
A Decoding Approach to Reed–Solomon Codes

from Their Definition

Maria Bras-Amorós∗

September 4, 2018

Abstract

Because of their importance in applications and their quite simple definition, Reed–Solomon codes
can be explained in any introductory course on coding theory. However, decoding algorithms for Reed–
Solomon codes are far from being simple and it is difficult to fit them in introductory courses for under-
graduates. We introduce a new decoding approach, in a self-contained presentation, which we think may
be appropriate for introducing error correction of Reed–Solomon codes to nonexperts. In particular, we
interpret Reed–Solomon codes by means of the degree of the interpolation polynomial of the code words
and from this derive a decoding algorithm. Compared to the classical algorithms, our algorithm appears
to arise more naturally from definitions and to be easier to understand. It is related to the Peterson–
Gorenstein–Zierler algorithm (see [10] and [20]).

1 Introduction.

Error control codes are used to detect and correct errors that may occur in data transmission or storage
through eventually defective channels or storage devices that can distort the sent or stored information.
For example, the atmosphere introduces errors in the transmission of images from the Meteosat satellite
to Earth, different interferences in communications by mobile phone may cause transmission errors, or
reading devices need correcting algorithms for handling CDs, DVDs, or USB memories. Error control codes
are also used in distributed data storage in the cloud to recover lost or damaged chunks of information. In
the words of Elwyn R. Berlekamp, one of the fathers of coding theory,

Communication links transmit information from here to there. Computer memories transmit in-
formation from now to then. In either case, noise causes the received data to differ slightly from
the original data. As Shannon [24] showed in 1948, the noise need not cause any degradation in
reliability. The noise does impose some limiting capacity on the throughput rate, although that
limit is typically well above the throughput rate at which real systems operate. Error-correcting
codes enable a system to achieve a high degree of reliability despite the presence of noise [2].

The modus operandi of those codes is to send along with the original information a small amount of
redundancy, so that from all the received information one can deduce what is actually transmitted. The
simplest example is adding for every transmitted bit (a 0 or a 1) two identical copies. If the original bit or
one of its copies is received with an error, we can still correct it from the other two, which we expect to
coincide. Note that by adding redundancy, on one side we improve the quality of the received information.
But, on the other side, we augment the transmission cost. In the example of repeating bits, the transmission
cost is multiplied by three.

Coding theory aims at designing and implementing codes with good correcting capacity, while main-
taining a low transmission cost, as well as designing detection and correction algorithms that allow the
receiver to recover the original information.

∗M. Bras-Amorós is with Universitat Rovira i Virgili, Tarragona, Catalonia (e-mail: maria.bras@urv.cat)

1

http://arxiv.org/abs/1706.03504v1

Berlekamp’s reference [2] gives a detailed historical review (up to 1980) of coding theory since Shannon’s
cornerstone contribution [24]. At that time, the so-called Reed–Solomon codes [21] and the most relevant
algorithms for decoding Reed–Solomon codes had already appeared. They are the most universal error
control codes and are currently being used directly or indirectly in most transmission devices and storage
systems. Reed–Solomon codes admit different definitions as will be explained in this article, and they are
all based in polynomials of bounded degrees over a finite field. One way to explain how they work is as
follows. Fix a finite field of cardinality q. From the data one wants to transmit (say k elements of Fq), one
interpolates a polynomial of degree less than k that takes these values when evaluated at k given nonzero
elements of the finite field. Then one adds to the original k information values the redundancy which
consists of the evaluation of the polynomial at the remaining q − 1 − k nonzero values of the finite field.
Basic polynomial theory shows how any small part of the whole (q − 1)-length of the received information
can be restored from the rest.

Because of their importance in applications and their quite simple definition, Reed–Solomon codes can
be explained in any introductory course. However, decoding algorithms for Reed–Solomon codes are far
from being so simple and it is difficult to explain them in introductory courses for undergraduates. This
is why we introduce our new decoding approach, in a self-contained presentation, which we think may
be appropriate to introduce error correction of Reed–Solomon codes to nonexperts. Although a direct im-
plementation of the algorithm presented in this article may not be as efficient as the most efficient known
algorithms, we think that it is performable by any undergraduate student using basic software tools. How-
ever, we do not rule out the possibility that technical improvements to the algorithm may make it much
more efficient, especially if one can deemphasize matrices in favor of polynomials.

The most celebrated algorithms for decoding Reed–Solomon codes have been the Peterson–Gorenstein–
Zierler algorithm [20, 10] for its simplicity, and the algorithms designed to solve Berlekamp’s key equation
[1]. The two primary decoding algorithms that solve Berlekamp’s key equation are the Berlekamp-Massey
algorithm [15] and the Sugiyama et al. adaptation of the Euclidean algorithm [26]. The alternative so-called
Welch–Berlekamp equations are solved in the Welch–Berlekamp algorithm [27]. Bit-serialized multiplica-
tion and bit-serial encoders are more efficient for hardware implementation of shift registers [3]. This is used
in the algorithm in [4]. The Welch–Berlekamp equations were also solved by Chambers’ algorithm [7] and
by Fedorenko’s algorithm [9]. Another general perspective is that of decoding pairs [18, 19]. Guruswami
and Sudan presented their breakout algorithm [25, 11] decoding beyond half the minimum distance by
means of list decoding. All these algorithms and their relationships are analyzed in several papers such as
[8, 12, 16, 6, 17].

In Section 3 we revisit the definition of Reed–Solomon codes, giving four different, but equivalent,
versions. Reinterpreting a definition related to the degree of the interpolation polynomial, we derive a
decoding algorithm. The key result for the new formulation is Theorem 20 in Section 4. Now, for correcting
a received word, its interpolation polynomial is split into two parts, one with low order terms (lower than
the code dimension) and the other one with the remaining terms. The latter part is fixed while the first
part is modified in order to maximize the number of nonzero roots. This gives the code word at minimum
distance from the received word.

Our decoding algorithm is related to the Peterson–Gorenstein–Zierler algorithm. We compare both
algorithms in Sections 6 and 7 and see how our algorithm is well suited for the optimistic view of best case
decoding [4]. This is the case when error correction codes of high correction capability are used, but with a
low expectation of errors.

2 Some background on coding theory.

Let us start with some background definitions and results on coding theory. Standard references are [14, 22,
13, 5, 23].

