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Abstract

For the elements of a numerical semigroup which are larger than the Frobe-
nius number, we introduce the definition of seed by broadening the notion
of generator. This new concept allows us to explore the semigroup tree in
an alternative efficient way, since the seeds of each descendant can be easily
obtained from the seeds of its parent. The paper is devoted to presenting
the results which are related to this approach, leading to a new algorithm
for computing and counting the semigroups of a given genus.

Introduction

Let N0 be the set of non-negative integers. A numerical semigroup is a subset Λ
of N0 which contains 0, is closed under addition and has finite complement, N0\Λ.
The elements in N0\Λ are the gaps of Λ, and the number g=g(Λ) of gaps is the
genus of Λ. Thus, the unique increasing bijective map

N0 −→ Λ
i 7−→ λi

indexing the non-gaps, namely the elements in Λ, satisfies λ0 = 0 and λi = i+ g

for any large enough positive index i. Let k = k(Λ) denote the smallest such
index. The conductor of Λ is

c = c(Λ) = λk = k + g.

The trivial semigroup N0 corresponds to c=1, that is, to g=0. Otherwise, the
largest gap of Λ, which is known as its Frobenius number, is c − 1. We call Λ
ordinary whenever c equals the multiplicity λ1, that is, whenever g = c− 1.

A generator of Λ is a non-gap σ such that Λ\{σ} is still a semigroup, which
amounts to saying that σ is not the sum of two non-zero non-gaps. Any semigroup
of genus g ≥ 1 can be uniquely obtained from a semigroup Λ of genus g − 1
by removing a generator σ ≥ c(Λ). This allows one to arrange all numerical
semigroups in an infinite tree, rooted at the trivial semigroup, such that the
nodes at depth g are all semigroups of genus g. This tree was already introduced
in [19, 20] and later considered in [6, 7, 9]. The first nodes are shown in Figure 1,
where each semigroup is represented by its non-zero elements up to the conductor.
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The number ng of semigroups of genus g was conjectured in [6] to satisfy

ng+2 ≥ ng+1 + ng

for g ≥ 0, and to behave asymptotically like the Fibonacci sequence. Zhai proved
the second statement in [22]. The Sloane’s On-line Encyclopedia of Integer Se-

quences [21] stores the known portion of the sequence ng. The first values have
been computed by Medeiros and Kakutani, Bras-Amorós [6], Delgado [10], and
Fromentin and Hivert [13]. Several contributions [7, 9, 11, 23, 2, 3, 15, 8, 17] have
been made to theoretically analyze the sequence.
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Figure 1

In this article we introduce the notion of seeds, as a generalization of the
generators of a semigroup which are greater than the Frobenius number. This
new concept allows us to explore the semigroup tree in an alternative efficient
way, since the seeds of each descendant can be easily obtained from the seeds
of its parent. Sections 1 and 2 are devoted to presenting the results which are
related to this approach, leading in Section 3 to a new algorithm for computing
the (number of) semigroups of a given genus. The running times that we obtain
are shorter than for the other algorithms which can be found in the literature.
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1 Seeds of a numerical semigroup

Let us fix a numerical semigroup Λ = {λi}i≥0 with conductor c =λk and genus g.
For any index i ≥ 0, the set

Λi := Λ \ {λ1, . . . , λi}

is a semigroup of genus g + i. It has conductor c if and only if i ≤ k− 1, and it
is ordinary if and only if i ≥ k − 1.

Definition 1.1. An element λt with t ≥ k is a seed of Λ if λt+λi is a generator
of Λi for some index 0 ≤ i < k. We then say that the seed λt has order i, and
also that λt is an order-i seed.

A seed of Λ is, by definition, at least as large as the conductor, and it has order
zero precisely when it is a generator of Λ. The order-zero seeds of a semigroup
of genus g are in bijection with its descendants of genus g+ 1 in the semigroup
tree, which are obtained by removing exactly one of those seeds. Order-one seeds
have been named strong generators in other references, such as [9]. They are
behind the key idea of the bounds in [7].

