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ABSTRACT 9 

A multivariate qualitative method using UV-visible spectroscopic data and a PLS-DA 10 

chemometric treatment was proposed to identify whether paprika samples were 11 

adulterated with Sudan I and Sudan IV dyes, or their mixtures. The method was validated 12 

by calculating the main performance parameters (sensitivity and specificity) and 13 

determining the stability over time. 14 

Three classes were defined: unadulterated samples (class 1), samples adulterated with 15 

Sudan I (class 2) and samples adulterated with Sudan IV (class 3). A total of 81 samples 16 

belonging to these classes were analyzed. There was also an additional data set consisting 17 

of 54 samples adulterated with a mixture of two dyes at two different concentration 18 

levels, which were analyzed and predicted with the established models. In addition, all 19 

135 samples were analyzed at different times over a 6–month period to study the model’s 20 

stability over time. 21 

In general, the main performance parameters were very satisfactory. As far as training 22 

samples is concerned, sensitivity was 100% for the three classes studied. And specificity 23 

was 100% for the unadulterated class and for the adulterated with Sudan IV class, and 24 

slightly lower (96%) for the adulterated with Sudan I class. Regarding samples from the 25 

additional set, excellent specificities were obtained because no samples were assigned to 26 

the unadulterated class. In addition, sensitivity was close to 100% for the Sudan IV class 27 

and around 75% for the Sudan I class. All the main performance parameters were 28 

maintained throughout the 6 months of the study. 29 

 30 
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1. Introduction 40 

Multivariate qualitative methods have increasingly been applied in food analysis. 41 

According to the International Union of Pure and Applied Chemistry (IUPAC) qualitative 42 

analysis is "the analysis in which substances are identified or classified on the basis of 43 

their chemical or physical properties" (Currie, 1995). Currently, and largely due to the 44 

expansion of chemometrics, and more specifically of classification techniques, qualitative 45 

analysis is used not only to identify compounds but also to classify and authenticate 46 

foodstuffs, products, specimens and materials (Szymanska et al., 2015). 47 

Like all analytical methods, qualitative methods need to be validated by establishing their 48 

performance parameters. However, unlike the validation protocols of quantitative 49 

methods, which have been the subject of numerous studies, interest in the principles and  50 

validation of qualitative analysis has only been developing since the late 1990s (Valcárcel, 51 

Cárdenas & Gallego, 2000; Thompson, Ellison & Wood, 2002; Trullols, Ruisánchez & Rius, 52 

2004). Additionally, studies about the validation of multivariate methods are even more 53 

recent (Szymanska et al., 2015; Lopéz, Callao & Ruisánchez, 2015; Cuadros-Rodríguez, 54 

Pérez-Castaño & Ruiz-Samblás, 2016; Galarini et al., 2011; Riedl, Esslinger & Fauhl-55 

Hassek, 2015; Lopéz, Colomer, Ruisánchez & Callao, 2014). As an example, in 2013, AOAC 56 

International published a guideline for the validation of binary qualitative methods for 57 

detecting biological and chemical compounds (AOAC International, 2013). 58 

 59 

In this paper, we propose to establish and validate a multivariate qualitative method for 60 

the detection of Sudan I and IV dyes and mixtures thereof in culinary spices. Samples 61 

were characterized according to their UV-visible spectrum, using the chemometric 62 

techniques of principal component analysis (PCA) for the data exploration stage and 63 

partial least squares discriminant analysis (PLS-DA) to establish the classification model 64 

for the screening stage. The UV-Vis has been shown to be suitable for detecting 65 

adulteration in spices by Sudan dyes (Di Anibal, Odena, Callao & Ruisánchez, 2009; Di 66 

Anibal, Callao & Ruisánchez, 2011; Di Anibal, Rodriguez & Albertengo, 2015; Reinholds et 67 

al., 2015; Di Anibal, Rodriguez & Albertengo, 2014). When the concentration level is low, 68 

techniques such as liquid chromatography, mass spectroscopy and others would be more 69 

suitable than UV. But, as Mishra stated, the usual concentrations present in species are 70 

higher enough to be detected by UV-Vis (Mishra et al. 2007). The method was validated 71 

by establishing the main performance parameters and determining their stability over 72 

time.  73 

 74 

Sudan dyes I-IV are a family of synthetic azo dyes that are classified as class 3 carcinogens 75 

by the International Agency for Research on Cancer (IARC) (IARC, 1975). In the early 76 