2

The alphabet Fq. The symbols that contain the information that needs to be sent as well as the symbols
corresponding to the transformed and transmitted data are the elements of a finite field, which is often
called the transmission alphabet. One can consider the case in which Fq is a prime field, that is, q is a prime
number and Fq can be identified by the set {0, 1, . . . , q − 1}, equipped with the usual addition and product
modulo q. There will always exist an element α in Fq such that all the powers of α with exponent smaller
than q − 1 are different. Then, Fq = {0, 1, α, α2, . . . , αq−2}. In this case, α is called a primitive element.

Example 1. Consider F7. It is the set {0, 1, 2, 3, 4, 5, 6} equipped with the addition and multiplication oper-
ations, always modulo 7. For instance, in F7, 4+ 5 = 2, 1− 2 = 6, 3 · 5 = 5. It is easy to verify that α = 5 is a
primitive element of F7.

Linear codes. A linear code C of length n over a finite field Fq is a vector subspace of Fn
q . Its vectors are

called code words. The dimension k of the code is the dimension of the subspace. In particular, the number of
code words of C is qk.

Generator matrices. We say that a matrix G of k rows and n columns is a generator matrix of C if its rows
are a set of vectors generating the code. The generator matrix is not unique, for example we can permute
the rows. To encode a word of k symbols of Fq, we multiply it by the generator matrix.

Example 2. The following matrix is the generator matrix of a code C of length 6 and dimension 2 over F7.

Gex =

(

1 1 1 1 1 1
1 5 4 6 2 3

)

.

To encode the information 110256 we split it into blocks of k = 2 symbols and multiply each block by Gex.

(

1 1
)

Gex =
(

2 6 5 0 3 4
)

,

(

0 2
)

Gex =
(

2 3 1 5 4 6
)

,
(

5 6
)

Gex =
(

4 0 1 6 3 2
)

.

The encoded information will then be 265034231546401632.

Dual code and parity-check matrices. Consider the scalar product of two vectors (u0, u1, . . . , un−1) and
(v0, v1, . . . , vn−1) of Fn

q , defined as u0v0 + u1v1 + · · · + un−1vn−1 ∈ Fq . The dual code of C is C⊥ = {v ∈
F
n
q : v · c = 0 for all c ∈ C}. It is a linear code with the same length as C and dimension n − k. We can

define it from a system of linear equations with coefficient matrix G. A matrix H generating C⊥ is called
a parity-check-matrix of C. Equivalently, a parity-check matrix of C is a matrix such that the code C can be
redefined as C = {c ∈ F

n
q : c · h = 0 for every row h of H}.

Example 3. The following matrix is a parity-check matrix of the code C of Example 2.

Hex =









1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4









Hamming distance, correction capability, and Singleton bound. The Hamming distance between two
words of the same length is the number of positions in which their symbols differ. The purpose of de-
coding algorithms is, given an input vector u of the same length as the code, output a code word c ∈ C

minimizing the Hamming distance between u and c. The weight of a word is the number of nonzero sym-
bols or, equivalently, its Hamming distance from the zero vector. The minimum distance d of a linear code

3

C can be equivalently defined as (i) the minimum Hamming distance between two words of C; (ii) the
minimum weight of nonzero words of C; (iii) the minimum number of linearly dependent columns of H .
The minimum distance of a code is an important parameter quantifying the error correction capability of
the code. Indeed, if at most ⌊d−1

2 ⌋ errors are added to a code word c ∈ C, corrupting it into a word u, then

c is the unique code word of C at Hamming distance at most ⌊d−1
2 ⌋ from u, and in this sense we say that

⌊d−1
2 ⌋ errors can be corrected.
The Singleton bound states that for a linear code of length n and minimum distance d, the dimension k

satisfies k ≤ n− d+ 1. The codes attaining this bound are called maximum distance separable codes (MDS).

Example 4. The Hamming distance between the code words 265034 and 231546 of the code C in Example 2
is 5. The Hamming distance between the code word 111111 corresponding to the first row of Gex and
265034 is 6.

Notice that the elements of the first row of the generator matrix of C are all equal while the elements of
the second row are all different. Any code word of C will be a multiple of the second row plus a multiple
of the first row. The components of any multiple of the second row, except for the zero vector, will all be
different by field properties. Similarly, if we add to a vector whose components are all different a constant
vector, then the components of the vector so obtained will also all be different by field properties. So, for
any vector in C, either it is constant or all its components are different. This makes the Hamming distance
between any two words in C either equal to 6 or to 6 − 1 = 5. Consequently, the minimum distance of C
is 5.

Vandermonde matrices. Although Vandermonde matrices can be defined over any field, for our purposes
we concentrate on finite fields. Given α1, α2, . . . , αn ∈ Fq , the Vandermonde matrix of α1, . . . , αn of order r
is defined as

Vr(α1, α2, . . . , αn) =















1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αr−1
1 αr−1

2 . . . αr−1
n















.

It can be proved that the determinant of Vn(α1, α2, . . . , αn) satisfies |V (α1, α2, . . . , αn)| =
∏

1≤i<j≤n(αj−αi).
Consequently, Vn(α1, α2, . . . , αn) has an inverse matrix if and only if αi 6= αj for all 1 ≤ i < j ≤ n.

3 Four definitions of Reed–Solomon codes.

Let us introduce Reed–Solomon codes from four different, but complementary, points of view.

3.1 Reed–Solomon codes from generator matrices.

Let Fq be the field with q elements (q a prime power) and let α be a primitive element of Fq. Then Fq =
{0, 1, α, α2, . . . , αq−2}. Let n = q − 1.

Definition 5. The Reed–Solomon code over Fq and of dimension k, RSq,α(k), is the linear code of Fn
q with

generator matrix

G =















1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...

1 αk−1 α(k−1)2 . . . α(k−1)(n−1)















.

Example 6. Consider the finite field F7. As noted above, the element 5 ∈ F7 is primitive. Indeed, 50 = 1,
51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3 and 56 is again 1. The code RS7,5(2) is exactly the code C of Example 2.

4

3.2 Reed–Solomon codes from parity-check matrices.

Consider the matrix

H =











1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...

1 αn−k α(n−k)2 . . . α(n−k)(n−1)











. (1)

It is a matrix of maximum rank (namely n − k) because of the Vandermonde structure. Furthermore, the
product of matrix G and the transpose of matrix H is the zero matrix. Indeed, the product of the ith row
of matrix G (1 ≤ i ≤ k) times the jth row of matrix H (1 ≤ j ≤ n − k) is

∑n
r=1 α

(i−1)(r−1)αj(r−1) =
∑n

r=1 α
(i+j−1)(r−1). Now, because of the limits of i and j, we have that i+ j − 1 < q − 1 and so αi+j−1 6= 1.

