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Abstract 12 

There is no any doubt about the importance of food fraud control, as it has implications in food safety and in consumer health. Focusing 13 

on fruit beverages, some types of adulterations have been detected more frequently, such as substitution with less expensive fruits. A 14 

methodology based on attenuated total reflectance Fourier-transform mid-infrared spectroscopy (ATR-FTIR) and multivariate 15 

classification was applied to detect whether grape nectars were adulterated by substitution with apple juice or cashew juice. A total of 16 

126 samples were obtained and analyzed. Two strategies were proposed: one-class and multiclass approaches. Soft independent 17 

modeling of class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA) and partial least squares density modeling 18 

(PLS-DM) were used to build the models. Among them, PLS-DA presented the best performance with a sensitivity and specificity of 19 

nearly 100%. The multiclass strategy was preferred if the adulterants to be studied are known because it provides additional information. 20 

 21 

Highlights  22 

 The detection of grape nectar adulteration with cashew or apple was studied. 23 

 One-class and multiclass approaches were implemented. 24 

 The multivariate classification methods SIMCA, PLS-DA and PLS-DM were compared. 25 

 PLS-DA provided better performance to detect grape nectar adulterations. 26 

 27 
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1. Introduction 31 

Because of the highly competitive market, drink industries are always searching for product diversification, and in recent years, 32 

the largest increase in production was of fruit nectar (Neves, Trombin, Lopes, Kalaki, & Milan, 2012). Nectar is defined as an 33 

unfermented beverage produced by the dilution in water of the edible part of fruits or vegetables or their extracts with the addition of 34 

sugars, intended for direct consumption (Brazil, 2009). In Brazil, Standards of Identity and Quality (SIQ) are established for fruit 35 

nectars and cover the minimum percentages of pulp that must be used in each type of nectar. For some fruits, the minimum parameters 36 

include soluble solids (SS), total titratable acidity (TTA), total sugars (TS) and ascorbic acid (AA) (MAPA, 2003, 2013). According to 37 

the Brazilian Association of Soft Drinks and Non-Alcoholic Beverages (ABIR), the most consumed nectar in Brazil is grape flavor 38 

(ABIR, 2015).  39 

Considering the issue of adulteration of fruit-based beverages, the most frequent practices include substitution with cheaper 40 

ingredients, such as simple dilution with water or sugar syrup, and undeclared addition of different species, which can be botanically 41 

related, or not, to the main fruit in question (Asadpoor, Ansarin, & Nemati, 2014). 42 

Methods based on spectroscopic techniques are generally rapid, non-destructive, simple and require little or no sample 43 

preparation. However, they have the disadvantage of low specificity. Therefore, powerful tools for adulteration testing can be created 44 

by combining these techniques with multivariate chemometric methods, while some authors applied just basic statistical techniques (El 45 

Darra et al., 2017). Classification methods are particularly suitable for food fraud detection. They can be differentiated in discriminant 46 

and class-modeling methods. The most common discriminant method is partial least squares discriminant analysis (PLS-DA), while 47 

the most used class-modeling method is soft independent modeling of class analogy (SIMCA) (Bevilacqua et al., 2013). 48 

The necessity of food quality control was reflected in a specific review concerning the development of an effective food 49 

traceability system to reduce the numerous cases of food safety incidents and fraudulence. (Dandage, Badia-Melis, & Ruiz-García, 50 

2017). In that sense, reviews have been recently published addressing the use of multivariate classification methods to authenticate or 51 

detect adulteration in food (Callao & Ruisánchez, 2018; Esteki, Shahsavari & Simal-Gandara, 2018; Szymańska et al., 2015). 52 

Multivariate classification methods have been successfully applied to elucidate specific problems of authenticity or adulteration in 53 

different types of food. Examples are wines (Sen & Tokatli, 2016), oils (Georgouli, Del Rincon, & Koidis, 2017), , milk (Gondim, 54 
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Junqueira, Souza, Ruisánchez, & Callao, 2017), hazelnut pastes (López, Trullols, Callao, & Ruisánchez, 2014), coffee (Bona et al., 55 

2017), mushrooms (Xu et al., 2016), vinegar (Ríos-Reina, Callejón, Oliver-Pozo, Amigo, & García-González, 2017) and whiskies 56 