2000s, they were found in some food products in some European countries and, in 77 

response to the alarm caused, the European Commission generated the Commission 78 

Decision 2005/402 / CE (23 May 2005) on emergency measures regarding chili, chili 79 

products, curcuma and palm oil. In recent years, notifications concerning foods 80 

adulterated with Sudan dyes have declined considerably, so European countries only kept 81 
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the Sudan I and IV regulations in check (Commission Regulation (EC) No 594/2012). Sudan 82 

I and IV are often found together in some products, mostly in chilli, seasonings and spice 83 

mixtures (RASFF, 2005; RASFF, 2006). It should be borne in mind that each Sudan dye has 84 

a different effect on the human body, so it is important to detect adulterated foods 85 

containing more than one Sudan dye, because the simultaneous presence of these can 86 

change or increase their toxicity (Xu et al., 2010). 87 

 88 

The alarm caused by the discovery of Sudan dyes in food products raised considerable 89 

scientific interest in developing analytical methods to determine them. This interest is 90 

still alive today (Petrakis et al., 2017; Bazregar et al., 2018; Kılınç, Çelik & Bilgetekin, 2018; 91 

Liu, Qi & Zhang, 2018). Of the different methods developed, those based on the 92 

multivariate treatment of spectroscopic data are worth mentioning here because of their 93 

connection with the present study (Li et al., 2016; Di Anibal, Marsal, Callao & Ruisánchez, 94 

2012; Lohumi et al.,2017; He et al., 2015; Haughey et al., 2015). A few of them have 95 

focused on the determination of dye mixtures but none of them have established the 96 

validity of the models over time. This is the most important contribution of this study and 97 

it can be extrapolated to multivariate qualitative methods, for any type of sample and 98 

objective. 99 

 100 

2. Material and methods 101 

2.1. Samples 102 

A total of 27 spices of different commercial brands were purchased from local markets, 103 

distributed as follows: 14 mild and 13 hot paprika.  An extraction process with acetonitrile 104 

was applied to these spices. Details about previous studies and experimental treatment 105 

can be found elsewhere (Di Anibal, Odena, Callao & Ruisánchez, 2009). These extracts 106 

are a set of unadulterated samples named Class 1. 107 

The two adulterated sample sets, one adulterated with Sudan I (class 2) and the other 108 

with Sudan IV (Class 3), were obtained by spiking the unadulterated samples with an 109 

appropriate amount of one Sudan dye in such a way that the final concentration was 5 110 

mg/g. This is the usual concentration found in adulterated spices (Mishra et al., 2007). 111 

Two additional adulterated data sets, with mixtures of both Sudan dyes (I and IV), were 112 

prepared. The first additional set consisted of samples adulterated with 5mg/g of each 113 

dye (final concentration of both 10mg/g), to keep the amount of each dye used to 114 

establish the corresponding class model. The second consisted of samples adulterated 115 

with 2.5mg/g of each dye, so that the final concentration of both was 5mg/g, just as it 116 

was for establishing the class model. Finally, the UV-visible spectrum was acquired for 117 

135 samples.   118 

To accurately describe the system under study, a sufficient number of samples should be 119 

available to produce independent training and test sets. In this study, because of the 120 

relatively small number of samples for each class (27), they were all placed in the training 121 

set, which was validated by a leave-one-out cross-validation procedure (Foca et al., 2009).  122 

 123 
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2.2 Instrumentation and software 124 

UV-visible measurements were made by an Agilent 8453 UV-visible spectrophotometer 125 

(Agilent Technologies Inc., Palo Alto, CA, United States) equipped with a diode array 126 

detector (DAD) and ChemStation software. Each spectrum was registered in the range 127 

between 300 and 600 nm with a spectral resolution of 1 nm (301 variables). 128 

Multivariate analysis was performed with Matlab software (Version 7.0, The MathWorks, 129 

