Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators

Gerard Lligadas,^{a,b} Mojtaba Enayati,^a Silvia Grama,^a Rauan Smail,^a Samuel E. Sherman,^a and Virgil Percec*^a

^a Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

^b Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain

ABSTRACT

To continue expanding the use of Single Electron Transfer-Living Radical Polymerization (SET-LRP) in applications at the interface between macromolecular science, biomacromolecules, biology and medicine, it is essential to develop novel initiators that do not compromise the structural stability of synthesized polymers in biological environments. Here, we report that stable 2-bromopropionyl peptoid-type initiators such as 1,4-*bis*(2-bromopropionyl)piperazine and 4-(2-bromopropionyl)morpholine are an alternative that meets the standards reached by the well-known secondary and tertiary α -haloester-type initiators in terms of excellent control over molecular weight evolution and distribution as well as polymer chain ends. SET-LRP methodologies in organic, aqueous and biphasic organic-aqueous media were evaluated for this purpose. **Keywords:** living radical polymerization, SET-LRP, peptoid-type initiators, hydrolytically stable

INTRODUCTION

Vinyl polymers containing neutral,^{1,2,3} cationic,⁴ anionic,⁵ zwitterionic^{6,7} and hydrophilic⁸⁻¹³ functionality with both narrow molecular weight distribution and quantitative or near quantitative chain-end functionality are only within the reach of Cu(0)-catalyzed single-electron transfer living radical polymerization (SET-LRP).^{14,15} Since its conception in the late 1990s¹⁶ and early 2000s,¹⁷⁻²⁰ SET-LRP has gradually exceeded the limits of other LRP techniques and has been placed at the interface between polymer science and biology and medicine.²¹⁻²⁴ From a mechanistic viewpoint, one of the crucial traits of SET-LRP is the solvent-dependent disproportionation of the in situ generated Cu(I)X, in the presence of ligands that stabilize Cu(II)X₂ such as tris(2-amino-ethyl)amine (TREN),^{14,18,19,25-28} branched poly(ethylene imine),^{14,29} and tris(2-dimethylaminoethyl)amine (Me₆-TREN),^{14,26-28} to regenerate the Cu(0) activator as well as Cu(II)X₂ that acts as deactivator.^{14,15} Most monomers and solvents also disproportionate Cu(I)X into Cu(0) and Cu(II)X₂ but do not dissolve Cu(II)X₂ and therefore provide an inefficient reversible termination process.³⁰⁻³² Although a priori the requirement of polar disproportionation solvents such as water,^{18,33-35} DMSO^{8,14,30,34,36-39} fluorinated⁴⁰⁻⁴² and non-fluorinated^{37,43,44} alcohols, dimethylformamide (DMF),⁴⁵ dimethyl acetamide (DMAC)⁴⁵ and ionic liquids^{14,46} or binary mixtures of organic solvents with water^{36,45,47,48} or DMSO⁴⁹ could be considered an insurmountable limitation for an optimum SET-LRP, our recently developed programmed biphasic systems in which the first phase consists of a water soluble or insoluble

ACS Paragon Plus Environment

Biomacromolecules

disproportionating⁵⁰ or non-disproportionating solvent⁵¹⁻⁵³ or a mixture of disproportionating and non-disproportionating solvents⁵⁴ containing Cu(0), the initiator, the monomer, and the polymer and a second phase containing the disproportionating solvent, water, Cu(II)X₂ together with Me₆-TREN have faded any doubt. Nowadays, the Cu(0)-catalyzed SET-LRP is already feasible in polar non-disproportionating and non-polar non-disproportionating solvents, expanding in this way the scope of SET-LRP to a larger diversity of monomers and polymers.^{50,51,54} For example, poly(butyl acrylate) of number-average molecular weight (M_n) of about 30,000 Da, narrow dispersity ($M_w/M_n\sim$ 1.2), and near perfect chain-end functionality can be prepared via SET-LRP in both biphasic acetone-water⁵¹ and acetonitrile-water^{51,53} reaction media. Note that acetone and acetonitrile are solvents with low equilibrium constant for the disproportionation of Cu(I)X into Cu(0) and Cu(II)X₂.^{45,51-53,55}

The other characteristic feature of this LRP technique is the activation of an initiator or dormant polymer chains by Cu(0) acting as electron donor *via* a heterogeneous SET.^{14,15,18,19,56} Although conceived initially using commercial copper powder as catalyst, ^{14,43,57-60} colloidal Cu(0) generated externally by disproportionation, isolated and reused^{26,34,61} or used *in situ*,^{33,47} and most recently generated *in situ* by the reduction of Cu(II)X₂ with NaBH₄,^{50-52,54,62} together with other miscellaneous Cu(0) forms including activated ^{42,63,64} and non-activated Cu(0) wire,^{55,65} coins,⁶⁶ and copper tubing in continuous flow reactors^{67,68} have been employed in SET-LRP.

As far as the initiators are concerned, hydrolytically labile secondary and tertiary α -haloesters, mimicking the dormant polymeric species, have been widely demonstrated as effective initiators for a great variety of vinyl monomers e.g. (meth)-acrylates, (meth)-acrylamides, and vinyl chloride, leading to a precise synthesis of polymers with well-defined compositions,

ACS Paragon Plus Environment

architectures, and perfect structural fidelity following Cu(0)-catalyzed SET-LRP guidelines.^{15,21-}²⁴ This has been achieved from a wide range of monofunctional, bifunctional, multifunctional as well as macroinitiators, prepared *via* the straightforward O-acylation of the corresponding hydroxylated compound.²¹ This approach was used, for instance, in the preparation of graft copolymers and brush-like structures from a variety of naturally occurring polysaccharides.⁶⁹⁻⁷¹ Moreover, the alkoxide moiety of the ester group can also be easily tuned to prepare initiators suitable for aqueous SET-LRP,³⁴ to design polymersomes with asymmetric membranes⁷² or to carry functional groups allowing subsequent post-synthetic transformations such as polymer-peptide conjugations⁷³ or decoration with nanoparticles.⁷⁴ However, the hydrolytically labile ester linkages in the above mentioned initiators compromise the integrity of the resulting polymer architectures in biological environments, where the conditions for hydrolytic degradation, transesterification, and transamidation are readily met.⁴⁰⁻⁴²

So far, hydrolytically stable initiators for SET-LRP involve sulfonyl halides⁷⁵⁻⁸⁴ and carbochain alkyl halides.⁸⁵ Synthetic methods for the preparation of monofunctional, difunctional and multifunctional including "masked" initiators from both classes were elaborated.⁷⁴⁻⁸³ However, they involve multiple reaction steps, and therefore simple and straightforward approaches to hydrolytically stable and at the same time biocompatible and efficient initiators are desirable. In this context, amide linkages, being roughly 100 times more stable toward catalytic hydrolysis under acidic and basic conditions than esters, are an appealing alternative. Haddleton, Sawamoto and other laboratories demonstrated that aliphatic and aromatic 2-bromoisobutyryl secondary amide initiators can also be successfully used in Cu(0)-catalyzed SET-LRP⁸⁶ and atom transfer radical polymerization (ATRP).^{87,88,89,90} More recently, SET-LRP initiators containing peptide-type linkages were also used in certain bioapplications.⁹¹⁻⁹³ However, although less

prone to chemical hydrolysis than esters, the gut and the bloodstream, to mention only two biological milieus, provide unfavorable environments for peptide linkages owing to the various classes of proteases present in these physiological compartments. Thus, the development of stable and efficient SET-LRP initiators is still necessary, especially in certain applications e.g. self-assembly, polymer-ligand recognition, and intracellular imaging, where the stability and biocompatibility of the polymer main chain is crucial because of prolonged exposure to biological environments.

Tertiary amides, or peptoid-type linkages in a wider sense, not only provide biocompatibility and hydrolytic stability in both acidic and basic conditions but are also unobserved to degrade enzymatically as compared to primary and secondary amides.^{94,95,96} Although tertiary amide-type initiators have not been considered previously for SET-LRP and other LRP, we hypothesized that they have potential value to replace other stable initiators such as sulfonyl halides⁷⁵⁻⁸⁴ and carbochain alkyl halides⁸⁵ that involve tedious preparations. Here, as a proof of concept, we explore peptoid cytostatic drugs based on piperazine and morpholine as hydrolytically and enzymatically stable tertiary amide-type initiators for SET-LRP in organic, aqueous and biphasic organic-aqueous media using activated and non-activated Cu(0) wire, colloidal Cu(0) generated by disproportionation of CuBr in water and used *in situ*, and generated *in situ* by the reduction of CuBr₂ with NaBH₄. Besides being easy to prepare via N-acylation, the 2-haloacylpiperazine and morpholine-derived initiators reported here produce polyacrylates with high chain end functionality possessing these well-known excellent pharmacophore functions⁹⁷⁻¹⁰³ located in the middle or at the polymer terminus.