(Martins, Talhavini, Vieira, Zacca, & Braga, 2017).  57 

Comparatively, the application of these techniques to studies involving authentication or detection of frauds in fruits and 58 

derivatives is more limited. For this aim, articles have developed for multivariate classification or calibration models employing 59 

different analytical techniques, such as UV-VIS spectroscopy (Boggia, Casolino, Hysenaj, Oliveri, & Zunin, 2013), spectrofluorometry 60 

(Ammari, Redjdal, & Rutledge, 2015), nuclear magnetic resonance (NMR) (Cuny et al., 2008) and mid-infrared spectroscopy (He, 61 

Rodriguez-Saona, & Giusti, 2007; Miaw et al., 2018; Shah, Cynkar, Smith, & Cozzolino, 2010; Shen et al., 2016;). 62 

 In the present study, the detection of grape nectar adulteration with apple and cashew juices was studied by means of attenuated 63 

total reflectance Fourier-transform mid-infrared spectroscopy (ATR-FTIR) and classification methods. Apple juice has commonly been 64 

used as filler for economic gain by beverage industries (Singhal, Kulkarni, & Rege, 1997), but it is now also being used to replace some 65 

of the added sugar. Furthermore, cashew and apple are fruits suspected of being utilized for adulterations by fraudulent industries, 66 

justifying the importance of the development of analytical methods to detect these potential adulterants in the most popular beverage 67 

products, such as the grape nectar matrix. 68 

In this paper, two approaches were proposed considering their different purposes: one-class and multiclass approaches, utilizing 69 

discriminant or class-modeling methods. One-class classification is adequate when the goal is to test whether a sample is adulterated, 70 

regardless of which adulterant might be present (López et al., 2014). If the adulterant is known, the multiclass strategy can be chosen, 71 

since it gives additional information, such as multiple assignations and samples not assigned to any class (Gondim et al., 2017). 72 

In recent years, some authors have criticized the predominance in the chemometric literature of the use of discriminant methods, 73 

such as PLS-DA, to food authentication problems (Rodionova, Oliveri, & Pomerantsev, 2016; Oliveri, 2017). This criticism has noted 74 

that classification results will be unreliable when the model is used to predict a new sample from an untrained class. In response, other 75 

authors have combined PLS-DA with outlier detection, identifying samples from untrained classes based on large Hotelling T2 and Q 76 

residues (Martins et al., 2017). However, as class-modeling models are developed using only the information concerning one-class 77 

samples at a time, they are unable to ensure the model specificity for the detection of various food frauds (Xu et al., 2016). Considering 78 

all these relevant discussions, it is important to compare the alternatives for developing supervised classification models for detecting 79 

food fraud. Thus, SIMCA and PLS-DA, as the most used class-modeling and discriminant methods, respectively, were applied to the 80 

authentication of grape nectars. In addition, a recently proposed one-class modeling method, partial least squares density modeling 81 
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(PLS-DM) (Oliveri et al., 2014), was also applied. The three classification methods were compared through the evaluation of sensitivity 82 

and specificity. 83 

 84 

2. Materials and methods 85 

 86 

2.1 Formulation of nectars  87 

Grape nectars samples, were prepared starting from reliable raw materials and rigorously meeting the established regulations 88 

(MAPA, 2003, 2013), at the Food Science Laboratory and at the Technology Laboratory, both located in the Food Department of the 89 

Faculty of Pharmacy of the Federal University of Minas Gerais (UFMG).  90 

Isabel grape samples were obtained from EMBRAPA (the Brazilian Agricultural Research Corporation) Grape & Wine, located 91 

in Petrolina, PE, Brazil. Red cashews and Fuji apples were acquired from the Minas Gerais Supply Center (CEASA) in Contagem, 92 

MG, Brazil. The selection of fruits took into account the absence of mechanical and phytopathological damage, the degree of maturation 93 

and other typical physical characteristics of each fruit, such as size, color and texture (Paltrinieri & Figuerola, 1998). The fruits were 94 

stored in the refrigerator at 4-7ºC until the preparation of nectars ( EMBRAPA, 2016). 95 