Inc., Natick, USA) and PLS Toolbox version 7.0.2 (Eigenvector Research Incorporated). 130 

Data was pre-processed with baseline correction, smoothing by Savitzky Golay and mean 131 

centering before the chemometric treatment. 132 

 133 

3. Background 134 

 135 

Principal components analysis (PCA) (Esbensen & Geladi, 2009; Li Vigni, Durante & Cocchi, 136 

2013) is an unsupervised exploratory analysis that can be used to visualize sample 137 

distribution in the multivariable space, check any trends, clustering or identify possible 138 

outliers previously to the classification step.  139 

PCA seeks to reduce the dimensionality of a data set consisting of a large number of 140 

variables and defines new variables as linear combinations of the original variables. 141 

Redundant information is summarized while as much of the variation as possible is 142 

retained in the data set  143 

 144 

Partial Least Squares-Discriminant Analysis (PLS-DA) is the classical PLS regression 145 

technique adapted to a supervised classification task (Bevilacqua et al., 2013). It aims to 146 

establish a linear regression between a matrix of independent variables X (spectra) and a 147 

matrix of dependent variables (classes). Dependent variables Y designate the class to 148 

which a sample belongs with a binary response, where 1 indicates membership and 0 149 

does not. This means that samples of class 1 were encoded as (1,0,0), class 2 as (0,1,0) 150 

and class 3 as (0,0,1). 151 

The prediction of the model for each sample is expressed in terms of a value around 1 or 152 

zero. A threshold is set between 0 and 1. Values higher than the threshold mean that the 153 

sample belongs to the class considered and values lower than the threshold that they do 154 

not. 155 

The threshold is usually calculated using Bayesian statistics, which assume that the 156 

predicted values of Y follow a normal distribution similar to that of future samples and 157 

select the value of Y in which the number of false positives and false negatives should be 158 

minimized for future predictions. Details of the PLS-DA technique can be found in the 159 

literature (Barker & Rayens, 2003). 160 

Performance parameters. To evaluate the quality of the classification model, sensitivity 161 

and specificity values were evaluated. Sensitivity is the proportion of samples belonging 162 

to a class that were correctly identified as belonging to the class. And the specificity is the 163 

proportion of samples not belonging to a class that were identified as foreign by the 164 

model (Callao & Ruisánchez, 2018). 165 

 166 
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Sensitivity = 100 × [TP/(TP + FN)] 167 

Specificity = 100 × [TN / (TN + FP)] 168 

 169 

where TP = true positive, number of positive samples that are correctly identified as 170 

positive samples; 171 

FN = false negative, number of positive samples that are misclassified as negative 172 

samples; 173 

FP = false positive, number of negative samples that are incorrectly identified as positive 174 

samples; 175 

TN = true negative, number of negative samples that are correctly identified as negative 176 

samples. 177 

 178 

4. Results and Discussion 179 

 180 

Figure 1a shows the spectra of the standards of Sudan I, Sudan IV and Sudan I + IV in 181 

acetonitrile at a concentration of 5mg/g. It can be observed that the spectra of the two 182 

dyes clearly overlapped, although Sudan I had higher intensity values and Sudan IV 183 

appeared to be slightly shifted to the right. Figure 1b shows the spectra of two randomly 184 

chosen unadulterated samples (mild paprika and hot paprika). It can be seen that there 185 

are no significant differences between them and that the absorbance region is the same 186 

as the dye region.  187 

 188 

Before submitting the data set to any chemometric analysis, two data pre-treatments 189 

were applied to the spectra. A Savitzky-Golay smoothing using a window with eleven 190 

points and a second-order polynomial was applied to reduce instrumental noise. Then, 191 

the baseline was corrected with a polynomial of order 0. 192 

 193 

First, an exploratory analysis by Principal Component Analysis (PCA) was performed on 194 

all the samples from the three classes studied. Fig. 2 shows the scores for the first two 195 