ACS Paragon Plus Environment

EXPERIMENTAL SECTION

Materials. MA (99%, Acros) and OEOMEA (average $M_n = 480$, Aldrich) were passed through basic Al_2O_3 before use to remove the radical inhibitor. Cu wire (20 gauge wire, 0.812 mm diameter from Fischer), NaBH₄ (98%, Acros), CuBr (99.9, Aldrich), CuBr₂ (99%, Fluka), anhydrous piperazine (99%, Acros), morpholine (99.5% Aldrich), 2-bromopropionyl bromide (97%, Alfa Aesar), anhydrous hydrazine (98% Aldrich), thiophenol (99+%, Acros), dimethyl sulfoxide (99.9%, Certified ACS, Fisher), acetone (99.8% Certified ACS, Fisher), methanol (99.9%, Certified ACS, Fisher), hexane (99.9%, Certified ACS, Fisher), ethyl acetate (99.9%, Certified ACS, Fisher), tetrabutylammonium bromide (TBAB, 99%, Acros), sodium bicarbonate (NaHCO₃) (99+%, Acros) and triethylamine (NEt₃) (99.91%, Chem-impex) were used as received. Methylene chloride (99.9%, Certified ACS, Fisher) was dried over CaH₂ and freshly distilled before use. Deionized water was used for the SET-LRP experiments done in acetone/water 8/2 mixture and HPLC grade water (Fischer) was used in the SET-LRP experiments of OEOMEA. Me₆-TREN was synthesized according to a literature procedure.¹⁰⁴ Cu (0) wire (20 gauge wire, 0.812 mm diameter from Fischer) was activated with anhydrous hydrazine according to a procedure elaborated in our laboratory.^{63,64}

Methods. 500 MHz ¹H-NMR spectra were recorded on a Bruker DRX500 NMR instrument at 28 °C in CDCl₃ containing tetramethylsilane (TMS) as internal standard. For chain end analysis of PMA and POEOMEA samples, the delay time (D1) was set at 8 s and the number of scans was set at a minimum of 100 scans. Gel permeation chromatography (GPC) analysis of the polymer samples was performed using a Shimadzu LC-20AD high-performance liquid chromatograph pump, a PE Nelson Analytical 900 Series integration data station, a Shimadzu

RID-10A refractive index (RI) detector, and three AM gel columns (a guard column, 500 Å, 10 μ m, and 10⁴ Å, 10 μ m). THF (Fisher, HPLC grade) was used as eluent at a flow rate of 1 mL min⁻¹. The number-average (M_n) and weight-average (M_w) molecular weights of PMA and POEOMEA samples were determined with poly(methyl methacrylate) (PMMA) standards purchased from American Polymer Standards. MALDI-TOF analysis was performed on a Voyager DE (Applied Biosystems) instrument with a 337-nm nitrogen laser (3 ns pulse width). The accelerating potential was 25 kV, the grid was 90%, the laser power was 1950 arbitrary units, and a positive ionization mode was used. The sample analysis was performed with 2-(4-hydroxyphenylazo)benzoic acid as matrix. Solutions of the matrix (25 mg mL⁻¹ in THF), NaCl (2 mg mL⁻¹ in deionized H₂O), polymer (10 mg mL⁻¹) were prepared separately. The solution for MALDI-TOF analysis was obtained by mixing the matrix, polymer and salt solutions in a 5/1/1 volumetric ratio. Then 0.5 μ L portions of the mixture were deposited onto three wells of a sample plate and dried in air at room temperature before being subjected to MALDI-TOF analysis.

Synthesis of 1,4-*bis*(2-Bromopropionyl)piperazine (BPP). Piperazine (0.78g, 9.1 mmol), triethylamine (2.53mL, 18.2 mmol), and 35 mL anhydrous DCM were placed in a 100-mL round-bottom flask. A solution of 2-bromopropionyl bromide (2mL, 19.10 mmol) in 10 mL anhydrous pyridine was added dropwise at 0-5°C during 2h and the reaction mixture was stirred overnight. The solution was filtered and washed with 5% HCl, diluted NaHCO₃, brine, and water and dried with MgSO₄. After removal of the drying agent by filtration and the solvent under reduced pressure, BPP was obtained as a white powder after recrystallization using warm

ACS Paragon Plus Environment

methanol (2.18g, 65% yield). mp 162°C (lit. mp 162°C¹⁰⁵ and 163-164°C⁹⁷). ¹H NMR (500 MHz, chloroform-d) $\delta = 4.50$ (q, 2H, C<u>H</u>-CH₃), 4.20-3.20 (m, 8H, CH₂-N), 1.85 (d, 6H, CH-C<u>H₃</u>).

Synthesis of 4-(2-Bromopropionyl)morpholine (BPM). Morpholine (6.00g, 68.7 mmol), triethylamine (8.00mL, 57.3 mmol), and 90 mL anhydrous DCM were placed in a 250-mL round-bottom flask. A solution of 2-bromopropionyl bromide (6mL, 57.3 mmol) in 10 mL anhydrous pyridine was added dropwise at 0-5°C during 2h and the reaction mixture was stirred overnight. The solution was filtered and washed with 5% HCl, diluted NaHCO₃, brine, and water and dried with MgSO₄. After concentration, the resulting product was purified by column chromatography (hexane: ethyl acetate 2:1) to give a pale orange liquid (11,43g, 75% yield).

¹H NMR (500 MHz, chloroform-d) $\delta = 4.50$ (q, 2H, C<u>H</u>-CH₃), 3.85-3.40 (m, 8H, CH₂-N and CH₂-O), 1.83 (d, 6H, CH-C<u>H₃</u>)

General Procedure for SET-LRP of MA Initiated with BPP or BPM and Catalyzed with Inactivated and Hydrazine Activated Cu(0) Wire in DMSO. Cu(0) wire (12.5 cm or 4.5 cm of 20 gauge wire) was measured and cleaned using a paper towel soaked with acetone. Then it was wrapped around a Teflon-coated magnetic stir bar, rinsed one more time with acetone and added to a 25 mL Schlenk flask. The flask was sealed with a rubber septum, placed under vacuum and backfilled with nitrogen. Optionally, the Cu(0) wire was activated with anhydrous hydrazine according to a procedure elaborated in our laboratory.^{63,64} The monomer (MA, 1 mL), solvent (DMSO, 500 µL), initiator (BPP, 8.97 mg or BPM 11.1 mg), and ligand (Me₆-TREN, 1.4 µL) were added to the Schlenk flask in the following order: monomer, solvent, ligand, and initiator. The reaction mixture was then deoxygenated by seven freeze-pump-thaw cycles using Page 9 of 51

Biomacromolecules

an acetone/dry ice bath as a freezing mixture. After the deoxygenation protocol, the catalyst was transferred under a positive flow of nitrogen to the Schlenk flask containing all the reactants and held above the reaction mixture using a small magnet. After two additional deoxygenation cycles, the flask was placed in a water bath thermostated at 25 ± 0.5 °C and the Cu(0) wire wrapped around the stir bar was introduced into the reaction mixture to start the SET-LRP. To determine the monomer conversion during the reaction, after purging the side arm of the flask with nitrogen, samples of approximately one or two drops were taken at predetermined times using a nitrogen flushed gas tight syringe and dissolved immediately in oxygenated $CDCl_3$ for ¹H-NMR analysis. In order to measure the molecular weight and dispersity values, the polymerization samples were dissolved in THF and passed through basic Al_2O_3 to remove any residual copper. The volatiles were removed under vacuum and samples were dissolved in THF for GPC analysis. The PMA was precipitated in cold methanol, collected and dried under vacuum until constant weight before 500 MHz ¹H NMR analysis. In specific cases, bromine PMA chain-ends were modified using thio-bromo "click" modification with thiophenol following the previously reported method developed in our laboratory.

General Procedure for SET-LRP of MA Initiated with BPP Catalyzed with Cu(0) Generated by "Prereduction" of CuBr₂/Me₆-TREN with NaBH₄ in Acetone-Water Mixture. NaBH₄ was removed from the glove box just before being used and weighed into an oven-dried test tube (20×150 mm), using a balance with ± 0.01 mg error. The tube was charged with a magnetic stir bar, fitted with a rubber septum and placed under a low flow of nitrogen. Next, TBAB was weighed using weighing paper and transferred to a second test tube (15×130 mm). Then, as received acetone was added to dissolve TBAB followed by the addition of monomer

and initiator (added in the order mentioned), and sealed with a rubber septum. In a third test tube $(15 \times 85 \text{ mm})$ water and ligand were mixed (added in the order mentioned), and sealed with a rubber septum. Both test tubes were degassed by bubbling nitrogen for 30 min at 0 °C. 20 gauge needles were used and the sparging rate was approximately 15 bubbles per second. Meanwhile, CuBr₂ was weighed into the test tube (15×85 mm) and placed under positive nitrogen flow to remove oxygen. After degassing, the solution of water with ligand was transferred under nitrogen to a test tube containing CuBr₂ and was stirred for about one min at 25 °C until complete dissolution of CuBr₂. Then, this mixture was added quickly to the NaBH₄ using an N_2 flushed gas tight syringe. A strong stirring (stir rate setting 10 = 1200 RPM on this particular IKA Ceramag Midi hot plate) was applied during the reduction of CuBr₂ to Cu(0). After the reduction period, the second degassed solution of monomer, initiator, acetone, and TBAB was added to the test tube containing the mixture of Cu(0) and Cu(II) colloids and the tube was placed in a water bath thermostated at 25 ± 0.5 °C. This addition was considered as time zero. A strong stirring (stir rate setting 10 = 1200 RPM on this particular IKA Ceramag Midi hot plate) was used at the beginning, which was then gradually decreased (to stir rate setting 4 = 480 RPM) to maintain smooth stirring as the viscosity of the reaction medium increased. To determine the monomer conversion during the reaction, samples of approximately one or two drops were taken at predetermined times using a nitrogen flushed gas tight syringe and dissolved immediately in oxygenated CDCl₃ for ¹H-NMR analysis. In order to measure the molecular weight and dispersity values, the polymerization samples were dissolved in THF and passed through basic Al_2O_3 to remove any residual copper. The volatiles were removed under vacuum and samples were dissolved in THF for GPC analysis.

Biomacromolecules

General Procedure for SET-LRP of OEOMEA Initiated with BPM Catalyzed with Cu(0) Generated by Disproportionation of CuBr in Water. To a 25 mL Schlenk flask fitted with a magnetic stir bar, a mixture of H₂O (HPLC, 0.55 mL), and Me₆-TREN (11.2 µL) was added and fitted with a rubber septum. The mixture was degassed by purging nitrogen through the solution for 30 min. After CuBr (5.98 mg) was carefully added under slight positive pressure of N₂. The solution was stirred for 30 min at 25 °C to generate a bluish green solution of CuBr₂/Me₆-TREN and the brown suspension of Cu(0) powder. Meanwhile, a vial was charged with a magnetic stir bar, H₂O (0.55 mL), BPM (23.13 mg) and OEOMEA (1 g), sealed with a rubber septum. This mixture was purged with nitrogen for 30 min. After that, the degassed water/initiator/monomer solution was transferred via a degassed syringe equipped with a long needle through the septum to the bottom of the Schlenk flask containing Cu(0)/CuBr₂/Me₆-TREN, previously placed in a water bath thermostated at 25 ± 0.5 °C, to start SET-LRP. To determine the monomer conversion during the reaction, samples of approximately one or two drops were taken at predetermined times using a nitrogen flushed gas tight syringe and dissolved immediately in oxygenated D_2O for ¹H-NMR analysis In order to measure the molecular weight and dispersity values, the polymerization samples were dissolved in THF and passed through basic Al_2O_3 to remove any residual copper. The volatiles were removed under vacuum and samples were dissolved in THF for GPC analysis. The POEOMEA was precipitated in cold diethyl ether, collected and dried under vacuum until constant weight before 500 MHz ¹H NMR analysis. In specific cases, ωbromo PMA chain-ends were modified using thio-bromo "click" modification with thiophenol following the previously reported method developed in our laboratory.