Finally, the sum equals (αi+j−1)n−1
αi+j−1−1 = 0.

This enables us to give the following equivalent definition.

Definition 7. The Reed–Solomon code over Fq and of dimension k, RSq,α(k), is the linear code of Fn
q with

parity-check matrix equal to H .

Example 8. One can check that matrix Hex in Example 3 is of the form of the matrix H in (1).

Lemma 9 uses Definition 7 to deduce that Reed–Solomon codes attain the Singleton bound, and so they
are maximum distance separable (MDS) codes.

Lemma 9. The minimum distance of RSq,α(k) is exactly n− k + 1. Hence, it is an MDS code.

Proof. The submatrix given by any subset of n− k columns (with column indices 0 ≤ j1, . . . , jn−k ≤ n− 1)
has determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αj1 αj2 . . . αjn−k

α2j1 α2j2 . . . α2jn−k

α3j1 α3j2 . . . α3jn−k

...
...

. . .
...

α(n−k)j1 α(n−k)j2 . . . α(n−k)jn−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= αj1 . . . αjn−k ·
∣

∣Vn(α
j1 , . . . , αjn−k)

∣

∣ ,

which is not zero. So, any set of n − k columns of the parity-check matrix are independent, and so the
minimum distance must be at least n − k + 1. By the Singleton bound the minimum distance must be
exactly equal to n− k + 1.

Example 10. The minimum distance of RS7,5(2) is 5 as justified in Example 4. This equals n−k+1 = 6−2+1.

3.3 Reed–Solomon codes and interpolation polynomials.

Consider the set Fq[x]
<k of all polynomials with coefficients in Fq and of degree strictly less than k. A

general element a ∈ Fq[x]
<k is of the form a = a0+a1x+· · ·+ak−1x

k−1 with ai ∈ Fq. Observe that evaluating
a at αi−1 gives a(αi−1) = a0+a1α

i−1+ · · ·+ak−1α
(i−1)(k−1), which is exactly the result of the product of the

vector (a0, . . . , ak−1) by the ith column of matrix G. So, the product of the vector (a0, . . . , ak−1) by matrix
G is exactly the vector (a(1), a(α), a(α2), . . . , a(αn−1)).

Definition 11. The Reed–Solomon code over Fq and of dimension k, RSq,α(k), is the set {(a(1), a(α), a(α2), . . . , a(αn−1)) :
a ∈ Fq[x]

<k}.

Example 12. The three code words computed in Example 2, which are 265034, 231546, and 401632 are,
respectively, the evaluation of the polynomials x+1, 2x, and 6x+5 at 50, 51, 52, 53, 54, 55. The degree of the
three polynomials is less than 2 which is the dimension of the code.

5

Now, for each vector u = (u0, . . . , un−1) in F
n
q , there exists a unique polynomial fu of degree at most

n− 1 such that fu(α
i) = ui for all i in {0, . . . , n− 1}. It can be computed using the formula fu =

∑n−1
i=0 uifi,

where fi is the interpolation polynomial of the ith standard basis vector, that is, fi =
∏n−1

j=0
j 6=i

x−αj

αi−αj . The

uniqueness of fu is a consequence of the fact that if fu = a0 + a1x + · · · + an−1x
n−1, then the coefficients

a0, . . . , an−1 are a solution of the linear system of equations



















1 1 1 1 . . . 1

1 α α2 α3 . . . α(n−1)

1 α2 α4 α6 . . . α2(n−1)

1 α3 α6 α9 . . . α3(n−1)

...
...

...
...

. . .
...

1 αn−1 α2(n−1) α3(n−1) . . . α(n−1)(n−1)





























a0
a1
...

an−1











=











u0

u1

...

un−1











.

The matrix of this system is a square Vandermonde matrix which is known to be invertible. So, any u in F
n
q

is of the form (f(1), f(α), f(α2), . . . , f(αn−1)) for some unique f ∈ Fq[x] of degree less than n.

Example 13. In F7, taking α = 5 as primitive element, we have

f0 = 6x5 + 6x4 + 6x3 + 6x2 + 6x+ 6,
f1 = 2x5 + 3x4 + x3 + 5x2 + 4x+ 6,
f2 = 3x5 + 5x4 + 6x3 + 3x2 + 5x+ 6,
f3 = x5 + 6x4 + x3 + 6x2 + x+ 6,
f4 = 5x5 + 3x4 + 6x3 + 5x2 + 3x+ 6,
f5 = 4x5 + 5x4 + x3 + 3x2 + 2x+ 6.

Then, for a general vector u ∈ F
6
7, the coefficients of fu (in increasing order) can be computed as the product

of u by the matrix
















6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4

















.

For instance, the coefficients of the polynomial interpolating u = (4, 2, 1, 6, 3, 2) are (3, 0, 3, 2, 6, 4), and the
coefficients of the polynomial interpolating w = (0, 2, 5, 6, 0, 6) are (2, 2, 2, 2, 6, 0).

Code word checking. From Definition 11, a vector u = (u0, . . . , un−1) in F
n
q is a code word if and only if

its interpolation polynomial fu satisfies deg(fu) < k.

Example 14. The words 265034, 231546, and 401632 are code words of RS7,5(2) because, as seen in Exam-
ple 12, their interpolation polynomials are, respectively, x + 1, 2x, and 6x + 5, whose degrees are less than
k = 2. The words 421632 and 025606 are not code words of RS7,5(2) because, as seen in Example 13, their
interpolation polynomials are, respectively, 6x5+6x3+5x2+2x and 6x4+2x3+2x2+2x+2, whose degrees
are larger than k = 2.

3.4 Reed–Solomon codes and polynomial evaluation.

Consider now the set Fq[x]
<n of all polynomials with coefficients in Fq and degree strictly less than n. A

general element u ∈ Fq[x]
<n is of the form u = u0 + u1x + · · · + un−1x

n−1 with ui ∈ Fq. Observe that
evaluating u at αi gives u(αi) = u0+u1α

i+ · · ·+un−1α
i(n−1), which, if i ≤ n−k, is exactly the result of the

product of the ith row of matrix H and vector (u0, . . . , un−1)
T . The value u(αi), if i ≤ n − k, is called the

6

ith syndrome of u with respect to C. Now, the product of matrix H and vector (u0, . . . , un−1)
T is exactly the

vector (u(α), u(α2), . . . , u(αn−k)), which is called the syndrome vector of u with respect to C. On the other
hand, by definition of parity-check matrix, (u0, . . . , un−1) is a code word if and only if the product of matrix
H and (u0, . . . , un−1)

T is zero.