PCs. The total variance explained by the first two components was 97,56% (PC1 = 87.37% 196 

and PC2 = 10.19%). It can be seen that the unadulterated samples are well separated 197 

from those adulterated with Sudan I and Sudan IV. PC1 differentiates between 198 

unadulterated samples (negative scores) and samples adulterated with Sudan I (positive 199 

scores), while those samples adulterated with Sudan IV have negative and positive scores. 200 

On the other hand, PC2 distinguishes between the unadulterated samples and the 201 

samples adulterated with Sudan I (negative scores) from the samples adulterated with 202 

Sudan IV (positive scores). The plot shows that the samples do not show tendencies 203 

regarding the paprika type (mild paprika or hot paprika).  204 

 205 

Two unadulterated samples (no. 4 and no. 20) present higher PC1 scores than the rest of 206 

their class since they were the only ones with a positive PC1 score, overlapping with 207 

Sudan I samples. The corresponding adulterated samples were also the ones with the 208 

highest PC1 scores in Sudan I and Sudan IV classes. It should be pointed out that these 209 

samples are a special variety of mild and hot paprika called “De la Vera”. They had be kept 210 

on further analysis. 211 

 212 
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Fig. 3 shows the PCA loadings for the first two PCs. The PC1 loading has spectral 213 

characteristics similar to the Sudan I dye spectrum while the PC2 loading correlates with 214 

the Sudan IV dye spectrum as it has intensity values between 550 and 600 nm like Sudan 215 

IV. The following PCs loadings (not shown) are correlated to both Sudan dyes spectra as 216 

well as to the samples spectra.    217 

 218 

PLS-DA was the technique used to establish the model for the three classes: 219 

unadulterated samples (class 1), samples adulterated with Sudan I (class 2) and samples 220 

adulterated with Sudan IV (class 3). PLS-DA classification was performed with three latent 221 

variables (LVs), which were chosen using leave-one-out cross-validation to minimize the 222 

root mean square error for cross validation (RMSECV) for each class. 223 

 224 

Fig. 4 shows the PLS-DA assignation of samples to each of the predefined classes. The 225 

horizontal line corresponds to the threshold and the symbols are the predicted value for 226 

each sample in the different classes. All unadulterated samples were predicted to belong 227 

to class 1 (unadulterated, Fig 4a, prediction values higher than the threshold) and only 228 

one sample was wrongly assigned to class 2 (adulterated with Sudan I, Fig 4b, prediction 229 

values higher than the threshold). This assignment to class 2 is a false positive because 230 

an unadulterated sample was classified as being adulterated with Sudan I. It can be 231 

regarded as an error without serious consequences, because this sample would be 232 

submitted to a confirmatory analysis. All samples from class 2 and class 3 are all properly 233 

classified in their own class (Fig 4b and 4c, prediction values higher than the threshold). 234 

On the other hand, the mild and hot paprika samples called "De la Vera" (no. 4 and no. 235 

20), unadulterated and spiked samples, were assigned correctly even though they 236 

behaved slightly differently from the others observed in the PCA plot. These results, 237 

expressed in terms of sensitivity and specificity, are shown in the first column of Table 1 238 

(indicated as t0). It can be seen that they were 100% for the three classes, except for class 239 

2, which as explained above, has a specificity of 96%. 240 

As far as the prediction of the additional data set is concerned, all samples adulterated 241 

with a mixture of 5mg/g of each Sudan dye were properly assigned to their own class. As 242 

they are mixtures, they were assigned to both class 2 (Sudan I, Fig. 4b) and class 3 (Sudan 243 

IV, Fig. 4c). Samples adulterated with a mixture of 2.5mg/g of each Sudan dye were all 244 

properly assigned to class 3 (Fig. 4c), but 13 samples out of 27 were not assigned to class 245 

2 (Fig. 4b, prediction values lower than the class threshold). Therefore, the implication of 246 

this result is not so serious for the health of the consumer because samples adulterated 247 

with a mixture of two Sudan dyes will be regarded as samples adulterated with only one 248 

Sudan dye. Even though the models were established with samples adulterated at 5 mg 249 