General Procedure for SET-LRP of OEOMEA Initiated with BPM and Catalyzed with Cu(0) Generated by Reduction of CuBr₂ with NaBH₄ in Water. According to a previously reported method.⁶² a 25 mL Schlenk flask was charged with a magnetic stir bar. CuBr₂ (4.65 mg) and NaBH₄ (0.40 mg) and sealed with a rubber septum. NaBH₄ was removed from the glove box just before being used and weighed on a balance with ± 0.01 mg error. The flask was purged with nitrogen for 30 min. Meanwhile, H_2O (0.55 mL) and Me₆-TREN (5.6 μ L) were introduced into a test tube (15×85 mm), the tube was sealed with a rubber septum, and the mixture was deoxygenated by bubbling nitrogen for 30 min. Then, the degassed mixture was transferred via a degassed syringe to the bottom of the Schlenk tube with CuBr₂ and NaBH₄ where the reduction of CuBr₂ to Cu(0) was allowed to proceed for 30 min. Immediately after, a deoxygenated mixture containing H₂O (0.55 mL), BPM (23.13 mg) and OEOMEA (1 g) was introduced to start SET-LRP that was conducted at 25 ± 0.5 °C. To determine the monomer conversion during the reaction, samples of approximately one or two drops were taken at predetermined times using a nitrogen flushed gas tight syringe and dissolved immediately in oxygenated D₂O for ¹H-NMR analysis. In order to measure the molecular weight and dispersity values, the polymerization samples were dissolved in THF and passed through basic Al₂O₃ to remove any residual copper. The volatiles were removed under vacuum and samples were dissolved in THF for GPC analysis. The POEOMEA was precipitated in cold diethyl ether, collected and dried under vacuum until constant weight before 500 MHz ¹H NMR analysis. In specific cases, ω-bromo PMA chain-ends were modified using thio-bromo "click" modification with thiophenol following the previously reported method developed in our laboratory.

RESULTS AND DISCUSSION

Biomacromolecules

Monofunctional and Bifunctional Water Insoluble and Water Soluble SET-LRP Initiators from Piperazine and Morpholine. Piperazines and morpholines are widespread structural templates in drug discovery with a high number of positive hits encountered in biological applications.¹⁰³ Several disubstituted haloacylpiperazines were previously synthesized and investigated as cytostatic alkylating drugs.^{97,106} Regardless of their anticancer activity, 2haloacylpiperazine and morpholine derivatives and other initiators containing tertiary amide linkages are of interest for SET-LRP and other LRP as they will confer high stability in biological environments to the synthesized polymers.⁹⁴ The synthesis of bifunctional and monofunctional SET-LRP initiators 1,4-bis(2-bromopropionyl)piperazine (BPP) and 4-(2bromopropionyl)morpholine (MBP) from piperazine and morpholine is outlined in Scheme 1. Note that BPP is the α -isomer of 1,4-*bis*(3-bromopropionyl)piperazine (Vercyte[®]), a cytostatic drug manufactured by Abbot laboratories.

Scheme 1. Synthesis of bifunctional and monofunctional initiators BPP and BPM.

BPP and BPM were prepared in one-step, according to modified literature methods, *via* the N-acylation of piperazine and morpholine, with a slight excess of 2-bromopropionyl bromide in dry dichloromethane (DCM) in the presence of triethylamine or NaHCO₃.^{97-100,107} The pure

bifunctional initiator BPP was obtained as a white crystalline solid [mp 162°C (lit. mp 162°C¹⁰⁵ and 163-164°C⁹⁷)] in higher than 65% yield after recrystallization in MeOH, whereas BPM was isolated as a pale orange liquid (75% yield) after purification by silica flash column chromatography eluting with hexane/ethyl acetate (2:1). ¹H NMR analysis confirmed the purity and chemical structure of both initiators.

Interestingly, ¹H NMR analysis of the symmetric initiator BPP in CDCl₃ measured at room temperature showed that the signals of the methylene protons of the piperazine ring appear between 3.3 and 4.2 ppm as a complex spectroscopic pattern, arising from slow conformation changes (Figure 1a).

a)

Br

CH₂-N

b)

CH₂-O₁ CH₂-N

25 °C

52

53 54

55 56

Such behavior is related to the existence of *syn* and *anti* conformers resulting from the partial double bond character of N, N-dialkylated amides. However, the complexity of the signals for the N-CH₂ groups suggests that the presence of 2-bromoacyl substituents in BPP also reduces the flipping of the piperazine ring conformations. As can be seen in Figure 1a, temperature-dependent ¹H NMR analysis of BPP confirmed the limited stereo dynamic nature of BPP at room

temperature. On gradual heating, signals of the N-CH₂ protons of the piperazine ring became narrower and coalesced at 54°C into a singlet centered at 3.7 ppm. Also in the case of haloacyl substituted morpholine initiator (BPM), the ¹H NMR analysis suggests the presence of rotational conformers. At room temperature, the ring protons of the morpholine moiety (-NCH₃ and – OCH₂) appeared as four signals (ratio 1:4:1:2) in the ¹H NMR spectra measured in CDCl₃ at 25°C. Normally, under these conditions only three signals are expected for acylated morpholines arising from the presence of two different conformers (rotamers). As expected, when monitoring ¹H NMR spectrum of BPM over a minimum range of 30°C, the four signals gradually disappear and merge into the two expected signals at increased temperatures (>50 °C) (Figure 1b).

Cu(0) Wire-Catalyzed SET-LRP of MA Initiated with BPP in DMSO. The polymerization of methyl acrylate (MA) using the bifunctional initiator BPP was first investigated in DMSO using Cu(0) wire/Me₆-TREN-catalyzed SET-LRP. As can be seen in Scheme 2a, BPP produces a telechelic PMA with a very strong piperazine dipeptoid-type core but is much easier to prepare than other stable carbochain SET-LRP bifunctional initiators recently used by our laboratory⁶³ i.e. the synthesis of 2,5-dibromohexanedionate from adipic acid implies a three-step synthesis.⁸⁵

ACS Paragon Plus Environment

Biomacromolecules

Scheme 2. SET-LRP of MA initiated with BPP catalyzed by a) 12.5 cm of a 20 gauge Cu(0) wire/Me₆-TREN in DMSO and b) Cu(0) generated by the prereduction of CuBr₂ with NaBH₄ in the presence of TBAB in acetone/water mixture at 25°C.

The polymerizations following this methodology were performed under the following conditions: $[MA]/[BPP]/[Me_6-TREN] = 444/1/0.2$ in 50% (v/v) DMSO at 25°C. This system was investigated using both inactivated 55,65 and hydrazine activated Cu(0) wire 42,63,64 (Figure 1a and b, respectively). The kinetic plots of SET-LRP initiated with bis(2-bromopropionyloxy)ethane (BPE), under the same experimental conditions, and the evolution of the number-average molecular weight (M_n) and the dispersity (M_w/M_n) with theoretical molar mass (M_n^{th}) calculated for a LRP process are shown in Figure 1c for comparison. In all cases, a linear dependence of ln[M]₀/[M] with time, which is characteristic of an LRP process with first order rate of polymerization in growing radical species, is observed. As expected, the polymerization in the presence of activated Cu(0) wire/Me₆-TREN is remarkably faster compared to the polymerization catalyzed with non-treated Cu(0) wire.^{40,63,64} The activation protocol that involves washing the wire with acetone and stirring in anhydrous hydrazine solution increases the $k_{\rm p}^{\rm app}$ by 57% (from 0.053 min⁻¹ to 0.092 min⁻¹, Fig. 1a and b). The greater $k_{\rm p}^{\rm app}$ for the hydrazine activated Cu(0) wire experiment is attributed to the removal of the less reactive Cu₂O layer on the commercial Cu(0) surface, in combination with surface roughness morphology changes that produce an enhancement in the available surface area.^{63,108}

Figure 2. Kinetic plots and molecular weight and dispersity evolutions for the SET-LRP of MA in DMSO initiated with BPP (a, b, d, e) and BPE (c), catalyzed by Cu(0) wire at 25 $^{\circ}$ C. Reaction conditions: MA = 1 ml, DMSO = 0.5 ml; (a) [MA]₀/[BPP]₀/[Me₆-TREN]₀ = 444/1/0.2 using inactivated Cu (0) wire; (b) [MA]₀/[BPP]₀/[Me₆-TREN]₀ = 444/1/0.2 using NH₂NH₂ activated Cu(0) wire; (c) [MA]₀/[BPE]₀/[Me₆-TREN]₀ = 444/1/0.2 using NH₂NH₂ activated Cu (0) wire; (d) GPC traces of PMA obtained in (a); (e) GPC traces of PMA obtained in (b). Cu(0) wire = 12.5 cm of 20 gauge wire. Experimental data in different colors were obtained from different kinetic experiments.

In both cases, the experimental number-average molecular weight (M_n) , determined by size exclusion chromatography (SEC), of the resulting PMA exhibits a linear evolution that is close to theoretical values. The polymerization using activated Cu(0) reached ~80% conversion in less than 20 min, achieving PMA with M_n 32,176 Da and slightly narrower dispersity $(M_w/M_n=1.09)$ than that obtained from the non-treated catalyst $(M_w/M_n = 1.13)$.^{63,109} It is important to highlight that the SET-LRP of MA initiated by BPP is comparable to that initiated with BPE, the typical ester-based bifunctional initiator used by our laboratory,^{36,43,63,110} although a slightly lower I_{eff}

Page 19 of 51

Biomacromolecules

can be observed (see Figure b and c). This result suggests a lower rate of initiator from the peptoid-type initiator. In fact, BPP is expected to possess less active C-Br bonds than the corresponding PMA propagating chains as a result of the more-electron-donating nitrogen atom.