Lemma 1.2. Any order-i seed of Λ is at most c + λi+1 − λi − 1. In particular,

the number of order-i seeds of Λ is at most λi+1 − λi.

Proof. A generator of the semigroup Λi must be smaller than the sum of the
conductor, which is c for 0 ≤ i < k, and the multiplicity, which is λi+1.

Definition 1.3. The table of seeds of Λ is a binary table whose rows are indexed
by the possible seed orders. For 0 ≤ i ≤ k − 1, the i-th row has λi+1 − λi

entries, each of them corresponding to a possible order-i seed of Λ. They are
defined as follows: for 0 ≤ j ≤ λi+1 − λi − 1, the j-th entry in the i-th row is 1
if λk+j = c + j is an order-i seed of Λ, and 0 otherwise. The total number of
entries in the table is c.

Example 1.4. For the semigroup

Λ = N0 \ {1, 2, 3, 4, 6, 7} = {0, 5, 8, 9, 10, . . .}

one has λ1 = 5, c = λ2 = 8, so Λ may have only order-zero and order-one seeds.
The former are simply the generators of Λ among the elements

λ2 = 8, λ3 = 9, λ4 = 10, λ5 = 11, λ6 = 12,

whereas the latter may only be among the first three, according to Lemma 1.2.
Although λ4 = 2λ1 is clearly the only one of these five elements which is not a
generator of Λ, it is an order-one seed because λ4 + λ1 = 15 is not the sum of
two non-zero elements in the semigroup

Λ1 = Λ \ {λ1} = N0 \ {1, 2, 3, 4, 5, 6, 7} = {0, 8, 9, 10, . . .}.

Since Λ1 is ordinary in this example, λ2 + λ1 and λ3 + λ1 must then also be
generators of this semigroup, which means that both λ2 and λ3 are also order-one
seeds. Thus, the table of seeds of Λ is as follows:

1 1 0 1 1
1 1 1
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Example 1.5. For the semigroup

Λ = N0 \ {1, 2, 3, 4, 5, 6, 7, 9, 12, 13} = {0, 8, 10, 11, 14, 15, 16, . . .}

one has λ1 = 8, λ2 = 10, λ3 = 11, c = λ4 = 14. According to Lemma 1.2,
Λ may have at most 8, 2, 1 and 3 order-i seeds for i = 0, 1, 2, 3, respectively,
and the possible seeds for each order are given consecutively from λ4 on. The
actual seeds may be sieved from scratch using Definition 1.1, as in the previous
example. Specifically, the table of seeds of Λ can be checked to be as follows:

1 1 0 1 0 0 0 0
0 1
1
1 1 1

For instance, λ4 is not an order-one seed because λ4 + λ1 = 22 = 2λ3 is not a
generator of the semigroup

Λ1 = Λ \ {λ1} = {0, 10, 11, 14, 15, 16, . . .},

whereas it is an order-two seed because λ4 + λ2 = 24 is not the sum of two
non-zero elements in the semigroup

Λ2 = Λ \ {λ1, λ2} = {0, 11, 14, 15, 16, . . .}.

2 Behavior of seeds along the semigroup tree

Our aim in this section is to deduce the table of seeds of a descendant in the
semigroup tree from the table of seeds of its parent. We keep the notations from
the previous section.

Let us fix an order-zero seed λs of Λ, so that s ≥ k and

Λ̃ := Λ \ {λs}

is a semigroup of genus g + 1. The elements in Λ̃ are

λ̃i = λi for 0 ≤ i < s, λ̃i = λi+1 = λi + 1 for i ≥ s,

and the conductor is

c(Λ̃) = λ̃s = λs + 1 = s+ g + 1.

So there are s possible seed orders for this semigroup: an order-i seed of Λ̃, with
0 ≤ i < s, is an element λt with t > s such that λt + λi is a generator of the
semigroup

Λ̃i := Λ̃ \ {λ̃1, . . . , λ̃i} = Λ \ {λ1, . . . , λi, λs}.