Definition 15. The Reed–Solomon code over Fq and of dimension k, RSq,α(k), is the set of vectors u =
(u0, . . . , un−1) in F

n
q such that the polynomial u0 + u1x + · · · + un−1x

n−1 vanishes at αj for all j with
1 ≤ j ≤ n− k.

Code word checking. Now, given a vector u = (u0, . . . , un−1) in F
n
q , u is a code word if and only if

u(αi) = 0 for all i with 1 ≤ i ≤ n− k.

Example 16. Suppose we want to check whether the word 342650 belongs to RS7,5(2). We consider the
polynomial u(x) = 3 + 4x+ 2x2 + 6x3 + 5x4 and evaluate it at 5, 52, 53 and 54. We obtain

u(51) = u(5) = 3 + 6 + 1 + 1 + 3 = 0,
u(52) = u(4) = 3 + 2 + 4 + 6 + 6 = 0,
u(53) = u(6) = 3 + 3 + 2 + 1 + 5 = 0,
u(54) = u(2) = 3 + 1 + 1 + 6 + 3 = 0.

Since u(5) = u(52) = u(53) = u(54) = 0, the word 342650 belongs to RS7,5(2).

3.5 Connection of the coefficients of an interpolation polynomial and its evaluation
at all points.

Next we will see that the coefficients of an interpolation polynomial over a finite field are intimately related
to the values obtained when evaluating the polynomial at all the nonzero elements of the finite field.

Lemma 17. Suppose that α is a primitive element of a finite field of q elements and let n = q − 1. The polynomials

fi =
∏n−1

j=0
j 6=i

x−αj

αi−αj satisfy fi = −(αixn−1 + α2ixn−2 + α3ixn−3 + · · ·+ α(n−1)ix+ αni).

Proof. Suppose β ∈ Fq\{0}. From the equality (x−β)(xn−1+βxn−2+β2xn−3+· · ·+βn−2x+βn−1) = xn−1,
it follows that xn−1 + βxn−2 + β2xn−3 + · · ·+ βn−2x+ βn−1 = xn−1

x−β
. This, together with the fact xn − 1 =

∏

γ∈Fq\{0}
(x− γ), implies that xn−1 + βxn−2 + β2xn−3 + · · ·+ βn−2x+ βn−1 vanishes at all the elements of

Fq \ {0} except at β, where it evaluates to βn−1 + ββn−2 + β2βn−3 + · · · + βn−2β + βn−1 = nβn−1 = −1
β

.

Hence, −β(xn−1 + βxn−2 + β2xn−3 + · · ·+ βn−2x+ βn−1) vanishes at all the elements of Fq \ {0} except at
β, where it evaluates to 1. Finally, −β(xn−1+βxn−2+β2xn−3+ · · ·+βn−2x+βn−1) = −(βxn−1+β2xn−2+
β3xn−3 + β4xn−4 + · · ·+ β(n−1)x+ βn).

If we take β = αi then fi and the expression have degree q − 2 and take the same values at q − 1 points,
hence are equal.

The main result relating the last two definitions of Reed–Solomon codes is the following lemma.

Lemma 18. The inverse of the map

F
n → F

n

(v0, . . . , vn−1) 7→ (v(α0), v(α), v(α2), . . . , v(αn−1))

is
(−u(αn),−u(αn−1),−u(αn−2), . . . ,−u(α)) 7→(u0, . . . , un−1),

where v(β) is the evaluation of v0+v1x+· · ·+vn−1x
n−1 at β and u(β) is the evaluation of u0+u1x+· · ·+un−1x

n−1

at β.

7

Proof. The inverse map is giving the coefficients of the interpolation polynomial fu. By Lemma 17 we have

that fu =
∑n−1

i=0 uifi, where fi = −(αixn−1 + α2ixn−2 + α3ixn−3 + · · ·+ α(n−1)ix+ αni). Now,

fu = xn−1
(

u0 u1 · · · un−1

)











−1
−α
...

−αn−1











+ xn−2
(

u0 u1 · · · un−1

)











−1
−α2

...

−α2(n−1)











+ · · ·

+ x
(

u0 u1 · · · un−1

)











−1
−αn−1

...

−α(n−1)(n−1)











+
(

u0 u1 · · · un−1

)











−1
−αn

...

−αn(n−1)











.

So, fu = −u(α)xn−1 − u(α2)xn−2 − · · · − u(αn) =
∑n−1

i=0 (−u(αn−i))xi.

Example 19. Consider the word (u0, u1, u2, u3, u4, u5) = (5, 4, 0, 1, 2, 0) and the related polynomial u =
5 + 4x+ x3 + 2x4. Its evaluation at the powers of 5 is

u(51) = u(5) = 5 + 6 + 6 + 4 = 0,
u(52) = u(4) = 5 + 2 + 1 + 1 = 2,
u(53) = u(6) = 5 + 3 + 6 + 2 = 2,
u(54) = u(2) = 5 + 1 + 1 + 4 = 4,
u(55) = u(3) = 5 + 5 + 6 + 1 = 3,
u(56) = u(1) = 5 + 4 + 1 + 2 = 5.

What Lemma 18 says is that the polynomial v(x) = −5− 3x− 4x2 − 2x3 − 2x4 = 2 + 4x+ 3x2 + 5x3 + 5x4

satisfies that u = (v(1), v(5), v(52), v(53), v(54), v(55)). Indeed,

v(50) = v(1) = 2 + 4 + 3 + 5 + 5 = 5,
v(51) = v(5) = 2 + 6 + 5 + 2 + 3 = 4,
v(52) = v(4) = 2 + 2 + 6 + 5 + 6 = 0,
v(53) = v(6) = 2 + 3 + 3 + 2 + 5 = 1,
v(54) = v(2) = 2 + 1 + 5 + 5 + 3 = 2,
v(55) = v(3) = 2 + 5 + 6 + 2 + 6 = 0,

and it follows that (v(1), v(5), v(52), v(53), v(54), v(55)) = (5, 4, 0, 1, 2, 0) = (u0, u1, u2, u3, u4, u5).

4 New decoding approach.

We approach decoding from the point of view of Definition 11. However, we use Definition 15 for the
proofs.