500 MHz ¹H NMR spectra of PMA samples isolated at 84% (M_n =33,870, M_w/M_n =1.13) and 82% (M_n =32,176, M_w/M_n =1.09) monomer conversion from inactivated and hydrazine-activated Cu(0) wire-catalyzed experiments using BPP as initiator, together with their proton assignments, are presented in Figure 3. Due to the bifunctional structure of BPP initiator, the chain end functionality of the prepared PMAs is 100% since the only termination occurring during the radical polymerization of acrylates is by bimolecular termination.¹⁴ Interestingly, after growing PMA chains from BPP initiator, the piperazine-derived heterocyclic nucleus of the corresponding polymer does not show the above-mentioned reduced stereo dynamic nature observed at room temperature for BPP. As can be seen in Figure 3, N-CH₂ protons appear in this case as a broad signal at 3.6 ppm suggesting enhanced mobility. The degree of termination in both PMA samples can be accurately and directly calculated from the ¹H NMR spectra by integrating the peaks corresponding to the initiator derived –CH(CH₃) (δ = 1.10 ppm) with the αbromo chain end –CH(CO₂CH₃)Br (δ = 4.25 ppm) without the need to modify the polymer chain ends *via* thio-bromo click methodology.^{15,21,36,111,112,113}

Figure 3. 500 MHz ¹H-NMR spectra recorded in CDCl₃ along with the assignments of the various protons of Br-PMA-Br isolated at (a) 84% and (b) 82% monomer conversion from SET-LRP of MA in DMSO initiated with BPP, catalyzed by non-treated Cu (0) wire (a) and NH₂NH₂ activated Cu(0) wire (b). Reaction conditions: $[MA]_0/[BPP]_0/[Me_6-TREN]_0 = 444/1/0.2$. Cu (0) wire = 12.5 cm of 20 gauge wire.

ACS Paragon Plus Environment

Biomacromolecules

In accordance to previous results reported by our laboratory, SET-LRP does not require high levels of bimolecular termination during the early stages of the polymerization that is demanded by other metal-catalyzed LRP techniques to generate the persistent radical effect.¹¹⁴ This is because the disproportionation of the *in situ* generated Cu(I)X/L, regenerating the Cu(0) activator and Cu(II)X₂, allows for accumulation of sufficient levels of Cu(II)X₂ deactivator. In this case, SET-LRP showed slightly higher levels of termination when performed with inactivated Cu(0) wire, although in both cases the degree of bimolecular termination can still be considered low considering the ultrafast rate of polymerization (PMA with M_n 35,000 Da and M_w/M_n =1.40 is achieved in less than 20 min).

To further verify the chain end functionality of the PMA prepared from BPP, the polymer isolated from an experiment under conditions $[MA]_0/[BPP]_0/[Me_6-TREN]_0 = 111/1/0.2$ at 80% monomer conversion ($M_n = 10,300, M_w/M_n=1.40$) was treated with thiophenol in the presence of triethylamine. This "thio-bromo" click reaction results in a complete nucleophilic displacement of active α -bromo chain ends into the corresponding thioether derivatives. Figure 4 shows that the original molecular weight peaks, corresponding to PMA with bromine terminals, are completely missing after nucleophilic displacement of the secondary alkyl bromide with thiophenol and a new series of peaks, spaced by 86 mass units, appears at about 60 molar mass units above the previous one. This value corresponds to two times the molar mass difference between –S-Ph and –Br. The minor peaks in the spectrum of the modified PMA, at 22 mass units below the main peaks, correspond to those of the polymeric chains associated with H⁺. The combination of 500-MHz ¹H-NMR, GPC, and MALDI-TOF analysis demonstrated that the use of the peptoid-type initiator BPP does not compromise the appealing characteristics of SET-LRP initiated from α -haloester-type initiators in polar disproportionation solvents such as DMSO, and

allows the ultrafast preparation of telechelic PMA with both narrow molecular weight distribution and quantitative chain-end functionality.

Figure 4. MALDI-TOF spectra of Br-PMA-Br isolated at 80% conversion from the SET-LRP of MA initiated with BPP and catalyzed by activated Cu (0) wire in DMSO at 25 °C before (a) and after (b) "thio-bromo click" reaction. Reaction condition: MA = 1 ml, DMSO = 0.5 ml, $[MA]_0/[BPP]_0/[Me_6-TREN]_0 = 111/1/0.2$. NH₂NH₂ activated Cu (0) wire = 12.5 cm of 20 gauge wire. Dotted line in the expansion after thioetherification shows the original peak from before thioetherification, while 59.9 represents the increase in molar mass after thioetherification *i.e.*, 2*(SC6H5 (109.2) - Br (79.9) = 59.9).

SET-LRP of MA Initiated with BPP in a Biphasic Acetone-Water Mixture Catalyzed with Cu(0) Generated by "Prereduction" of CuBr₂/Me₆-TREN with NaBH₄. In a recent publication, our group reported the development of an ultrafast SET-LRP of hydrophobic acrylates in biphasic acetone-water mixtures.⁵¹ In spite of the fact that acetone is an excellent solvent for many polymers including polyacrylates, its low equilibrium constant for the disproportionation of Cu(I)X limited its use in SET-LRP so far.^{45,55} The elaboration of this method is part of our recent efforts to eliminate the dependence of SET-LRP to polar disproportionating solvents by using biphasic SET-LRP systems in which the first phase consists

Biomacromolecules

of a water soluble or insoluble disproportionating or non-disproportionating solvent or a mixture of disproportionating and non-disproportionating solvents containing the Cu(0), initiator, monomer, and polymer and a second phase containing the solvent, water, and Cu(II)X₂ together with Me₆-TREN.^{50,51,52,54}

The SET-LRP of MA initiated with BPP was also investigated in an acetone/water mixture (8/2, v/v) in the presence of tetra-*n*-butylammonium (TBAB) (Scheme 2b). In this biphasic system, the electron-donor Cu(0) is externally generated from CuBr₂. As a proof of concept, we applied a methodology that involves the prereduction of CuBr₂ to colloidal Cu(0) by using NaBH₄ as reducing agent. Thus, after allowing the generation of Cu(0) particles for a predetermined period of time, the aqueous phase containing Cu(0) and Me₆-TREN is mixed with the solution containing monomer, acetone, TBAB and an initiator (Figure 5a). As can be seen in Figure 5b, the kinetic experiment yielded almost 100% monomer conversion in 45 min, exhibiting a first order linear evolution of $\ln[M]_0/[M]$ with time ($[MA]_0/[BPP]_0/[Me_6-TREN]_0/[CuBr_2]_0/[NaBH_4]_0/[TBAB]_0 = 222/1/0.4/0.4/0.32/0.1)$. Figures 5b and c show that the experimental M_n increases linearly with conversion indicating a controlled radical reaction while, at the same time, the obtained PMA at high conversion shows a low M_w/M_n .

Prereduction of Cu(II)Br₂ in the water/Me₆-TREN phase with TBAB

Figure 5. (a) "Prereduction" methodology for the SET-LRP of MA catalyzed by Cu (0) generated from an aqueous solution containing CuBr₂, Me₆-TREN and the reductant NaBH₄. (b) Kinetic plot and molecular weight and dispersity evolutions for the SET-LRP of MA in acetone/water mixture = 8/2 (v/v) mixture initiated with BPP and catalyzed by Cu (0) generated by *in situ* reduction of CuBr₂ with NaBH₄ at 25 ^oC. The v/v ratio must be multiplied by 10 to obtain % acetone/% water. The value of v + v must be divided by 5 to obtain the total volume of solvents, 2 ml. Reaction conditions: [MA]₀/[BPP]₀/[Me₆-TREN]₀/[CuBr₂]₀/[NaBH₄]₀/[TBAB]₀ = 444/1/0.4/0.4/0.32/0.1. Prereduction time 28 seconds. (c) GPC traces of PMA obtained in (b).

SET-LRP Initiated with BPM in Organic and Aqueous Media. The solubility of the morpholine-derived monofunctional initiator BPM in polar organic solvents and water

encouraged us to study SET-LRP in both organic and aqueous media using: (i) hydrazineactivated Cu(0) wire in DMSO, and Cu(0) generated externally by (ii) the disproportionation of CuBr and (iii) the reduction of CuBr₂ with NaBH₄ in water (Scheme 3). Regardless of the monomer/SET-LRP methodology used, polymers synthesized using BPM initiators contain a morpholine function located at the ω -chain end. This is a biologically relevant template considered an important building block in the field of medicinal chemistry.¹⁰³

Scheme 3. SET-LRP initiated with BPM of a) MA catalyzed by 4.5 cm of a 20 gauge Cu(0) wire/Me₆-TREN in DMSO, b) OEOMEA catalyzed by Cu(0) powder generated by disproportionation and used *in situ* and c) OEOMEA catalyzed by Cu(0) generated by the prereduction of CuBr₂ with NaBH₄ in water at 25°C.

ACS Paragon Plus Environment

Figure 6. Kinetic plots and molecular weight and dispersity evolutions for the SET-LRP of MA (a) in DMSO and OEOMEA (b and c) in water initiated with BPM and catalyzed by Cu (0) (a) wire, (b) generated by disproportionation of CuBr in water and (c) generated by *in situ* reduction of CuBr₂ with NaBH₄ at 25 °C. Reaction conditions: MA = 1 ml, DMSO = 0.5 ml; (a) $[MA]_0/[BPM]_0/[Me_6-TREN]_0 = 222/1/0.1$ using NH₂NH₂ activated Cu (0) wire = 4.5 cm of 20 gauge wire; (b) $[MA]_0/[BPM]_0/[Me_6-TREN]_0/[CuBr]_0 = 20/1/0.4/0.4$; (c) $[MA]_0/[BPP]_0/[Me_6-TREN]_0/[Me_6-TREN]_0/[CuBr]_0 = 20/1/0.4/0.4$; (c) $[MA]_0/[BPP]_0/[Me_6-TREN]_0/[Me_6-TREN]_0/[Me_6-TREN]_0/[Me_6-TREN]_0/[Me_6-TREN]_0 = 20/1/0.4/0.4$; (c) $[MA]_0/[BPP]_0/[Me_6-TREN]_0/[M$

Biomacromolecules

TREN]₀/[CuBr₂]₀/[NaBH₄]₀ = 20/1/0.2/0.2/0.1. Experimental data in different colors were obtained from different kinetic experiments.