The fruits were sanitized with 100 mg/L of sodium hypochlorite solution (Vetec Química Fina, Ltda, Rio de Janeiro, RJ, Brazil) 96 

for 2 min and washed. The juices/pulps of grape, apple and cashew were obtained as described below: 97 

 grapes were heated under constant steam for 1 to 2 h in an autoclave (Fanem, São Paulo, SP, Brazil) at 100 °C, pressed and 98 

sieved to obtain the juice; 99 

 apples were peeled and cut into eight pieces, and the seeds were removed. The fruits were scalded in boiling water for 3 min, 100 

followed by immersion in water with ice until cooling; 101 

 cashews had their chestnut removed and the fruits were cut into four pieces. 102 

Apples and cashews were individually pulped in an industrial blender (Fisatom 752, São Paulo, SP, Brazil) and sieved (1 mm 103 

sieve). 104 

For the formulation of grape nectars, the only SIQ parameter recommended in the Brazilian legislation (MAPA, 2003) is a 105 

minimum of 50 % of pulp, which was considered in the formulations of the unadulterated nectars. The amounts of pulp/juice and syrup 106 

were estimated as described in Equation (1). 107 

𝒂×𝑨

𝟏𝟎𝟎
+

𝒃×𝑩

𝟏𝟎𝟎
+  

𝒄×𝑪

𝟏𝟎𝟎
=

𝒎×(𝑨 𝑩 𝑪)

𝟏𝟎𝟎
        (1) 108 
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where "a" represents pulp Brix, "A" represents percentage of pulp that must be present in the nectar, "b" represents syrup Brix, "B" 109 

represents percentage of syrup, "c" represents adulterant pulp Brix, "C" represents percentage of adulterant, "m" represents final nectar 110 

Brix, and "A + B + C" is equal to 100 (pulp + syrup + adulterant) (Tressler & Joslyn, 1961). 111 

The quantity of additives added was 0.25 g/100 g, 15 mg/100 g and 0.075 g/100 mL for citric acid, ascorbic acid and guar gum 112 

(Pryme Foods, Sorocaba, SP, Brazil), respectively. Syrup at 20 ºBrix was prepared and added to the additives in adequate proportions 113 

to produce nectars with 11 to 13 ºBrix. These values were within the ranges permitted by Brazilian legislation and based on preliminary 114 

experiments involving commercial nectars (Miaw et al., 2018). 115 

Juices were added to the syrup, homogenized (Fisatom 752, São Paulo, SP, Brazil) and filled in labelled amber glass bottles 116 

(250-mL) with plastic screw caps (both previously sterilized by autoclaving at 100 °C for 10 min). Nectars were pasteurized in the 117 

autoclave at 100 °C for 10 min. Bottles were hermetically sealed and left at room temperature (Paltrinieri & Figuerola, 1998). After 118 

being opened for analysis, the nectar bottles were refrigerated (4 - 7 ºC). 119 

As illustrated in Fig. 1, a set of 42 samples of grape nectar were prepared for each of the three studied classes: unadulterated, 120 

adulterated with cashew, and adulterated with apple. 121 

First, seven representative batches of each class were prepared according to the following formulations: 122 

a) unadulterated batches were formulated with 50 % of grape, sugar syrup and additives (corresponding to the other 123 

50 %).  124 

b) batches adulterated with cashew were formulated with 40 % grape, 10 % of cashew juice, sugar syrup and additives 125 

(corresponding to the other 50 %).  126 

c) batches adulterated with apple were formulated with 40 % grape, 10 % of apple juice, sugar syrup and additives 127 

(corresponding to the other 50 %).  128 

Then, to obtain the 42 representative samples of each class, the 7 above described batches were mixed taking 3 of them in 129 

almost the same proportion (35/35/30) to give the additional 35 samples. The final number of samples was 126.  130 

 131 

2.2 Instrumentation and software 132 

The Brix degrees of each juice/pulp produced was measured using a refractometer (Hanna Instruments Brasil, Barueri, SP, 133 

Brazil). 134 

Samples were analyzed by ATR-FTIR in an IRAffinity-1 FTIR (Shimadzu, Kyoto, Japan) spectrophotometer with a DLATGS 135 

detector (Deuterated Triglycine Sulfate Doped with L-Alanine) equipped with a horizontal ATR accessory with a ZnSe prism (PIKE 136 
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Technologies, Madison, WI, USA) of 20 internal reflections. For each sample, 1.5mL were pipetted onto the ATR cell surface and 137 

three readings were recorded with 16 scans, 4 cm-1 resolution, generating spectra between 4000 to 937 cm-1. A background correction 138 

was performed after each measurement to avoid atmospheric interference and reduce instrumental noise.  139 

Multivariate analysis was conducted using MATLAB software version 8.0.0.783 - R2012b (Natick, MA, USA) and PLS Toolbox 140 