Clearly, any order-i seed λt of Λ with t > s is also an order-i seed of Λ̃. This
corresponds to the first type of old-order seeds of Λ̃, meaning by this term the
order-i seeds of Λ̃ with 0 ≤ i < k. The four types of such seeds are gathered in
the next result.
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Lemma 2.1. Let i be an index with 0 ≤ i < k. An element λt with t > s is an

order-i seed of Λ̃ if and only if one of the following pairwise excluding conditions

holds:

(1) λt is an order-i seed of Λ.

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i+ 1) seed of Λ.

(3) i = k − 1 = s− 2 and λt = λs + λk − λk−1.

(4) i = k−1 = s−1 and either λt = λs+λk−λk−1 or λt = λs+λk−λk−1+1.

Proof. Let us first assume that λt is an order-i seed of Λ̃. Then, Lemma 1.2 and
the definition of Λ̃ yield the inequality

λt ≤ λs + λ̃i+1 − λi.

Furthermore, (1) is not satisfied if and only if

λt = λs + λj − λi

for some index j ≥ i+1. If this holds, then λi+1 ≤ λj ≤ λ̃i+1, where λ̃i+1 = λi+1

if i < s− 1, while λ̃i+1 = λi+1+1 otherwise. In the first case, one has j = i+1,
which leads to the expression for λt displayed in (2) and (3). Since 0 ≤ i < k ≤ s,
the second case can only occur for i = s − 1 = k − 1, and then the only two
possibilities for λt are those in (4).

Let us now examine when the element λs+λi+1−λi is an order-i seed of Λ̃. It
suffices to remark that the sum λs+λi+1 is a generator of Λ̃i if and only if it is a
generator of Λi+1. Then, two cases must be distinguished, depending on whether
i < k−1 or i = k−1. In the first case, the latter condition on λs amounts to the
last one in (2) by definition of seed. As for the second case, λs+λk is a generator
of Λk if and only if s and k are related as in (3) or (4), since otherwise it can
be written as the sum of two elements in that semigroup, namely λs−1 and λk+1.

To conclude the proof, one only needs to check the second possibility in (4).
Indeed, 2λs + 1 is a generator of the ordinary semigroup Λ̃s−1 = Λs.

Assume now that the removed seed λs is different from the conductor of Λ,
that is, s > k. If s = k + 1, then there are exactly two new-order seeds of Λ̃,
meaning by this term the order-i seeds of Λ̃ with k ≤ i < s. Otherwise, there
are always three such seeds. This follows right away from the next result.

Lemma 2.2. For an index i at least k, the following hold:

· If i < s− 2, then Λ̃ has no order-i seeds.

· If i = s− 2, then the only order-i seed of Λ̃ is λs + 1.

· If i = s− 1, then the only order-i seeds of Λ̃ are λs + 1 and λs + 2.

Proof. Let λt be an order-i seed of Λ̃, so that i < s < t. Since i ≥ k, one has

λi = λi+1 − 1 = λi+2 − 2 and λt = λt−1 + 1 = λt−2 + 2.

Then both s−i and t−s are at most 2. Otherwise, λt+λi could be written as the
sum of two elements in the semigroup Λ̃i above: either λt−1+λi+1 or λt−2+λi+2.
Furthermore, t = s+ 1 must hold whenever s = i+ 2.
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For i = s− 2 and i = s− 1, one has, respectively,

Λ̃i = N0 \ {1, . . . , λs − 2, λs} and Λ̃i = N0 \ {1, . . . , λs}.

The proof concludes by checking that λs+1 + λi = 2λs − 1 is a generator of Λ̃i

in the first case and that λs+1 + λi = 2λs and λs+2 + λi = 2λs + 1 are both
generators of Λ̃i in the second case.

Now the table of seeds of Λ̃ can be easily built from the table of seeds of Λ.
According to the results in this section, this may be done as follows:

· In each of the k rows of the table, s− k + 1 new entries must be added to
the right, and the same number of entries must be cropped starting from
the left. This corresponds to recycling old-order seeds of type (1).

· Then, the last right-hand new entry in the last row must be set to 1 exactly
when s=k or s=k+1. Moreover, in the first case an additional right-hand
entry with value 1 is required. The last right-hand new entry in any other
row must be given the value, if any, of the last right-hand cropped entry
in the row just below. All entries which remain empty are then set to 0.
This codifies old-order seeds of types (2), (3) and (4), and completes all
modifications to be done in the first k rows.