/ g, they can successfully identify samples adulterated with a lower proportion (2.5 mg / 250 

g). None of these samples were assigned to class 1 (unadulterated, Fig. 4a), so no false 251 

negative errors were obtained. These results, expressed in terms of sensitivity and 252 

specificity, are shown in the first column of Table 1 (indicated as t0). 253 

 254 

To study the stability of the multivariate models over time, unadulterated samples, 255 

samples adulterated with Sudan I and Sudan IV, and the additional data set were 256 

measured over a period of six months. Six-time delay data sets were measured. The first 257 

five measurements were made at 15-day intervals while the sixth was made 60 days after 258 
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the fifth. During the time intervals, samples were kept in the refrigerator at low 259 

temperature. 260 

Table 1 shows the sensitivity and specificity results of each class at different times 261 

(indicated as t1 to t6), obtained from the PLS-DA classification model established using 262 

the zero time measurements. Considering that the quality parameters obtained with the 263 

established model at time zero (t0) are the reference values, it can be stated that the 264 

classification models were stable over time since they present no significant variations.  265 

 266 

As far as the training set is concerned, the sensitivity of Class 1 and Class 3 had a constant 267 

value of 100% while the sensitivity of class 2 was lower for t3, t5 and t6. The majority of 268 

class 2 errors were samples being predicted as adulterated with both dyes (class 2 and 3) 269 

and not assigned only to their class. As mentioned above, the consequences of a double 270 

assignment error are not as serious since they are still recognized as an adulterated 271 

health risk. These lower sensitivity values (93 and 96%) are also reflected in the lower 272 

specificity values of Class 1 (96 or 98%) and the 98% specificity values for class 3.  This 273 

slight decrease in the specificity of class 1 (unadulterated class), although not continuous 274 

and with no clear trend, is more important since the products would not be withdrawn 275 

from the food chain and, therefore, there would be a health risk.  276 

 277 

As far as the additional data set is concerned, the specificity of class 1 was 100%. 278 

Therefore, no sample containing Sudan dye was assigned to class 1 (unadulterated 279 

samples). This is important since no false negatives were obtained in the samples 280 

adulterated with mixtures of dyes. The sensitivity of class 3 was lower after time 4 but, 281 

despite the small variations, no trend was observed. Various samples were not assigned 282 

to this class (adulterated with Sudan IV) at different times and there was no relationship 283 

between them. The consequences of these errors are minimal since the samples were 284 

assigned to class 2, which is also adulterated class (with Sudan I).  285 

 286 

Finally, the lowest quality parameter was the sensitivity of class 2 (74% at t0) and, as 287 

expected, values were similar when samples from the additional data set measured over 288 

time (from t1 to t6) were predicted. Some samples were not assigned to the class by any 289 

of the measurements made over time, but no relationship was observed between them. 290 

Only one sample was correctly assigned by the first measurement (t0) but not by 291 

subsequent measurements. For the other incorrectly assigned samples, no general 292 

trends were observed. 293 

 294 

5. Conclusions 295 

 296 

PLS-DA multivariate analysis and UV-visible spectrometry are powerful tools for 297 

identifying banned Sudan dyes at the referenced concentration level, both individually 298 

and in mixtures of different proportions, in commercial spices intended for human 299 

consumption. Samples adulterated with single dyes were properly detected at 300 

concentrations that are within the usual range for commercial benefit. Some of the 301 

samples adulterated with lower concentrations of mixtures of both dyes were not 302 

assigned as adulterated with Sudan I, although they were assigned as adulterated. This 303 

type of error has no consequences on health as the products would be withdrawn from 304 

the food chain. 305 
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 306 

The study of the validity of the PLS-DA classification model over time has shown that the 307 

main quality parameters of the method were maintained over the time studied (6 308 

months). No trends have been found in the slight fluctuations of these parameters, so 309 

stability can be ensured. It should be noted that studies of this type are not usually 310 

performed for multivariate qualitative methods, so we believe that our findings may lead 311 

to greater use of this type of method. 312 

 313 

This methodology proposed is a rapid, simple and affordable detection tool for this type 314 

of samples.  315 

 316 
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