7.0.2 (Eigenvector Research Inc., Wenatchee, WA, USA). 141 

 142 

2.3 Data analysis 143 

 144 

2.3.1 Pre-processing and exploratory analysis 145 

Multiplicative scatter correction (MSC) (Rinnan, Berg, & Engelsen, 2009) was applied to correct the spectra baseline 146 

deviations. Principal component analysis (PCA) was used as an unsupervised exploratory analysis tool to visualize the sample 147 

distribution in the multivariate space, to identify any natural clustering in the samples that could influence the subsequent multivariate 148 

analysis and to identify possible outliers. 149 

 150 

2.3.2 Classification methods 151 

Multivariate classification methods are supervised techniques. They can be divided, among other criteria, into class-modeling 152 

and discriminant methods. Discriminant methods define delimiters in the hyperspace of the variables, separating the samples into a 153 

number of regions corresponding to the number of predefined classes, and focusing on the differences between the samples from each 154 

class. Class-modeling methods build an individual model for each predefined class regardless of the information for the other classes 155 

or categories and focusing on the similarities between samples from the same class (Bevilacqua et al., 2013)  156 

SIMCA is a modelling technique based on Principal Component Analysis (PCA) in which each class is modelled independently 157 

from all others (Bevilacqua et al., 2013). Each sample is characterized by two scalar statistics, Hotelling T2 and Q, which measures the 158 

information from each sample included or not included in the model, respectively. Class frontiers (Hotelling Tlim
2 and Qlim,) are 159 

calculated for each pre-defined class (class model), at a specific significance level (α), usually set at 0.05 (Rius, Callao & Rius, 1997) 160 

Historically, various criteria have been used for the classification of samples in SIMCA models. A common criterion assigns 161 

samples to classes based on their reduced values Hotelling Tr
2 and Qr. These values are the ratios between the statistics of sample i (Ti

2 162 

and Qi) and the corresponding statistical limits for each class. A sample must have values lower than 1.0 for both the reduced parameters 163 

to be considered within the class model. The most used criterion is a slight variation of the former. A sample i is assigned based on its 164 
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distance from class j (di,j), which is defined as a combination of its reduced parameters (Equation (2)) (Márquez, López, Ruisánchez, 165 

& Callao, 2016). In this last case, the class boundary for a sample to be assigned as within the model is a semi-circle with a radius 1.0 166 

(d equal to or lower than 1.0), so this criterion is more restrictive than considering Hotelling Tr
2 and Qr statistics independently. 167 

𝒅𝒊𝒋 = (𝑸𝒓,𝒊)𝟐 + (𝑻𝟐
𝒓,𝒊)𝟐          (2) 168 

PLS-DA is a discriminant method that adapts PLS regression to a classification task. It establishes a linear regression between 169 

a matrix of independent variables (X) and an array of dependent variables (Y). Y contains binary dummy variables that indicate the 170 

class to which each sample belongs, where 1 indicates membership and 0 does not (Barker & Rayens, 2003). Since this paper aimed to 171 

differentiate and classify between three classes, class 1 samples were encoded as (1,0,0), class 2 as (0,1,0) and class 3 as (0,0,1).  172 

The PLS-DA model predicts the class for each sample, assigning values approximately 0 or 1. Bayesian statistics are used to 173 

calculate the threshold value above which the sample is considered to belong to the class (Bylesjö et al., 2006). The Bayesian threshold 174 

considers that y predicted values of the PLS-DA model are normally distributed, selecting the y value in which the number of false 175 

results are minimal (false-negatives and false-positives) (Pulido, Ruisanchez, Boqué, & Rius, 2003). Thus, predicted values above or 176 

below this threshold mean that a sample does or does not belong to the class, respectively. 177 

PLS-DM is a one-class method that adapts PLS regression to a classification task. Its particularity is that PLS-DM computes 178 

the response vector y as an estimation of sample density, based on inter-sample distances in the multivariate space. With the algorithm 179 

used in this work (Oliveri, 2017; Oliveri et al., 2014), for each sample in the training set, the response vector y is calculated as the sum 180 

of Euclidean distances between k samples with the lowest distance in the multivariate space. The algorithm applies all possible 181 

combinations using the parameter distance of k nearest neighbors, smoothing coefficient α (for the definition of the class space in the 182 