8

Let Fq[x]
<d be the set of polynomials with coefficients in Fq and degree strictly less than d, and let

Fq[x]
<d
≥d′ be the set of polynomials with coefficients in Fq and with only terms of degrees at least d′ and at

most d− 1.
Suppose we receive u ∈ F

n
q . Let fu be the interpolation polynomial of u. Decoding u is the same as

finding c ∈ RSq,α(k) such that u and c are at minimum Hamming distance. Since words c ∈ RSq,α(k)
are the evaluation of polynomials of degrees smaller than k at the nonzero elements of Fq, decoding u is
equivalent to finding gc ∈ Fq[x]

<k such that fu − gc has maximum number of nonzero roots. In fact, gc is
then the interpolation polynomial of c.

The monomials of fu can be split into those that have degree less than k and those having degree at least
k. Let hu, gu be the unique polynomials with hu ∈ Fq[x]

<n
≥k , gu ∈ Fq[x]

<k such that fu = hu + gu. Once fu

is fixed, and so is hu, consider, from all the polynomials in Fq[x]
<k, a polynomial ghu

that maximizes the
number of nonzero roots of hu+ghu

. That is, the number of nonzero roots of hu+ghu
is larger than or equal

to the number of nonzero roots of hu + g′ for any g′ ∈ Fq[x]
<k . Then,

gc = gu − ghu
. (2)

Notice that if e is the minimum weight word such that u− e ∈ RSq,α(k), then e = u− c and its interpolation
polynomial is fe = fu − gc = hu + ghu

.
Consider the set

Λ = {λ ∈ Fq[x] such thatλ(hu + g)vanishes at allFq \ {0}, for some g ∈ Fq[x]
<k}.

Because of the fact that xn − 1 =
∏

γ∈Fq\{0}
(x− γ), an equivalent definition is

Λ = {λ ∈ Fq[x] such that (xn − 1) divides λ(hu + g) for some g ∈ Fq[x]
<k}.

Notice that Λ is not empty because xn − 1 belongs to Λ.

Theorem 20. Let λu be a monic polynomial with minimum degree among the polynomials in Λ. For a polynomial
g ∈ Fq[x]

<k, if (xn − 1) divides λu(hu + g), then the number of nonzero roots of hu + g is greater than or equal to
the number of nonzero roots of hu + g′ for any g′ ∈ Fq[x]

<k.

Proof. For a fixed g ∈ Fq[x]
<k, the set of polynomials

Λg = {λ ∈ Fq[x] such that (xn − 1) divides λ(hu + g)}

is, since xn − 1 =
∏

γ∈Fq\{0}
(x− γ), the set of polynomials that are multiples of

∏

γ∈Fq\{0}
(hu+g)(γ) 6=0

(x− γ). (3)

The monic polynomial with minimum degree among Λg is then the polynomial (3) itself. Now, Λ =
∪g∈Fq [x]<kΛg. So a monic polynomial with minimum degree among Λ must be one of the polynomials

as in (3) for some g ∈ Fq[x]
<k. The minimality of the degree of λu implies the maximality of the number of

nonzero roots of hu + g, where g is such that λu ∈ Λg.

Let λu be as in Theorem 20 and suppose µ ∈ Fq[x] is such that λu(hu + g) = µ(xn − 1) for some
g ∈ Fq[x]

<k. Suppose that deg(λu) = t and deg(hu) = du. In particular, t ≤ n and du ≤ n − 1. Now,
deg(µ) = t+ du − n.

Let the coefficients of λu(hu + g) be ξ0, . . . , ξdu+t. If hu = adu
xdu + adu−1x

du−1 + · · · + akx
k and λu =

xt + lt−1x
t−1 + · · ·+ l1x+ l0, then, letting aj = 0 for all j > du and ξj = 0 for all j > du + t, we have for all

i ≥ 0,
ξk+t+i = ak+t+il0 + ak+t+i−1l1 + · · · + ak+i+1lt−1 + ak+i,

9

which, by Lemma 18, is equivalent to

ξk+t+i = −u(αn−k−t−i)l0 − u(αn−k−t−i+1)l1 − · · · − u(αn−k−i). (4)

Since deg(µ) = t + du − n < n, the coefficients of λu(hu + g) = µ(xn − 1) = µxn − µ satisfy ξi = −ξn,
ξ1 = −ξn+1, . . . , ξt+du−n = −ξt+du

and ξt+du−n+1 = ξt+du−n+2 = · · · = ξn−1 = 0.

Lemma 21. Let λu be as in Theorem 20. The nonleading coefficients of λu give a solution to the linear system











u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αn−k−t) u(αn−k−t+1) . . . u(αn−k−1)





















l0
l1
...

lt−1











=











−u(αt+1)
−u(αt+2)

...

−u(αn−k)











. (5)

Proof. The lemma is a consequence of equation (4) and the fact that ξk+t, . . . , ξn−1 = 0, since k + t ≥
du + t− n+ 1.

Lemma 22. Let t be the weight of a minimum weight vector e ∈ F
n
q such that u − e ∈ RSq,α(k) and consider the

linear system











u(α) u(α2) . . . u(αt′)

u(α2) u(α3) . . . u(αt′+1)
...

...
. . .

...

u(αn−k−t′) u(αn−k−t′+1) . . . u(αn−k−1)





















l0
l1
...

lt′−1











=











−u(αt′+1)

−u(αt′+2)
...

−u(αn−k)











.

1. If t ≤ n−k
2 and t′ = t, then the linear system has a unique solution, which can be found as a solution to the

square system











u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)





















l0
l1
...

lt−1











=











−u(αt+1)
−u(αt+2)

...

−u(α2t)











.

2. If t ≤ n−k
2 and t′ = t, then the unique solution to the previous system satisfies l0 6= 0.

3. If t ≤ n−k
2 and t′ < t, then the system has no solution.

Proof. 1. The existence of a solution is a consequence of Lemma 21. For the uniqueness, we will see that
the square submatrix











u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)











has nonzero determinant. As a consequence of Definition 15 of RSq,α(k) and the fact that 2t−1 ≤ n−k,







u(α) . . . u(αt)
...

. . .
...

u(αt) . . . u(α2t−1)






=







e(α) . . . e(αt)
...

. . .
...

e(αt) . . . e(α2t−1)






.

10

Suppose that the nonzero positions of e are i1, . . . , it, with 0 ≤ i1 < i2 < · · · < it ≤ n − 1. Then it is
easy to check that, letting

W =















1 1
αi1 αi2 . . . αit

α2i1 α2i2 . . . α2it

...
...

. . .
...