First, SET-LRP of MA initiated with BPM was investigated in DMSO using hydrazineactivated Cu(0) wire. As can be seen in Figure 6a, a fast polymerization took place with no induction period. The polymerization proceeded with first order kinetics to near complete conversion, showing a linear evolution of experimental M_n that remains close to the theoretical values during the whole process. In spite of the fact that BPM is a monofunctional initiator, it is important to highlight that the initiator efficiency is comparable to that obtained for the peptoidtype bifunctional initiator BPP.

Although commercially available Cu(0) powder and Cu(0) wire may be used as a catalyst in aqueous SET-LRP, the quantitative disproportionation of CuBr to Cu(0) and CuBr₂ in H₂O makes it possible to use the *in situ* generated Cu(0) as a catalyst for SET-LRP.^{10,15,33,35,47,115,116} Alternatively, as shown above, Cu(0) can also be generated externally taking advantage of the instantaneous reduction of CuBr₂ with NaBH₄ in water.⁶² Both protocols were applied here to the SET-LRP of a water soluble monomer such as oligo(ethylene oxide) methyl ether acrylate (OEOMEA) initiated with BPM using the following conditions: [OEOMEA]₀/[BPM]₀/[Me₆-TREN]₀/[CuBr₂]₀/]NaBH₄]₀ = 20/1/0.2/0.2/0.1 (Figure 6a and b, respectively). Kinetic plots for both experiments reveal extremely fast polymerizations of OEOMEA reaching almost complete conversion in 4 min. Throughout the polymerization, POEOMEA chains grow extremely fast even though they show narrow M_w/M_n and experimental M_n , determined by GPC using PMMA standards, close to theoretical values.

Figure 7. 500 MHz ¹H-NMR spectra recorded in CDCl₃ along with the assignment of the various protons after thioetherification of bromine chain-end by "thio-bromo" click reaction of poly(OEOMEA) isolated at 96% monomer conversion from SET-LRP of OEOMEA in water initiated with BPM and catalyzed by Cu(0) generated by disproportionation of CuBr in water. Reaction conditions: $[MA]_0/[BPM]_0/[Me_6-TREN]_0/[CuBr]_0 = 20/1/0.4/0.4$. ¹H-NMR resonances from residual diethyl ether and acetonitrile present with the poly(OEOMEA) is indicated with "*" and "•", respectively.

Undoubtedly, a very fast LRP using a monofunctional initiator can generate doubts about the chain end functionality of the resulting polymer. The polymer isolated from the experiment where the Cu(0) catalyst was generated externally from CuBr was characterized by 500 MHz ¹H-NMR spectroscopy to dispel any doubts. In this case, to assess the bromine chain-end functionality of the isolated POEOMEA at 96% conversion it was necessary to use "thio-bromo" click reaction due to the overlapping of the signal corresponding to the secondary bromine chain end ($-C\underline{H}(CO_2R)Br$) with a signal of the polymeric chain ($-COOC\underline{H}_2$ -). Figure 7 shows the 500

MHz ¹H NMR spectrum of the purified polymer after thioetherification reaction from which the bromine-chain end fidelity of the parent polymer was indirectly determined by the integration of the ratio between the phenyl (Ar-H, $\delta = 7.42$ ppm) and the pharmacophore-containing initiator (– CH(C<u>H</u>₃) at $\delta = 1.10$ ppm) chain ends. The high degree of functionality (f = 91% at 96% conversion) is consistent with a surface mediated activation and bimolecular termination mechanism, previously reported by our laboratory, taking place throughout the environmentally-friendly aqueous SET-LRP protocol where Cu(0) nanopowder is generated *in situ* from CuBr/Me₆-TREN *via* instantaneous disproportionation.³³

Why Peptoid-type Initiators? Traditionally, Cu(0)-catalyzed SET-LRP has gone hand in hand with α -haloester-type initiators.^{14,15,21} Although they are synthesized in a straightforward manner directly from the corresponding hydroxylated compound and provide efficient initiation, the labile nature of the ester groups compromise the hydrolytic stability of the resulting polymer architectures toward catalytic hydrolysis, transesterification and transamidation under acidic and basic conditions¹¹⁰ as well as in enzymatic environments. Easily accessible *via* N-acylation of the corresponding secondary amines, tertiary amides, or peptoid-type linkages in a wider sense, are in the spotlight of our research not only because they are far more hydrolytically stabile than ester-type initiators but also because they are biocompatible and have not been observed to degrade enzymatically.^{86-90, 94-96} Additionally, in the results presented above, we have shown that tertiary amide-type initiators can be considered efficient initiators because they provide excellent control over molecular weight evolution, distribution, and polymer chain ends of the resulting polymers. Recently piperazine-based peptoid repeat units have been demonstrated to be both hydrolytically and enzymatically stable.⁹⁶ Thus, the simple synthesis, biocompatibility, and

hydrolytic and enzymatic stability of peptoid-type initiators and their availability as both efficient monofunctional and bifunctional initiators that can be soluble or insoluble in water make them appealing for the preparation of a large diversity of stable macromolecular and biomacromolecular architectures that are suitable for numerous biological and biomedical applications.

CONCLUSIONS

SET-LRP has been using secondary and tertiary α -haloesters-type initiators indiscriminately since its origins. In spite of being easily accessible via O-acylation of hydroxylated compounds, a serious drawback of such initiators is the poor hydrolytic and enzymatic stability that is ultimately transferred to the synthesized polymer. Here, we demonstrate that 2-bromopropionyl peptoid-type initiators are an alternative in applications at the interface between macromolecular biomacromolecules, biology and medicine where hydrolytic stability and science. biocompatibility could be a serious drawback.⁹⁴⁻⁹⁶ Regardless of its properties as a cytostatic alkylating drug, 1,4-bis(2-bromopropionyl)piperazine was successfully used to initiate the SET-LRP of MA in DMSO and in a biphasic acetone-water mixture. Whereas in DMSO Cu(0) wire was used as catalyst, Cu(0) was generated externally from CuBr₂ via instantaneous reduction with NaBH₄ in the biphasic methodology. A monofunctional initiator was also synthesized from morpholine by straightforward N-acylation with 2-bromopropionyl bromide. In this case, 4-(2bromopropionyl)morpholine was used in both organic (DMSO) and aqueous SET-LRP protocols to polymerize MA and the water soluble acrylate OEOMEA. In the case of the SET-LRP in water, Cu(0) was generated externally in two different ways: (i) from CuBr₂ using NaBH₄ as a CuBr/Me₆-TREN taking advantage of its instantaneous reductant and (ii) from

ACS Paragon Plus Environment

disproportionation in water. In these studies we have shown that, without exception, SET-LRP initiated with the reported peptoid-type monofunctional and bifunctional initiators exhibited excellent control over molecular weight evolution and distribution as well as polymer chain ends. Although this was not the motivation of this work, the fact that the initiators reported here lead to polymers bearing well-known pharmacophore functions underscores the possibility of studying the biological properties of these and other polymers prepared from them.

AUTHOR INFORMATION

Corresponding Author

*E-mail: percec@sas.upenn.edu

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

Financial support by the National Science Foundation (DMR-1066116 and DMR-1120901), the P. Roy Vagelos Chair at the University of Pennsylvania and the Humboldt Foundation is gratefully acknowledged. G. Lligadas acknowledges support from Spanish Ministerio de Ciencia e Innovación (MICCIN) through project MAT2014-53652-R and the Serra Húnter Programme.

REFERENCES

(1) Samanta, S. R.; Levere, M. E.; Percec, V. SET-LRP of Hydrophobic and Hydrophilic Acrylates in Trifluoroethanol. *Polym. Chem.* **2013**, *4*, 3212-3224.

(2) Rosen, B. M.; Percec, V. Implications of Monomer and Initiator Structure on the Dissociative Electron-Transfer Step of SET-LRP. *J. Polym. Sci., Part A: Polym. Chem.* **2008**, *46*, 5663–5697.

(3) Samanta, S. R.; Percec, V. Synthesis of High Molar Mass Poly(n-butyl acrylate) and Poly(ethylhexyl acrylate) by SET-LRP in Mixtures of Fluorinated Alcohols with DMSO. *Polym. Chem.* **2014**, *5*, 169-174.

(4) Dax, D.; Xu, C.; Långvik, O.; Hemming, J.; Backman, P.; Willför, S. Synthesis of SET–LRP-Induced Galactoglucomannan-Diblock Copolymers. *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *51*, 5100–5110.

(5) Nikolaou, V.; Simula, A.; Droesbeke, M.; Risangud, N.; Anastasaki, A.; Kempe, K.; Wilson,
K.; Wilson, P.; Haddleton, D. M. Polymerisation of 2-Acrylamido-2-methylpropane Sulfonic
Acid Sodium Salts (NaAMPS) and Acryloyl Phosphatidylcholine (APC) *via* Aqueous Cu(0)Mediated Radical Polymerization. *Polym. Chem.* 2016, *7*, 2452-2456

Biomacromolecules

(6) Ding, W.; Lv, C.; Sun, Y.; Liu, X.; Yu, T.; Qu, G.; Luan, H. Synthesis of Zwitterionic Polymer by SET-LRP at Room Temperature in Aqueous. *J. Polym. Sci., Part A: Polym. Chem.* **2011**, *49*, 432–440.

(7) Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization. *Biomacromolecules* **2015**, *16*, 2040-2048.

(8) Nguyen, N. H.; Leng, H.; Percec, V. Synthesis of Ultrahigh Molar Mass Poly(2-hydroxyethyl methacrylate) by Single-Electron Transfer Living Radical Polymerization. *Polym. Chem.* 2013, *4*, 2760-2766.