PLS score domain), the number of latent variables (LV) and the pre-processing suitable for the X matrix. Then, the best combination 183 

is chosen with the adjustment of the number of LV using efficiency criteria (geometric mean of sensitivity and specificity) and with 184 

the evaluation of the other parameters.  185 

For this model, the specificity is calculated in the presence of the non-target class, which can be composed of more than one 186 

extraneous class. In this case, the specificity obtained is calculated from the overall alternative class. If the specificity of each specific 187 

alternative class is required, it must be calculated for each non-target class separately (Rodionova, Oliveri, & Pomerantsev, 2016). 188 

 189 

2.3.3 Performance Parameters 190 

The performance parameters are measurable attributes that indicate the quality of the analytical method (López, Callao, & 191 

Ruisánchez, 2015). For qualitative methods, the most common parameters are sensitivity, specificity and the more recently proposed 192 
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inconclusive ratio. The first two are based on probabilities regarding four possible binary responses: true positive (TP) (positive 193 

response for a sample that is positive), false positive (FP) (positive response for a sample that is negative), true negative (TN) (negative 194 

response for sample that is negative) and false negative (FN) (negative response for a sample that is positive). The expressions to 195 

calculate these values are presented below.  196 

Sensitivity (SEN) indicates the likelihood of recognizing samples that truly belong to the modeled class (samples from class j, 197 

nº Sj, that have been properly predicted by the model as belonging to class j).  198 

𝑺𝑬𝑵𝒋 = 𝑻𝑷𝒋/𝒏𝒐𝑺𝒋          (3) 199 

Specificity (SPE) indicates the likelihood of recognizing samples that are truly different from the modeled class (samples that 200 

are not from class j, nº S not j, that have been properly predicted as not belonging to class j). 201 

𝑺𝑷𝑬𝒋 = 𝑻𝑵𝒋/𝒏𝒐𝑺𝒏𝒐𝒕 𝒋          (4) 202 

Inconclusive ratio (IR) indicates the percentage of samples that cannot be undoubtedly assigned to class j, and thus considers 203 

no assignation to any class and the multiple assignation (López et al., 2014). 204 

𝑰𝑹𝒋 = (𝑵𝑨𝒋 + 𝑴𝑨)/𝒏𝒐𝑺𝒋          (5) 205 

where NAj means unassigned samples (samples that are from class j that are not assigned to class j or any other class); MA means 206 

multiple assignation samples (samples from class j assigned to more than one class) and nºSj means the total number of samples that 207 

really belong to class j. 208 

 209 

3. Results and discussion 210 

Fig. 2 shows the mean pre-processed spectra of each predefined class under study. As previously observed (Miaw et al., 2018), 211 

the intense band near 3300 cm-1 and the sharp peak at 1640 cm-1 present in all samples are related to the O-H absorption of water (He 212 

et al., 2007; Shen et al., 2016). The region between 1700 and 1000 cm-1 incorporates the typical bands for phenolic compounds, such 213 

as the C=C-C aromatic ring stretching, the phenol OH bending, the aromatic C-H in-plane bending, and the C-O stretching of phenol 214 

(Bureau, Ścibisz, Le Bourvellec, & Renard, 2012). Additionally, in this region, sugars and organic acids are present showing the 215 

characteristic bands (between 1500 and 950 cm-1) (Shah et al., 2010; Shen et al., 2016). The low-intensity bands between 1500 and 216 

1200 cm-1 were related to the deformations of CH2, C-C-H and H-C-O (Shah et al., 2010; Vardin, Tay, Ozen, & Mauer, 2008). For the 217 

fingerprint region (1200 to 900 cm-1), the stretching vibrations of C-C and C-O bonds correspond to the presence of sugars and organic 218 
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acids (He et al., 2007; Shah et al., 2010; Vardin et al., 2008). These described components are present in all the nectars, justifying the 219 

similarities among the spectra of the three classes showed in Fig. 2. 220 

First, an exploratory analysis by Principal Component Analysis (PCA) was performed on all the samples from the three classes 221 

studied. The scores plot of the first two principal components (PC1 x PC2), accounting for 90.32 % of the total variance, are illustrated 222 

in Fig. 3. It can be seen that PC1 could not distinguish between the 3 classes. Along the PC2, samples adulterated with apple (squares) 223 

presented negative scores values and were clearly separated from unadulterated samples, which presented positive score values 224 