α(t−1)i1 α(t−1)i2 . . . α(t−1)it















,

we have







e(α) . . . e(αt)
...

. . .
...

e(αt) . . . e(α2t−1)






= W













αi1ei1 0 . . . 0

0 αi2ei2
. . .

...
...

. . .
. . . 0

0 . . . 0 αiteit













WT ,

which clearly has nonzero determinant because W is a Vandermonde matrix.

2. Suppose that










u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)





















0
l1
...

lt−1











=











−u(αt+1)
−u(αt+2)

...

−u(α2t)











.

Then, rearranging the columns, and considering Definition 15 of RSq,α(k) together with the fact that
2t ≤ n− k, we obtain











e(α2) . . . e(αt) e(αt+1)
e(α3) . . . e(αt+1) e(αt+2)

...
. . .

. . .
...

e(αt+1) . . . e(α2t−1) e(α2t)





















l1
...

lt−1

1











=











0
0
...

0











, (6)

but










e(α2) . . . e(αt+1)
e(α3) . . . e(αt+2)

...
. . .

...

e(αt+1) . . . e(α2t)











= W







α2i1ei1 . . . 0
...

. . .
...

0 . . . α2iteit






WT ,

which, again, has nonzero determinant. This contradicts (6).

3. Suppose t′ < t and t− t′ = δ. If










u(α) . . . u(αt′)

u(α2) . . . u(αt′+1)
...

. . .
...

u(αn−k−t′) . . . u(αn−k−1)





















γ1
γ2
...

γt′











=











−u(αt′+1)

−u(αt′+2)
...

−u(αn−k)











,

then, supressing the first δ rows we obtain










u(αδ+1) u(αδ+2) . . . u(αδ+t′)

u(αδ+2) u(αδ+3) . . . u(αδ+t′+1)
...

...
. . .

...

u(αn−k−t′) u(αn−k−t′+1) . . . u(αn−k−1)





















γ1
γ2
...

γt′











=











−u(αt+1)
−u(αt+2)

...

−u(αn−k)











11

and adding δ columns at the beginning,











u(α) . . . u(αδ+1) . . . u(αδ+t′)

u(α2) . . . u(αδ+2) . . . u(αδ+t′+1)
...

...
...

...
...

u(αn−k−t) . . . u(αn−k−t′) . . . u(αn−k−1)



































0
...

0
γ1
γ2
...

γt′

























=











−u(αt+1)
−u(αt+2)

...

−u(αn−k)











.

This contradicts the two previous points.

We obtain the following decoding algorithm for a RSq,α(k) code, where n = q − 1.

Input: u ∈ F
n
q .

1. Let t be the minimum integer such that

rank











u(α) . . . u(αt)
u(α2) . . . u(αt+1)

...
. . .

...

u(αn−k−t) . . . u(αn−k−1)











= rank











u(α) . . . u(αt+1)
u(α2) . . . u(αt+2)

...
. . .

...

u(αn−k−t) . . . u(αn−k)











. (7)

For t = 0, the first matrix is the null matrix. In this case we consider rank() = 0.

2. Solve the linear system











u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)





















l0
l1
...

lt−1











=











−u(αt+1)
−u(αt+2)

...

−u(α2t)











for l0 . . . , lt−1 and denote by λu the polynomial xt + lt−1x
t−1 + · · ·+ l1x+ l0.

3. Obtain as in Lemma 18 the interpolation polynomial fu of u, and let du be its degree.

4. Let ζ0, . . . , ζdu+t be the coefficients of λufu; that is, λufu = ζ0 + ζ1x+ · · ·+ ζdu+tx
du+t.

Let gc = fu −
(xn−1)(ζn+ζn+1x+···+ζdu+tx

du+t−n)
λu

.

5. Output: (gc(1), gc(α), gc(α
2), . . . , gc(α

n−1)).

Theorem 23. Suppose we received u ∈ F
n
q . Let t be the weight of a minimum weight vector e ∈ F

n
q such that

u− e ∈ RSq,α(k). If t ≤ n−k
2 , then the previous algorithm outputs u− e.

Proof. By Lemma 22, step 1 gives the actual number of errors t. By Lemma 22 again, the system in step
2 has a unique solution and, by Lemma 21, the polyomial one obtains is exactly the polynomial λu in
Theorem 20. After step 3 we get the interpolation polynomial fu. Let hu, gu be the unique polynomials with
hu ∈ Fq[x]

<n
≥k , gu ∈ Fq[x]

<k such that fu = hu + gu. By Theorem 20, xn − 1 divides λu(hu + ghu
) for some

ghu
maximizing the number of nonzero roots of hu + Fq[x]

<k. In particular, there exists µ such that

(xn − 1)µ = λu(hu + ghu
) (8)

12

and µ must have degree less than n. Hence, the degrees of the monomials in xnµ and those in −µ do not
overlap. On the other hand, the monomials of λughu

have degree less than t+ k ≤ n−k
2 + k = n+k

2 ≤ n. So,
the monomials in xnµ of degrees at least n coincide with the monomials in λuhu of degrees at least n. That
is, xnµ = ζnx

n + ζn+1x
n+1 + · · · + ζdu+tx

du+t, and we deduce that µ = ζn + ζn+1x + · · · + ζdu+tx
du+t−n.

Now, from (8), we deduce that ghu
=

(xn−1)(ζn+ζn+1x+···+ζdu+tx
du+t−n)

λu
− hu. Now, as explained in equation

(2), the polynomial gc interpolating the code word c ∈ RSq,α(k) at minimum distance of u is gc = gu −

ghu
= fu −

(xn−1)(ζn+ζn+1x+···+ζdu+tx
du+t−n)

λu
. From here it follows that the output is, indeed, the code word

c ∈ RSq,α(k) at minimum distance of u.

Remark. Steps 3 and 4 of the algorithm can be replaced by the equivalent steps in the Peterson–Gorenstein–
Zierler algorithm, that is, we can find the error positions by means of the roots of λu and then obtain the
error values by means of the linear system











αi1 αi2 . . . αit

α2i1 α2i2 . . . α2it

...
...

. . .
...

αti1 αti2 . . . αtit





















ei1
ei2
...

eit











=











u(α)
u(α2)

...

u(αt)











.

Example 24. Consider the same code as in Example 2, that is, the code C = RS7,5(2). Suppose that after
transmission of three code words we receive u = 421632, v = 342650, w = 025606.