(9) Jones, W. J.; Gibson, M. I.; Mantovani, G.; Haddleton, D. M. Tunable Thermo-Responsive Polymer-Protein Conjugates *via* a Combination of Nucleophilic Thiol-Ene "Click" and SET-LRP. *Polym. Chem.* **2011**, *2*, 572-574.

(10) Nguyen, N. H.; Leng, X.; Sun, H. J.; Percec, V. Single-Electron Transfer-Living Radical Polymerization of Oligo(ethylene oxide) Methyl Ether Methacrylate in the Absence and Presence of Air. *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *51*, 3110-3122.

(11) Zhang, Q.; Wilson, P.; Anastasaki, A.; McHale, R.; Haddleton, D. M. Synthesis and Aggregation of Double Hydrophilic Diblock Glycopolymers *via* Aqueous SET-LRP. *ACS Macro. Lett.* **2014**, *3*, 491-495.

(12) Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D. A.; Becer, C. R.; Haddleton,
D. M. Sequence-Controlled Multi-Block Glycopolymers to Inhibit DC-SIGN-gp120 Binding. *Angew. Chem. Int. Ed.* 2013, *52*, 4435-4439.

(13) Muñoz-Bonilla, A.; León, O.; Bordegé, V.; Sánchez-Chaves, M.; Fernández-García, M.
Controlled Block Glycopolymers able to Bind Specific Proteins. J. Polym. Sci., Part A: Polym.
Chem. 2013, 51, 1337-1347.

(14) Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 °C. *J. Am. Chem. Soc.* **2006**, *128*, 14156-14165.

(15) Rosen, B. M.; Percec, V. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization. *Chem. Rev.* **2009**, *109*, 5069-5119.

(16) Percec, V.; Schlueter, D.; Ungar, G. Rational Design of a Hexagonal Columnar Mesophase in Telechelic Alternating Multicomponent Semifluorinated Polyethylene Oligomers. *Macromolecules* **1997**, *30*, 645-648.

(17) Asandei, A. D.; Percec, V. From Metal-Catalyzed Radical Telomerization to Metal-Catalyzed Radical Polymerization of Vinyl Chloride: Toward Living Radical Polymerization of Vinyl Chloride. *J. Polym. Sci., Part A: Polym. Chem.* **2001**, *39*, 3392–3418.

Biomacromolecules

(18) Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Monteiro, M.; Barboiu, B.; Weichold, O.;
Asandei, A. D.; Mitchell, C. M. Aqueous Room Temperature Metal-Catalyzed Radical
Polymerization of Vinyl Chloride. *J. Am. Chem. Soc.* 2002, *124*, 4940-4941.

(19) Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Weichold, O. Living Radical Polymerization of Vinyl Chloride Initiated With Iodoform and Catalyzed by Nascent Cu(0)/Tris(2-aminoethyl)amine or Polyethyleneimine in Water at 25 °C Proceeds by a New Competing Pathways Mechanism. *J. Polym. Sci., Part A: Polym. Chem.* **2003**, *41*, 3283–3299.

(20) Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Coelho, J. F. J.; Hinojosa-Falcon, L. A.; Non-Transition Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride Initiated with Iodoform in Water at 25 °C. *J. Polym. Sci., Part A: Polym. Chem.* **2004**, *42*, 6267–6282.

(21) Lligadas, G.; Grama, S.; Percec, V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. *Biomacromolecules* **2017**, *18*, 1039-1063.

(22) Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, O.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-Mediated Living Radical Polymerization: a Versatile Tool for Materials Synthesis. *Chem. Rev.* 2016, *116*, 835-877.

(23) Anastasaki, A.; Nikolaou, V.; Haddleton, D. M. Cu(0)-Mediated Living Radical Polymerization: Recent Highlights and Applications; a Perspective. *Polym. Chem.* 2016, *7*, 1002-1026.

(24) Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-Mediated Living Radical Polymerization (Atom Transfer Polymerization and Copper(0) Mediated Polymerization): from Fundamentals to Bioapplications. *Chem. Rev.* **2016**, *116*, 1803-1949.

(25) Anastasaki, A.; Waldron, C.; Nikolaou, V.; Wilson, P.; McHale, R.; Smith, T.; Haddleton,
D. M. Polymerization of Long Chain [Metha]acrylates by Cu(0)-Mediated and Catalytic Chain
Transfer Polymerization (CCTP): High Fidelity End Group Incorporation and Modification. *Polym. Chem.* 2013, *4*, 4113-4119

(26) Rosen, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. The Disproportionation of Cu(I)X Mediated by Ligand and Solvent into Cu(0) and Cu(II)X₂ and its Implications for SET-LRP. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 5606-5628.

(27) Rosen, B. M.; Percec, V. A Density Functional Theory Computational Study of the Role of Ligand on the Stability of Cu(I) and Cu(II) Species Associated with ATRP and SET-LRP. *J. Polym. Sci., Part A: Polym. Chem.* **2007**, *45*, 4950-4964.

(28) Nguyen, N. H.; Levere, M. E.; Percec, V. TREN versus Me₆-TREN as Ligands in SET-LRP of Methyl Acrylate. *J. Polym. Sci., Part A: Polym. Chem.* **2012**, *50*, 35–46.

(29) Jing, R.; Wang, G.; Zhang, Y.; Huang, J. One-Pot Synthesis of PS-b-PEO-b-PtBA Triblock Copolymers *via* Combination of SET-LRP and "Click" Chemistry Using Copper(0)/PMDETA as Catalyst System. *Macromolecules* **2011**, *44*, 805-810.

Biomacromolecules

(30) Percec, V.; Barboiu, B.; van der Sluis, M. Self-Regulated Phase Transfer of Cu₂O/bpy, Cu(0)/bpy, and Cu₂O/Cu(0)/bpy Catalyzed "Living" Radical Polymerization Initiated with Sulfonyl Chlorides. *Macromolecules* **1998**, *31*, 4053-4056.

(31) Levere, M. E.; Nguyen, N. H.; Leng, X.; Percec, V. Visualization of the Crucial Step in SET-LRP. *Polym. Chem.* **2013**, *4*, 1635-1647.

(32) Van der Sluis, M.; Barboiu, B.; Pesa, N.; Percec, V. Rate Enhancement by Carboxylate Salts in the CuCl, Cu₂O, and Cu(0) Catalyzed "Living" Radical Polymerization of Butyl Methacrylate Initiated with Sulfonyl Chlorides. *Macromolecules* **1998**, *31*, 9409-9412.

(33) Samanta, S. R.; Nikolaou, V.; Keller, S.; Monteiro, M. J.; Wilson, D. A.; Haddleton, D. M.;
Percec, V. Aqueous SET-LRP Catalyzed with "in situ" Generated Cu(0) Demonstrates Surface
Mediated Activation And Bimolecular Termination. *Polym. Chem.* 2015, *6*, 2084-2097.

(34) Nguyen, N. H.; Kulis, J.; Sun, H. J.; Jia, Z.; van Beusekom, B.; Levere, M. E.; Wilson, D.
A.; Monteiro, M. J.; Percec, V. A Comparative Study of the SET-LRP of Oligo(Ethylene Oxide)
Methyl Ether Acrylate in DMSO and in H₂O. *Polym. Chem.* 2013, *4*, 144-155.

(35) Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M. Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me₆-TREN. *J. Am. Chem. Soc.* **2013**, *135*, 7355-7363.

(36) Lligadas, G.; Percec, V. Synthesis of Perfectly Bifunctional Polyacrylates by Single-Electron-Transfer Living Radical Polymerization. *J. Polym. Sci., Part A: Polym. Chem.* 2007, 45, 4684–4695. (37) Leng, X.; Nguyen, N. H.; van Beusekom, B.; Wilson, D. A.; Percec, V. SET-LRP of 2-Hydroxyethyl Acrylate in Protic and Dipolar Aprotic Solvents. *Polym. Chem.* **2013**, *4*, 2995-3004.

(38) Fleischmann, S.; Percec, V. SET-LRP of Methyl Methacrylate Initiated with CCl₄ in the Presence and Absence of Air. *J. Polym. Sci., Part A: Polym. Chem.* **2010**, *48*, 2243-2250.

(39) Fleischmann, S.; Rosen, B. M.; Percec, V. SET-LRP of Acrylates in Air. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1190–1196

(40) Samanta, S. R.; Anastasaki, A.; Waldron, C.; Haddleton, D. M.; Percec, V. SET-LRP of Hydrophobic and Hydrophilic Acrylates in Tetrafluoropropanol. *Polym. Chem.* **2013**, *4*, 5555-5562.

(41) Samanta, S. R.; Anastasaki, A.; Waldron, C.; Haddleton, D. M.; Percec, V. SET-LRP of Methacrylates in Fluorinated Alcohols. *Polym. Chem.* **2013**, *4*, 5563-5569.

(42) Samanta, S. R.; Sun, H. J.; Anastasaki, D. M.; Haddleton, D. M.; Percec, V. Self-Activation and Activation of Cu(0) Wire for SET-LRP Mediated by Fluorinated Alcohols. *Polym. Chem.* 2014, *5*, 89-95.

(43) Lligadas, G.; Percec, V. Ultrafast SET-LRP of Methyl Acrylate at 25 °C in Alcohols. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2745–2754.

(44) Nguyen, N. H.; Percec, V. SET-LRP of Methyl Acrylate Catalyzed with Activated Cu(0)
Wire in Methanol in the Presence of Air. *J. Polym. Sci., Part A: Polym. Chem.* 2011, 49, 4756–4765.

Biomacromolecules

(45) Nguyen, N. H.; Rosen, B. M.; Jiang, X.; Fleischmann, S.; Percec, V. New Efficient Reaction Media for SET-LRP Produced from Binary Mixtures of Organic Solvents and H₂O. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 5577–5590

(46) Ma, J.; Chen, H.; Zhang, M; Yu, M. SET-LRP of Acrylonitrile in Ionic Liquids without any Ligand. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 609–613.