(triangles). Samples adulterated with cashew (circles) appeared to clearly overlap with the unadulterated samples, and just a few of 225 

them appeared to overlap with the apple adulterated samples. 226 

For the supervised classification modeling, each class was separated into training and test sets using the Kennard and Stone 227 

algorithm (28 samples for training and 14 for test set) which selects representative and uniformly distributed samples into the 228 

multivariate space (Kennard & Stone, 1969). 229 

Initially, a multiclass strategy was implemented by applying SIMCA and PLS-DA classification techniques to establish the 230 

three classes: unadulterated (UN), adulterated with cashew (CAS) and adulterated with apple (APP). SIMCA models were 231 

independently established for each class using the training set and the optimal numbers of PCs were selected based on the lowest value 232 

of RMSECV (root mean square error of cross validation). The models were validated using leave-one-out cross validation as well as 233 

predictions of the test set. Three PCs for each class were necessary to build the SIMCA model, accounting for 95.20, 93.79 and 90.58 % 234 

of total variance, for UN, CAS and APP classes, respectively. 235 

PLS-DA models were also built with the three classes. The model was validated using leave-one-out cross validation and the 236 

number of LV, chosen based on the smallest cross validation classification errors, was 6, accounting for 95.13 % of variance in the X 237 

block and 82.94 % in the Y block. The threshold values were 0.25 for the UN class, 0.14 for the CAS class and 0.09 for the APP class, 238 

as can be observed from Fig. 4. 239 

The summarized class assignations obtained by applying SIMCA and PLS-DA models are presented in Table 1. Regarding the 240 

results obtained with SIMCA, as expected considering the PCA model shown in Fig. 3, samples from UN and CAS classes were 241 

multiply assigned to each other. Almost all unadulterated samples, in both training and test sets, were doubly assigned to their class 242 

and to the CAS class. To a lesser extent, samples adulterated with cashew, five from the training set and seven from the test set, were 243 

also doubly assigned to their class and as unadulterated (UN class), and seven of the 28 training samples were not assigned to any class. 244 

Finally, as expected, samples adulterated with apple were properly recognized by their class model, with no wrong or multiple 245 

assignation to other classes. Only six of the 28 samples from the training set were not assigned to any class, while all samples from the 246 
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test set were correctly assigned. As a result of the assignations, high inconclusive ratios were obtained for all three classes, and the 247 

unadulterated class was the one with the highest ratio (Table 1). 248 

For results obtained with PLS-DA (Table 1 and Fig. 4), no incorrect assignments were obtained. In addition, few inconclusive 249 

assignments, all corresponding to samples adulterated with cashew, were observed: one sample from the training set that was doubly 250 

assigned, and one sample from the training and three from test set that were not assigned to any class. Notably, in no cases were 251 

adulterated samples assigned as unadulterated; this outcome means that no false-negative errors were obtained. From the perspective 252 

of food fraud, false-negative errors are the most important to control, as they correspond to errors related to not detecting the 253 

contaminant when it is present. 254 

The next step was the implementation of a one-class strategy, in which only the target class was established by all three 255 

classification methods. The UN class was considered the target class and CAS and APP samples were jointly the non-target class. This 256 

SIMCA model was similar to the previous one established for the multiclass approach. The only difference is reflected in the calculation 257 

of specificity, since CAS and APP samples were modeled together in a single class. PLS-DA was established for two contrasting 258 

classes, encoded as (1,0), with 1 as the UN class and 0 as the CAS+APP class. This model was built as in the multiclass approach, 259 

namely, the number of LV 5, which accounted for 94.29% of variance in the X block and 37.49% in the Y block. 260 

As has been explained in the theory section (2.3.2), PLS-DM implies the optimization of several parameters: the number of 261 

nearest neighbors’ k, from 1 to 6; pre-processing type; smoothing coefficient α of the potential function, from 0.3 to 0.8; and the number 262 

of LV, from 1 to 10. The optimization step was applied in the training set and, as a result, a matrix of sensitivity, specificity and 263 

efficiency values (data not shown) was obtained for all studied values of these parameters. The optimal combination of these results 264 

was evaluated considering the highest efficiency and an odd number of k nearest neighbors. Even k values can lead to ambiguous 265 

classifications, which is the reason why odd numbers are preferred. The optimal parameter values were set as k = 3, mean-center 266 

preprocessing, α = 0.6 and LV = 4. 267 

The classification results for these three methods in terms of sensitivity and specificity, according to the one-class strategy, are 268 

summarized in Table 2. PLS-DA presented the best predictions, since both the sensitivity and the specificity of the training and the 269 

test set was 100%. Regarding the results of both SIMCA and PLS-DM, they cannot be considered satisfactory, especially in relation to 270 

specificity, since a significant percentage of adulterated samples were predicted as not adulterated (25% for SIMCA and 32% for PLS-271 