Denote by the same symbol u the vector 421632 and the polynomial 4 + 2x+ x2 + 6x3 + 3x4 + 2x5. The
syndromes of u are









u(a)
u(a2)
u(a3)
u(a4)









=









1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4

























4
2
1
6
3
2

















=









3
1
5
4









.

Since the syndromes are nonzero we deduce that there is at least one error. We have rank







 6= rank









3
1
5
4









,

but rank





3
1
5



 = rank





3 1
1 5
5 4



. So t = 1 and there is only one error. We solve the system 3l0 = −1,

whose solution is l0 = 2. We deduce that the error locator polynomial is λ = x + 2. We compute fu
as in Example 13, obtaining fu = 4x5 + 6x4 + 2x3 + 3x2 + 3. Now, since fu · λ = 4x6 + 6x2 + 3x + 6,
we deduce that ζn + · · · + ζdu+tx

du+t−n = 4 and gc = 6x + 5, so that the corrected word is (401632).
We could also have found the single root of λ, which is 5 = 51, and then deduce that there is an er-
ror at the second position (first position, if we start counting by 0). Then, to find the error value we
could have solved the system 51e1 = u(a) = 3, whose solution is e1 = 2. The corrected word is then
u− (020000) = (421632)− (020000) = (401632).

Denote by the same symbol v the vector 342650 and the polynomial 3 + 4x + 2x2 + 6x3 + 5x4. The
syndromes of v are









v(a)
v(a2)
v(a3)
v(a4)









=









1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4

























3
4
2
6
5
0

















=









0
0
0
0









.

13

Since the syndromes are all zero we deduce that there is no error.
Denote by the same symbol w the vector 025606 and the polynomial 2x+5x2+6x3+6x5. The syndromes

of w are









w(a)
w(a2)
w(a3)
w(a4)









=









1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4

























0
2
5
6
0
6

















=









0
1
5
5









.

Since the syndromes are nonzero we deduce that there is at least one error. We have rank







 6= rank









0
1
5
5









,

rank





0
1
5



 6= rank





0 1
1 5
5 5



, while rank

(

0 1
1 5

)

= rank

(

0 1 5
1 5 5

)

= 2. So, t = 2. We solve the

system
(

0 1
1 5

)(

l0
l1

)

=

(

−5
−5

)

=

(

2
2

)

,

whose solution is l0 = 6, l1 = 2. We deduce that the error locator polynomial is λ = x2+2x+6. We compute
fw as in Example 13, obtaining fw = 6x4 +2x3 +2x2 +2x+2. Now, since fw ·λ = 6x6 +4x3 +4x2 +2x+5,
we deduce that ζn + · · · + ζdu+tx

du+t−n = 6 and gc = 4x + 3, so that the corrected word is (025641). We
could also have found the roots of λ, which are 2 = 54 and 3 = 55 and then deduce that the error positions
are the fifth and sixth positions (fourth and fifth positions, if we start counting by 0). Then, to find the error
value we could have solved the system

(

54 55

52 54

)(

e4
e5

)

=

(

2 3
4 2

)(

e4
e5

)

=

(

w(a)
w(a2)

)

=

(

0
1

)

,

whose solution is e4 = 3, e5 = 5. The corrected word is then w−(000035) = (025606)−(000035) = (025641).

5 A glimpse of the Peterson–Gorenstein–Zierler algorithm.

Peterson [20] and Gorenstein and Zierler [10] proposed a decoding algorithm which is very similar to the
one we just presented. It is based on the following lemma.

For all h with t ≤ h ≤ n−k
2 , define

Ah =











u(α) u(α2) . . . u(αh)
u(α2) u(α3) . . . u(αh+1)

...
...

. . .
...

u(αh) u(αh+1) . . . u(α2h−1)











.

Lemma 25. If t < h ≤ n−k
2 , then det(Ah) = 0, while det(At) 6= 0. That is, the number of errors (if it is at most

n−k
2) is the maximum integer h ≤ n−k

2 such that det(Ah) 6= 0.

Proof. Since 2h− 1 ≤ n− k,

Ah =











e(α) e(α2) . . . e(αh)
e(α2) e(α3) . . . e(αh+1)

...
...

. . .
...

e(αh) e(αh+1) . . . e(α2h−1)











.

14

As before, let us denote the error positions as i1, . . . , it and let M = {m1, ...,mh} ⊆ {0, ..., n − 1} be any
subset containing all the error positions. Let D be the diagonal matrix

D = diag(em1
, . . . , emh

).

Clearly, |D| 6= 0 if h = t and |D| = 0 if h > t. Let

W =















1 1 . . . 1
αm1 αm2 . . . αmh

α2m1 α2m2 . . . α2mh

...
...

. . .
...

α(h−1)m1 α(h−1)m2 . . . α(h−1)mh















.

Since W is a Vandermonde matrix and the indices in M are all different, |W | 6= 0. We have







e(α) . . . e(αh)
...

. . .
...

e(αh) . . . e(α2h−1)






= W







αm1em1
. . . 0

...
. . .

...

0 . . . αmhemh






WT .

Now it is straightforward to check that this product of matrices has zero determinant if and only if M

contains no error positions, that is, if es = 0 for some s ∈ M .

The Peterson–Gorenstein–Zierler algorithm is as follows.

Input: u ∈ F
n
q .

1. Let t be the maximum integer smaller than or equal to n−k
2 such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

u(α) u(α2) . . . u(αh)
u(α2) u(α3) . . . u(αh+1)

...
...

. . .
...

u(αh) u(αh+1) . . . u(α2h−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

2. Solve the linear system











u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)





















l0
l1
...

lt−1











=











−u(αt+1)
−u(αt+2)

...

−u(α2t)











for l0, . . . , lt−1 and denote by λu the polynomial xt + lt−1x
t−1 + · · ·+ l1x+ l0.

3. Find the error positions by means of the roots of λu.

4. Find the error values by means of the linear system











αi1 αi2 . . . αit

α2i1 α2i2 . . . α2it

...
...

. . .
...

αti1 αti2 . . . αtit





















ei1
ei2
...

eit











=











u(α)
u(α2)

...

u(αt)











.

5. Output: c = u− e.

15

6 Comparison of our algorithm with the Peterson–Gorenstein–Zierler

algorithm.

The main differences between our proposed algorithm and the Peterson–Gorenstein–Zierler algorithm are

• Computation of the number of errors (step 1 in both algorithms);

• Computation of the error values (steps 3–4 in both algorithms).