(47) Nguyen, N. H.; Rosen, B. M.; Percec, V. SET-LRP of N, N,-Dimethylacrylamide and of N-Isopropylacrylamide at 25 °C in Protic and in Dipolar Aprotic Solvents. *J. Polym. Sci., Part A: Polym. Chem.* **2010**, *48*, 1752–1763.

(48) Nguyen, N. H.; Rodriguez-Emmenegger, C.; Brynda, E.; Sedlakova, Z.; Percec, V. SET-LRP of N-(2-Hydroxypropyl)methacrylamide in H₂O. *Polym. Chem.* **2013**, *4*, 2424–2427.

(49) Jiang, X., Fleischmann, S., Nguyen, N. H., Rosen, B. M.; Percec, V. Cooperative and Synergistic Solvent Effects in SET-LRP of MA. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 5591–5605.

(50) Enayati, M.; Jezorek, R. L.; Monteiro, M. J.; Percec, V. Ultrafast SET-LRP of Hydrophobic Acrylates in Multiphase Alcohol-Water Mixtures. *Polym. Chem.* **2016**, *7*, 3608-3621

(51) Smail, R. B.; Jezorek, R. L.; Lejnieks, J.; Enayati, M.; Grama, S.; Monteiro, M. J.; Percec,
V. Acetone-Water Biphasic Mixtures as Solvents for Ultrafast SET-LRP of Hydrophobic
Acrylates. *Polym. Chem.* 2017, *8*, 3102-3123.

(52) Enayati, M.; Jezorek, R. L.; Monteiro, M. J.; Percec, V. Ultrafast SET-LRP in Biphasic Mixtures of the Non-Disproportionating Solvent Acetonitrile with Water. *Polym. Chem.* **2016**, *7*, 5930-5942.

(53) Jezorek, R. L.; Enayati, M.; Smail, R.; Lejnieks, J.; Grama, S.; Monteiro, M.; Percec, V. Stirring Rate Provides Dramatic Acceleration of the Ultrafast Interfacial SET-LRP in Biphasic Acetonitrile-Water Mixtures. *Polym. Chem.* **2017**, *8*, 3405-3424.

(54) Enayati, M.; Smail, R. B.; Grama, S.; Jezorek, R. L.; Monteiro, M. J.; Percec, V. The Synergistic Effect During Biphasic SET-LRP in Ethanol-Nonpolar Solvent-Water Mixtures. *Polym. Chem.* **2016**, *7*, 7230-7241.

(55) Nguyen, N. H.; Percec, V. Disproportionating versus Nondisproportionating Solvent Effect in the SET-LRP of Methyl Acrylate During Catalysis with Nonactivated and Activated Cu(0) wire. J. Polym. Sci. A Polym. Chem. 2011, 49, 4227–4240.

(56) Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. Single Electron Transfer in Radical Ion and Radical-Mediated Organic, Materials and Polymer Synthesis. *Chem. Rev.* **2014**, *114*, 5848-5958.

(57) Lligadas, G.; Rosen, B. M.; Bell, C. A.; Monteiro, M. J.; Percec, V. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 °C. *Macromolecules* **2008**, *41*, 8365-8371.

Biomacromolecules

(58) Lligadas, G.; Rosen B. M.; Monteiro, M. J.; Percec V. Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization With Non-First-Order Kinetics. *Macromolecules* **2008**, *41*, 8360-8364.

(59) Lligadas, G.; Percec, V. Alkyl Chloride Initiators for SET-LRP of Methyl Acrylate. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4917–4926.

(60) Lligadas, G.; Ladislaw, J. S.; Guliashvili, T.; Percec, V. Functionally Terminated Poly(Methyl Acrylate) by SET-LRP Initiated with CHBr₃ and CHI₃. *J. Polym. Sci., Part A: Polym. Chem.* **2008**, *46*, 278–288.

(61) Jiang, X.; Rosen, B. M.; Percec, V. Mimicking "Nascent" Cu(0) Mediated SET-LRP of Methyl Acrylate in DMSO Leads to Complete Conversion in Several Minutes. *J. Polym. Sci., Part A: Polym Chem.* **2010**, *48*, 403-409.

(62) Gavrilov, M.; Zerk, T. J.; Bernhardt, P. V.; Percec, V.; Monteiro, M. J. SET-LRP of NIPAM in Water *via* in situ Reduction of Cu(II) to Cu(0) with NaBH₄. *Polym. Chem.* **2016**, *7*, 933-939.

(63) Nguyen, N. H.; Percec, V. Dramatic Acceleration of SET-LRP of Methyl Acrylate During Catalysis With Activated Cu(0) Wire. J. Polym. Chem., Part A: Polym. Chem. 2010, 48, 5109-5119.

(64) Enayati, M.; Jezorek, R. L.; Percec, V. A Multiple-Stage Activation of the Catalytically Inhomogeneous Cu(0) Wire used in SET-LRP. *Polym. Chem.* **2016**, *7*, 4549-4558. (65) Nguyen, N. H.; Rosen, B. M.; Lligadas, G.; Percec, V. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25 °C. *Macromolecules* **2009**, *42*, 2379-2386.

(66) Aksakal, R.; Resmini, M.; Becer, C. R. SET-LRP of Acrylates Catalyzed by a 1 Penny Copper Coin. *Polym. Chem.* **2016**, *7*, 6564-6569.

(67) Burns, J. A.; Houben, C.; Anastasaki, A.; Waldon, C.; Lapkin, A. A.; Haddleton, D. M. Poly(acrylates) *via* SET-LRP in a Continuous Tubular Reactor. *Polym. Chem.* 2013, *4*, 4809-4813.

(68) Zhu, N.; Hu, X.; Zhang, Y.; Zhang, K.; Li, Z.; Guo, K. Continuous Flow SET-LRP in the Presence of P(VDF-co-CTFE) as Macroinitiator in a Copper Tubular Reactor. *Polym. Chem.* **2016**, 7, 474-480.

(69) Edlund, U.; Rodriguez-Emmenegger, C.; Brynda, E.; Albertsson, A. C. Self-Assembling Zwitterionic Carboxybetaine Copolymers *via* Aqueous SET-LRP from Hemicellulose Multi-Site Initiators. *Polym. Chem.* **2012**, *3*, 2920-2927.

(70) Voepel, J.; Edlund, U.; Albertsson, A. C. A Versatile Single-Electron-Transfer Mediated Living Radical Polymerization Route to Galactoglucomannan Graft-Copolymers with Tunable Hydrophibicity. *J. Polym. Sci., Part A: Polym. Chem.* **2011**, *49*, 2366-2372.

(71) Wang, S.; Yuan, F.; Chen, G.; Tu, K.; Wang, H.; Wang, L. Q. Dextran-based Thermos-Responsive Hemoglobin-Polymer Conjugates with Oxygen-Carrying Capacity. *RSC Adv.* 2014, *4*, 52940-52948.

Biomacromolecules

(72) Mason, A. F.; Thordarson, P. Polymersomes with Asymmetric Membranes based on Readily Accessible Di- And Triblock Copolymers Synthesized *via* SET-LRP. *ACS Macro Lett.* **2016**, *5*, 1172-1175.

(73) Collins, J.; Tanaka, J.; Wilson, P.; Kempe, K.; Davis, T. P.; McIntosh, M. P.; Whittaker, M.
R.; Haddleton, D. M. In situ Conjugation of Dithiophenol Maleimide Polymers and Oxytocin for
Stable and Reversible Polymer-Peptide Conjugates. *Bioconjugate Chem.* 2015, *26*, 633-638.

(74) Yang, J.; He, W. D.; He, C.; Tao, J.; Chen, S. Q.; Niu, S. M.; Zhu, S. L. Hollow Mesoporous Silica Nanoparticles Modified with Coumarin-Containing Copolymer for Photo-Modulated Loading and Releasing Guest Molecule. *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *51*, 3791–3799.

(75) Percec, V.; Barboiu, B. "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and Cu^I(bpy)_nCl. *Macromolecules* **1995**, *28*, 7970-7972.

(76) Percec, V.; Barboiu, B.; Kim, H. J. Arensulfonyl Halides: A Universal Class of Functional Initiators for Metal-Catalyzed "living" Radical Polymerization of Styrene(S), Methacrylates, and Acrylates. *J. Am. Chem. Soc.* **1998**, *120*, 305-316.

(77) Percec, V.; Kim, H. J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene and Methacrylates. Macromolecules **1997**, 30, 8526-8528.

(78) Percec, V.; Barboiu, B.; Bera, T. K.; van der Sluis, M.; Grubbs, R. B.; Frechet, J. M. Designing Functional Aromatic Multisulfonyl Chloride Initiators for Complex Organic Synthesis by Living Radical Polymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2000**, *38*, 4776-4791.

(79) Percec, V.; Bera, T. K.; De, B. B.; Sanai, Y.; Smith, J.; Holerca, M. N.; Barboiu, B. Synthesis of Functional Aromatic Multisulfonyl Chlorides and their Masked Precursors. *J. Org. Chem.* **2001**, *66*, 2104-2117.

(80) Percec, V.; Barboiu, B.; Grigoras, C.; Bera, T. K. Universal Iterative Strategy for the Divergent Synthesis of Dendritic Macromolecules from Conventional Monomers by a Combination of Living Radical Polymerization and Irreversible TERminator Multifunctional INItiator (TERMINI). *J. Am. Chem. Soc.* **2003**, *125*, 6503-6516.

(81) Percec, V.; Grigoras, C.; Kim, H. J. Toward Self-Assembling Dendritic Macromolecules from Conventional Monomers by a Combination of Living Radical Polymerization and Irreversible Terminator Multifunctional Initiator. *J. Polym. Sci., Part A: Polym. Chem.* **2004**, *42*, 505-513.

(82) Percec, V.; Grigoras, C.; Bera, T. K.; Barboiu, B.; Bissel, P. Accelerated Iterative Strategy for the Divergent Synthesis of Dendritic Macromolecules using a Combination of Living Radical Polymerization and an Irreversible Terminator Multifunctional Initiator. *J. Polym. Sci., Part A: Polym. Chem.* **2005**, 43, 4894–4906.