· Finally, to take account of new-order seeds, s − k rows must be added to
the table if s > k. The last of them consists of two entries with value 1.
If s > k + 1, the last but one row consists of a single entry with value 1,
while each of the remaining new rows consists of a single entry with value 0.

Example 2.3. We can compute the tables of seeds corresponding to the four
descendants of the semigroup Λ in Example 1.4, that is, the table of seeds of Λ̃
for s = 2, 3, 5, 6, by graphically implementing in each case the three steps above:

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1


y


y


y


y

1 0 1 1
1 1

0 1 1
1

1


y


y


y


y

1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0


y


y


y

0 1 1 0 1
1 0 1
1 1

1 0 0 0 0
0 0 0
0
1
1 1

0 0 0 0 0
0 0 0
0
0
1
1 1
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Example 2.4. We can compute the table of seeds for each of the descendants of
the semigroup Λ in Example 1.5, that is, the table of seeds of Λ̃ for s = 4, 5, 7.

s = 4 s = 5 s = 7

1 1 0 1 0 0 0 0
0 1
1
1 1 1

1 1 0 1 0 0 0 0
0 1
1
1 1 1

1 1 0 1 0 0 0 0
0 1
1
1 1 1


y


y


y

1 0 1 0 0 0 0
1

1 1

0 1 0 0 0 0

1

0 0 0 0


y


y


y

1 0 1 0 0 0 0 0
1 1
1
1 1 1 1

0 1 0 0 0 0 0 1
0 0
1
1 0 1

0 0 0 0 0 0 0 0
0 0
0
0 0 0


y


y

0 1 0 0 0 0 0 1
0 0
1
1 0 1
1 1

0 0 0 0 0 0 0 0
0 0
0
0 0 0
0
1
1 1

3 The seeds descending algorithm

Let us associate with a numerical semigroup Λ two binary strings

G(Λ) = G0G1 · · · Gℓ · · · and S(Λ) = S0 S1 · · · Sℓ · · ·

encoding, respectively, the gaps and the seeds of Λ. Specifically, with the nota-
tions and definitions in Section 1,

Gℓ :=

{

1 if ℓ+ 1 is a gap of Λ,

0 otherwise,

whereas S(Λ) amounts to the concatenation of the rows in the table of seeds of Λ,
that is,

Sλi+j :=

{

1 if c+ j is an order-i seed of Λ,

0 otherwise,

for i ≥ 0 and 0 ≤ j < λi+1 − λi. In particular, Gℓ = Sℓ = 0 for ℓ ≥ c, so below
we identify each string with its first c bits:

G(Λ) = G0G1 · · · Gc−1 and S(Λ) = S0 S1 · · · Sc−1.

The bit Gc−1 is always 0, while Sc−3 = Sc−2 = Sc−1 = 1 whenever c ≥ 3. The
pairs of binary strings G(Λ), S(Λ), for Λ running over the first nodes in the
semigroup tree, are displayed in Figure 2.
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Figure 2

When transcribing and implementing the pseudocodes in this section, binary
strings such as G(Λ) and S(Λ) are regarded, stored and manipulated as integers
which are encoded in binary form. We use below the bitwise operations on binary
strings & (and) and | (inclusive or), as well as the left shift ≪ and the right

shift ≫ of a binary string by a non-negative integer x. In terms of binary
encoding of integers, the latter shift is equivalent to multiplying by 2x.

Assume from now on that Λ is not the trivial semigroup and let Λ̃ = Λ\{λs}
be a descendant of Λ in the semigroup tree, as in Section 2. Then set s̃ = s− k,
so that 0 ≤ s̃ < λ1 and λs = c + s̃. The string G(Λ̃) is obtained from G(Λ) by
simply switching the bit Gc+s̃−1 from 0 to 1. As for S(Λ̃), it can be computed
from S(Λ) by adapting the construction of the table of seeds of Λ̃ as is described
in Section 2, which leads to the following rephrasing in terms of strings.