Error location (step 2) is done exactly in the same way.
As for the computation of the error values, step 4 in our algorithm needs two polynomial multiplica-

tions and one division (all of them of order t + n), while steps 3 and 4 in the Peterson–Gornestein–Zierler
algorithm involve two linear square systems of t equations. This already makes our algorithm simpler than
the Peterson–Gorenstein–Zierler algorithm.

But the main difference is in the computation of the number of errors. In the Peterson–Gorenstein–
Zierler algorithm we start computing the determinant of a (large) n−k

2 × n−k
2 matrix and continue com-

puting determinants of decreasing order, while in our algorithm we start computing the rank of a (small)
2 × (n − k − 1) matrix and continue computing ranks of (h+ 1) × (n − k − h) matrices with an increasing
value of h. In the Peterson–Gorenstein–Zierler algorithm, the smaller the number of errors, the more de-
terminant computations will be needed. In our algorithm, the smaller the number of errors, the fewer rank
computations will be needed. Furthermore, in the Peterson–Gorenstein–Zierler algorithm we start with the
most complex determinants and then they get simpler, while in our algorithm we start with the simpler
rank computations and, as the number of errors increases we get more complex rank computations.

7 The optimistic view of best case decoding.

There are many scenarios where a high reliability is required but errors rarely occur. In this case, error
correcting codes with a high error correction capability are required although the expected number of errors
is low. In terms of error correction, the decoding approach that takes this perspective into consideration is
called best case decoding. See [4] for a deep analysis. In Berlekamp’s clarifying words,

. . . a best case decoder is philosophically analogous to a small child who continually asks, “Are
we almost there now?” This question may occur at many places in a long decoding program.
But, in a high-reliability application, the odds are quite favorable that any time the question is
asked, the answer is likely to be “YES”.

Our algorithm is very well suited for best case decoding because, in contrast to the Peterson–Gorenstein–
Zierler algorithm, it is fast when the number of errors is small and it is only a bit slower when the number
of errors approaches the correction capability.

Acknowledgments.

The author would like to thank the anonymous referees for deeply reading the manuscript and for mak-
ing very useful comments. She would specially like to thank the editor Susan Jane Colley for her careful
reading.

References

[1] E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill Book Co., New York, 1968.

[2] , The technology of error-correcting codes, Proceedings of the IEEE 68 (1980) 564–593.

16

[3] , Bit-serial Reed-Solomon encoders, IEEE Trans. Information Theory IT 28 (1982) 869–874.

[4] , Bounded distance+1 soft-decision reed-solomon decoding, IEEE Trans. Information Theory IT
42 (1996) 704–720.

[5] J. Bierbrauer, Introduction to Coding Theory. Chapman & Hall/CRC, Boca Raton, FL, 2005.

[6] M. Bossert, S. Bezzateev, A unified view on known algebraic decoding algorithms and new decoding
concepts, IEEE Trans. Inform. Theory 59 (2013) 7320–7336.

[7] W. G. Chambers, Solution of Welch-Berlekamp key equation by Euclidean algorithm, Electronics Letters
29 (1993).

[8] J.-L. Dornstetter, On the equivalence between Berlekamp’s and Euclid’s algorithms, IEEE Trans. Inform.
Theory 33 (1987) 428–431.

[9] S. V. Fedorenko, A simple algorithm for decoding Reed-Solomon codes and its relation to the Welch-
Berlekamp algorithm, IEEE Trans. Inform. Theory 51 (2005) 1196–1198.

[10] D. Gorenstein, N. Zierler, A class of error-correcting codes in pm symbols, J. Soc. Indust. Appl. Math. 9
(1961) 207–214.

[11] V. Guruswami, M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE
Trans. Inform. Theory 45 (1999) 1757–1767.

[12] A. E. Heydtmann, J. M. Jensen, On the equivalence of the Berlekamp-Massey and the Euclidean algo-
rithms for decoding, IEEE Trans. Inform. Theory 46 (2000) 2614–2624.

[13] J. Justesen, T. Høholdt, A Course in Error-Correcting Codes. EMS Textbooks in Mathematics, European
Mathematical Society (EMS), Zürich, 2004.

[14] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes.. North-Holland Publishing Co.,
Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16.

[15] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Information Theory IT-15 (1969)
122–127.

[16] T. D. Mateer, On the equivalence of the Berlekamp–Massey and the Euclidean algorithms for algebraic
decoding, in Information Theory (CWIT), 2011 12th Canadian Workshop on, 2011, 139–142.

[17] , Simple algorithms for decoding systematic Reed–Solomon codes, Des. Codes Cryptogr. 69 (2013)
107–121.

[18] R. Pellikaan, On decoding by error location and dependent sets of error positions, Discrete Math.
106/107 (1992) 369–381, A collection of contributions in honour of Jack van Lint.

[19] , On the existence of error-correcting pairs, J. Statist. Plann. Inference 51 (1996) 229–242, Shanghai
Conference Issue on Designs, Codes, and Finite Geometries, Part 1 (Shanghai, 1993).

[20] W. W. Peterson, Encoding and error-correction procedures for the Bose-Chaudhuri codes., IRE Trans-
actions on Information Theory IT-6 (1960) 459–470.

[21] I. S. Reed, G. Solomon, Polynomial codes over certain finite fields, J. Soc. Indust. Appl. Math. 8 (1960)
300–304.

[22] S. Roman, Introduction to Coding and Information Theory. Undergraduate Texts in Mathematics, Springer-
Verlag, New York, 1997.

[23] R. M. Roth, Introduction to Coding Theory. Cambridge University Press, New York, 2006.

17

[24] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948) 379–423, 623–
656.

[25] M. Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, J. Complexity 13 (1997)
180–193.

[26] Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, A method for solving key equation for decod-
ing Goppa codes, Information and Control 27 (1975) 87–99.

[27] L. R. Welch, E. R. Berlekamp, Error correction for algebraic block codes, US Patent 4633470 (1986).

18

	1 Introduction.
	2 Some background on coding theory.
	3 Four definitions of Reed–Solomon codes.
	3.1 Reed–Solomon codes from generator matrices.
	3.2 Reed–Solomon codes from parity-check matrices.
	3.3 Reed–Solomon codes and interpolation polynomials.
	3.4 Reed–Solomon codes and polynomial evaluation.
	3.5 Connection of the coefficients of an interpolation polynomial and its evaluation at all points.

	4 New decoding approach.
	5 A glimpse of the Peterson–Gorenstein–Zierler algorithm.
	6 Comparison of our algorithm with the Peterson–Gorenstein–Zierler algorithm.
	7 The optimistic view of best case decoding.