Biomacromolecules

(83) Feiring, A. E.; Wonchoba, E. R.; Davidson, F.; Percec, V. Barboiu, B. Fluorocarbon-Ended Polymers: Metal Catalyzed Radical and Living Radical Polymerizations Initiated by Perfluoroalkylsulfonyl Halides. *J. Polym. Sci., Part A: Polym. Chem.* **2000**, *38*, 3313–3335.

(84) Fleischmann, S.; Percec, V. SET-LRP of Methyl Methacrylate Initiated with Sulfonyl Halides. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2236-2242.

(85) Sienkowska, M. J.; Percec, V. Synthesis of α, ω -Di(iodo)PVC and of Four-Arm Star PVC with Identical Active Chain Ends by SET-DTLRP of VC Initiated with Bifunctional and Tetrafunctional Initiators. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 635–652.

(86) Wright, P. M.; Mantovani, G.; Haddleton, D. M. Polymerization of Methyl Acrylate Mediated by Copper(0)/Me₆-TREN in Hydrophobic Media Enhanced by Phenols; Single Electron Transfer-Living Radical Polymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2008**, *46*, 7376–7385.

(87) Limer, A.; Haddleton, D. M. Amide Functional Initiators for Transition-Metal-Mediated Living Radical Polymerization. *Macromolecules* **2006**, *39*, 1353-1358.

(88) Baek, K.-Y.; Kamigaito, M.; Sawamoto, M. Synthesis of End-Functionalized Poly(methyl methacrylate) by Ruthenium-Catalyzed Living Radical Polymerization with Functionalized Initiators. *J. Polym. Sci., Part A: Polym. Chem.* **2002**, *40*, 1937–1944.

(89) Adams, D. J.; Young, I. Oligopeptide-based Amide Functional Initiators for ATRP. J. Polvm. Sci., Part A: Polvm. Chem. 2008, 46, 6082–6090.

(90) Venkataraman, S.; Wooley, K. L. ATRP from an Amino Acid-based Initiator: A Facile Approach for α -Functionalized Polymers. *Macromolecules* **2006**, *39*, 9661-9664.

(91) Wilson, P.; Anastasaki, A.; Owen, M. R.; Kempe, K.; Haddleton, D. M.; Mann, S. K.; Johnston, A. P. R.; Quinn, J. F.; Whittaker, M. R.; Hogg, P. J.; Davis, T. P. Organic Arsenicals as Efficient and Highly Specific Linkers for Protein/Peptide-Polymer Conjugation. *J. Am. Chem. Soc.* **2015**, *132*, 4215-4222.

(92) Zhang, Q.; Nurumbetov, G.; Simula, A.; Zhu, C.; Li, M.; Wilson, P.; Kempe, K.; Yang, B.;
Tao, L.; Haddleton, D. M. Synthesis of Well-Defined Catechol Polymers for Surface
Functionalization of Magnetic Nanoparticles. *Polym. Chem.* 2016, *7*, 7002-7010.

(93) Charan, H.; Kinzel, J.; Glebe, U.; Anand, D.; Garakani, T. M.; Zhu, L.; Bocola, M.; Schwaneberg, U.; Böker, A. Grafting PNIPAAMm from β-Barrel Shaped Transmembrane Nanopores. *Biomaterials* **2016**, *107*, 115-123.

(94) Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C. K.; Spellmeyer, D. C.; Tans, R.; Frankel, A. D.; Santi, D. V.; Cohen, F. E.; Bartlett, P. A. Peptoids: A Modular Approach to Drug Discovery. *Proc. Natl. Acad. Sci. USA* **1992**, *89*, 9367-9371.

(95) Gangloff, N.; Ulbricht, J.; Lorson, T.; Schlaad, H.; Luxenhofer, R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. *Chem. Rev.* **2016**, *116*, 1753-1802.

Biomacromolecules

(96) Jishkariani, D.; MacDermaid, C. M.; Timsina, Y. N.; Grama, S.; Gillani, S. S.; Divar, M.;
Yadavalli, S. S.; Moussodia, S. S.; Leowanawat, P.; Camacho, A. M. B.; Walter, R.; Goulian,
M.; Klein, M. L.; Percec, V. Self-Interrupted Synthesis of Sterically Hindered Aliphatic
Polyamide Dendrimers. *Proc. Natl. Acad. Sci. USA* 2017, *114*, E2275-E2284.

(97) Groszkowski, S.; Sienkiewicz, J.; Najman, L.; Oteleanu, R.; Reteanu, M. Cytostatic Bis(haloacyl) Derivatives of Piperazine and 2-Methylpiperazine. *J. Med. Chem.* **1968**, *2*, 621-622.

(98) Paul, K.; DeWitt Blanton, C. Synthesis of 1,4-Bis(6-methoxy-8-quinolylaminoalkyl)piperazines as Potential Prophylactic Antimalarian Agents. *J. Med. Chem.*1973, 16, 1391-1394.

(99) Oh, C. H.; Park, S. W.; Cho, J. H. Synthetic Cephalosporin Derivatives. *Bull. Korean Chem.* Soc. , *11*, 323-327.

(100) Sakurai, Y.; Matsui, E. Preparation of Derivatives of Nitrogen Mustard having Structure of α-Amino Acid Amide. *Chem. Phar. Bull.* 1965, *13*, 594-598.

(101) Fisher, D. J.; Burnett, G. L.; Velasco, R.; Read de Alaiz, J. Synthesis of Hindered α-Amino Carbonyls: Copper-Catalyzed Radical Addition with Nitroso Compounds. *J. Am. Chem. Soc.* 2015, *137*, 11614-11617.

(102) Bell, M. R.; D'Ambre, T. E.; Kumar, V.; Eissenstat, M. A.; Herrmann Jr, J. L.; Wetzel, J.R.; Rosi, D.; Philion, R. E.; Daum, S. J.; Hlasta, D. J.; Kullnig, R. K.; Ackerman, J. H.;

Haubrich, D. R.; Luttinger, D. A.; Baizman, E. R.; Miller, M. S.; Ward, S. J. Antinociceptive (Aminoalkyl)indoles. *J. Med. Chem.* **1991**, *34*, 1099-1110.

(103) Al-Ghorbani, M.; Begum, A. B.; Zabiulla, Z.; Mamatha, S. V.; Khanum, S. A. Piperazine and Morpholine: Synthetic Preview and Pharmaceutical Applications. *J. Chem. Pharm. Res.* 2015, *7*, 281-301.

(104) Ciampolini, M.; Nardi, N. Five-Coordinated High-Spin Complexes of Bivalent Cobalt,Nickel, And Copper with Tris(2-dimethylaminoethyl)amine. *Inorg. Chem.* 1966, 5, 41-44.

(105) Abderhalden, E. Compounds of Amino Acids with Piperazines. Z. Physiol. Chem. 1925, 144, 219-233.

(106) Stein, R. J.; Carbon, J. A.; Langdon, J.; Richards, R. K. Antitumor Properties of N, N'-Bis-(3-bromopropionyl) and N, N'-Bis-(3-chloropropionyl) Piperazine. *J. Lab. Clin. Med.* **1960**, *56*, 949-956.

(107) Irikura, T.; Masuzawa, K.; Nishino, K.; Kitagawa, M.; Uchida, H.; Ichinoseki, N.; Ito, M. New Analgetic Agents. V. 1-Butyryl-4-cinnamylpiperazine Hydrochloride and Related Compounds. *J. Med. Chem.* **1968**, *11*, 801-804.

(108) Nguyen, N. H.; Sun, H. J.; Levere, M. E.; Fleischmann, S.; Percec, V. Where is Cu(0) Generated by Disproportionation During SET-LRP? *Polym. Chem.* **2013**, *4*, 1328-1332.

(109) Nguyen, N. H.; Percec, V. Disproportionating versus Nondisproportionating Solvent Effect in the SET-LRP of Methyl Acrylate During Catalysis with Nonactivated and Activated Cu(0) Wire. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 4241-4252.

Biomacromolecules

2
3
4
5
ê
7
1
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
20
26
27
28
29
30
31
22
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
53
5 <u>/</u>
54
22
56
57
58
59
60

(110) Samanta, S. R.; Cai, R.; Percec, V. SET-LRP of Semifluorinated Acrylates and Methacrylates. *Polym. Chem.* **2014**, *5*, 5479-5491.

(111) Nguyen, N. H.; Levere, M. E.; Kulis, J.; Monteiro, M. J.; Percec, V. Analysis of the Cu(0)-Catalyzed Polymerization of Methyl Acrylate in Disproportionating and Nondisproportionating Solvents. *Macromolecules* **2012**, *45*, 4606-4622.

(112) Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Synthesis of Dendritic Macromolecules through Divergent Iterative Thio-Bromo "Click" Chemistry and SET-LRP. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 3940–3948.

(113) Rosen, B. M., Lligadas, G.; Hahn, C.; Percec, V. Synthesis of Dendrimers through Divergent Iterative Thio-Bromo "Click" Chemistry. *J. Polym. Sci., Part A: Polym. Chem.* 2009, 47, 3931–3939.

(114) Nguyen, N. H.; Levere, M. E.; Percec, V. SET-LRP of Methyl Acrylate to Complete Conversion with Zero Termination. *J. Polym. Sci., Part A: Polym. Chem.* **2012**, *50*, 860–873.

(115) Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Sequence-Controlled Multi-Block Copolymerization of Acrylamides *via* Aqueous SET-LRP at 0 °C. *Polym. Chem.* **2015**, *6*, 406-417.

(116) Anastasaki, A.; Haddleton, A. J.; Zhang, Q.; Simula, A.; Droesbeke, M.; Wilson, P.; Haddleton, D. M. Aqueous Copper-Mediated Living Radical Polymerization of N-Acryloylmorpholine, SET-LRP in Water. *Macromol. Rapid. Commun.* **2014**, *35*, 965-970.

"For Table of Contents Use Only"

ACS Paragon Plus Environment

Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators

Gerard Lligadas,^{a,b} Mojtaba Enayati,^a Silvia Grama,^a Rauan Smail,^a Samuel E. Sherman,^a and Virgil Percec^{*a}

^a Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

^b Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain

Table of Contents Graphic

