration ranges closely bracket
the analyte and interferent concentrations), the greater opportunity for improvement of rCLS over CLS. An rILS strategy was
presented to form a family of ILS models. However, for the main reason ILS is used (all concentrations of spectrally responding
species are not known), this approach is not practical. Regardless, a selectivity coefficient is defined that is applicable to
univariate and multivariate calibration. With such a coefficient, it is possible to assess the predictability of a sample given
knowledge of expected analyte and interferent concentrations.

If the goal is to obtain a model that predicts well and targets the CLS orthogonality constraints, then a penalty regression
approach can assist in this. Specifically, the regression vector satisfying the minimization expression

min Rba−ck k2 þ λ2 bak k2 þ η2 Sba−ik k2
� �

(60)
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is sought where the first 2 terms are the usual RR terms and the third term is an extra orthogonality constraint weighted by the η
tuning parameter with i denoting a column vector of zeros with a 1 at the row position for the pure component analyte spectrum
in S. Alternatively, the i in Equation 60 could be a vector of target relaxation parameter values. If S is not known, then non‐ana-
lyte samples can be used instead giving

min Rba−ck k2 þ λ2 bak k2 þ η2 Nbak k2
� �

; (61)

where N is a collection of samples without the analyte.41 For Equations 60 and 61, sought from the regression is a ba=b⊥+bi,
where b⊥ denotes the part of ba orthogonal to the S and/or N and bi is the contribution from the interferents.41 In both
Equations 60 and 61, the MSEP is not directly minimized, but with an MSEP penalty included, the solution is no longer directly
computable. As demonstrated in Section 6, the more closely the calibration set mimics a particular sample regarding the full
sample matrix, the more likely the solutions of Equations 60 or 61 will correspond to a minimum MSEP.
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