Lemma 3.1. Let S̃ = S̃0 S̃1 · · · S̃ℓ · · · be the binary string defined by

S̃ℓ :=

{

0 if ℓ = λi + j with 1 ≤ i < k, 0 ≤ j < min(s̃, λi+1 − λi),

Sℓ otherwise.

Then,

S(Λ̃) = (S̃ ≪ s̃ + 1) | (1 1 1 ≫ c+ s̃− 2) = S̃s̃+1 S̃s̃+2 · · · S̃c−1

2s̃
︷ ︸︸ ︷

0 · · · 0 1 1 1.

In particular, S(Λ̃) = S1 · · · Sc−1 1 1 whenever s̃ = 0.

The string S̃ in this result satisfies S̃λi+j = 0 for 1 ≤ i < k, 0 ≤ j < s̃, so it
can be obtained by raking S(Λ) to get rid of the old-order seeds which must not
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be recycled. This raking process is performed by means of successive one-position
shifts of G(Λ) to the right, as shown in the following pseudocode:

Input: c := c(Λ), G := G(Λ), S := S(Λ), s̃

Output: c(Λ̃), G(Λ̃), S(Λ̃)

1. S̃ := S

2. rake := G

3. from 1 to s̃ do

4. rake := rake ≫ 1

5. S̃ := S̃ & rake

6. return c̃ := c+ s̃+ 1, G | (1 ≫ c̃− 2), (S̃ ≪ s̃+ 1) | (1 1 1 ≫ c̃− 3)

This is the basic descending step for an algorithm that, given a level γ > g(Λ),
computes the number nγ(Λ) of descendants of Λ having genus γ. We reproduce
two different versions for the algorithm: the first one is based on a depth first

search exploration of the nodes in the tree, and the second one is recursive.

Input: γ, G(Λ), S(Λ), c(Λ), g(Λ), λ1

Output: nγ(Λ)

1. g := g(Λ) n := 0

2. G[g] := G(Λ) S[g] := S(Λ) rake[g] := G(Λ)

3. c[g] := c(Λ) m[g] := λ1 s̃last := s̃[g] := 0

4. while g 6= g(Λ)− 1 do

5. while s̃[g] < m[g] and S[g] & (1 ≫ s̃[g]) = 0 do s̃[g] := s̃[g] + 1

6. if s̃[g] = m[g] then

7. g := g − 1

8. s̃last := s̃[g]

9. s̃[g] := s̃[g] + 1

10. else if g = γ − 1 then

11. n := n+ 1

12. s̃[g] := s̃[g] + 1

13. else

14. c[g + 1] := c[g] + s̃[g] + 1

15. if s̃[g] = 0 and m[g] = c[g] then m[g + 1] := c[g + 1]

16. else m[g + 1] := m[g]

17. from s̃last + 1 to s̃[g] do

18. rake[g] := rake[g] ≫ 1

19. S[g] := S[g] & rake[g]

20. S[g + 1] := (S[g] ≪ s̃[g] + 1) | (1 1 1 ≫ c[g + 1]− 3)

21. G[g + 1] := G[g] | (1 ≫ c[g + 1]− 2)

22. g := g + 1

23. rake[g] := G[g]

24. s̃last := s̃[g] := 0

25. return n
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To produce the descendants from a given node of genus g through this algorithm,
the descending step is not performed each time from scratch as it is given above.
Indeed, the raking process which must be made for a descendant need only be
continued, in the loop at lines 17–19, from the one already executed for the
previous siblings, if any. As a consequence, for each possible descendant, that is,
for every non-negative value s̃[g] smaller than the multiplicity m[g], a limited
number of operations are required: specifically, those at line 5 are carried out
once for every such value, whereas those at lines 18 and 19 are carried out once
for every value s̃[g] up to the last sibling, and those at the remaining lines inside
the main loop are carried out at most once for each actual descendant. Thus, the
computation of all descendants of the node requires O(m[g]) operations having
time complexity at most O(γ). This is why, along with the fact that operations
on binary strings are very fast in practice, one should expect the algorithm to
perform efficiently when compared to other existing ones, for which either the
construction of the data structure representing a generic descendant takes time
at least O(γ log γ), as in [13], or otherwise the identification of its generators
requires at best O(γ) basic arithmetic operations, as in the setting given in [6, 7].

Recursive version nγ(G, S, c, g, m)

1. if g = γ then n := 1

2. else

3. n := 0 s̃last := 0 rake := G

4. for s̃ from 0 to m− 1 do

5. if S & (1 ≫ s̃) 6= 0 then

6. from s̃last + 1 to s̃ do

7. rake := rake ≫ 1

8. S := S & rake

9. s̃last := s̃

10. c̃ := c+ s̃+ 1

11. if s̃ = 0 and m = c then m̃ := c̃ else m̃ := m

12. n := n + nγ

(
G | (1 ≫ c̃− 2) , (S ≪ s̃+1) | (1 1 1 ≫ c̃− 3) , c̃, g+1, m̃

)

13. return n

Let us conclude by comparing the running times of the two versions given
above for the seeds descending algorithm. We also consider three known algo-
rithms for computing the number of semigroups of a given genus, which we briefly
summarize as follows. We use the same notations as in Sections 1 and 2.

• The Apéry set algorithm. A semigroup Λ can be uniquely identified by
its Apéry set [1, 18], which is defined by taking, for each congruence class
of integers modulo the multiplicity λ1, the smallest representative in Λ.
Then, this algorithm is based on the fact that the generators of Λ other
than λ1 necessarily lie in its Apéry set: they are the non-zero elements in
the set which cannot be written, up to a multiple of λ1, as the sum of any
two other non-zero elements in the set. Thus, although the Apéry set of a
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descendant is immediately obtained from the Apéry set of Λ, the efficiency
of this method is rather limited.

• The generators tracking algorithm. It is based on the construction
given in [6, 7] for the semigroup tree by keeping track of the set of generators
at each descending step. Specifically, the node attached to a semigroup Λ
can be encoded by its conductor c, its multiplicity λ1 and a ternary array
which is indexed by 1 ≤ i < c+ λ1 and whose value (say 0, 1 or 2) at the
i-th entry depends on whether i is a gap of Λ, a generator or a non-gap
which is not a generator. The array of a descendant Λ̃ = Λ \ {λs} inherits
the values from that of Λ at every entry, except for the one with index i=λs.
In the very special case in which Λ is ordinary and s = 1, exactly two new
entries are required and both correspond to generators of Λ̃. Otherwise,
λs − c + 1 new entries are required but only the last one may correspond
to a generator, according to Lemma 1 in [7].

• The decomposition numbers algorithm. Fromentin and Hivert con-
sider in [13] the decomposition numbers

dΛ(x) := # {y ∈ Λ | x− y ∈ Λ, 2y ≤ x}

for x ∈ N, attached to a semigroup Λ. These numbers, which are intimately
related to the extensively used ν-sequence in coding theory [12, 16, 14, 4, 5],
are exploited in a simple way in [13] to efficiently explore the semigroup tree.

For each algorithm, we made a first implementation using a depth first search

(DFS) exploration of the semigroup tree, as in [13], since this consumes much
less memory than a breadth first search exploration and so allows us to reach
further in the computations. We then implemented recursive versions for the
algorithms. All implementations were made in plain C. The following table dis-
plays the number of seconds that each of them required to compute the number
of semigroups of genus g for 30 ≤ g ≤ 40.

30 31 32 33 34 35 36 37 38 39 40

Apéry - DFS 13 24 39 67 114 193 327 554 933 1577 2657
Apéry - recursive 10 16 28 47 81 136 232 393 634 1071 1805
decomposition - DFS 10 16 27 46 79 131 222 373 626 1050 1762
generators - DFS 8 14 23 39 65 110 185 310 518 868 1448
decomposition - recursive 7 12 20 35 58 97 165 275 462 775 1297
generators - recursive 2 4 7 11 19 31 53 87 145 241 400
seeds - DFS 1 3 4 8 12 21 35 58 96 161 269
seeds - recursive 1 2 3 6 9 15 26 42 70 118 195
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