DM). 272 
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When the two strategies are compared, it can be stated that the multiclass classification would be preferable, because it provides 273 

more specific information about the adulterations. Many samples in the one-class strategy were erroneously assigned, and in the multi-274 

class were considered inconclusive; therefore, a confirmatory analysis is required.  275 

Regarding the comparison among the three classification methods, PLS-DA, SIMCA and PLS-DM, the best performance was 276 

clearly provided by the discriminant PLS-DA model. This superior performance of discriminant over class-modeling methods is 277 

consistent with observations in the chemometric literature (Bylesjö et al, 2006). Class-modeling methods, such as SIMCA, search for 278 

data directions of the highest variance, which might be distinct from the variance direction responsible for the separation of classes. A 279 

specific explanation for the worse results provided by class-modeling methods (SIMCA and PLS-DM) in our case is the similarity 280 

between UN and CAS samples, which was verified by observing their highly overlapped clusters in the PCA model shown in Fig. 3.  281 

 282 

4. Conclusions 283 

The combination of ATR-FTIR and classification techniques allowed the detection of adulterations of grape nectars with apple 284 

and cashew juices. The entire analytical procedure was very simple and rapid, and it did not require sample pretreatment or the 285 

consumption of reagents or solvents. All 126 samples used in this study were obtained from reliable raw ingredients and prepared in 286 

strict compliance with Brazilian regulations, except for the intended adulterations.  287 

Three different classification models (SIMCA, PLS-DA and PLS-DM) were developed, and two approaches were considered: 288 

the one-class approach with all three methods, and the multiclass approach with SIMCA and PLS-DA. The one class approach is 289 

adequate if the main interest is only to detect whether a sample is adulterated, regardless of the type of the adulterant. For the problem 290 

under study, PLS-DA provided excellent results, classifying all samples correctly. SIMCA and PLS-DM produced less satisfactory 291 

results, with specificity for the test set of 75% and 68%, respectively. 292 

The multiclass approach is the proper choice when the main interest is to investigate the possible presence of known adulterants. 293 

It provides more specific information, since in addition to the percentage of samples correctly or incorrectly assigned, information 294 

related to the inconclusive assignations is also available. Samples inconclusively classified could be submitted in the sequence to 295 

undergo confirmatory analyses. Among the multiclass models, PLS-DA also presented the best performance, with no false-negative 296 

predictions, i.e., no adulterated samples were classified as unadulterated. In food fraud analysis, it is essential to avoid false-negative 297 

results, since the analyst could declare a sample as unadulterated when it is actually adulterated. For the multiclass approach, the 298 
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SIMCA model was not able to differentiate unadulterated samples from samples adulterated with cashew. Nonetheless, the apple class 299 

was well characterized by SIMCA. 300 

Finally, we can suggest this type of application as a potential tool to assist the beverage industry and regulatory organisms in 301 

the field of food quality control, allowing detection in fruit nectars through direct, fast and reliable screening analyzes. Further research 302 

could be the implementation of the developed classification techniques to detect grape nectar samples adulterated with blends of more 303 

than one adulterant.   304 

305 
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 407 

Figure 1. Scheme of grape nectar samples formulation. 408 
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 409 

Figure 2. Mean preprocessed spectra of unadulterated class (dashed line), adulterated with cashew class (solid line) and 410 

adulterated with apple class (dashed-dot line). 411 
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 412 

Figure 3. Scores of PC1 versus PC2 of unadulterated (down triangles), adulterated with cashew (circles) and adulterated with 413 

apple (squares) grape nectar samples. 414 

 415 
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Figure 4. PLS-DA predictions for each class: a) unadulterated (UN), b) adulterated with cashew (CAS) and c) adulterated with 416 

apple (APP). Horizontal dashed lines indicate the threshold class and the vertical dashed lines separate training and test samples. 417 

Samples symbols: down triangles for unadulterated, circles for adulterated with cashew and squares for adulterated with apple. 418 
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Table 1. SIMCA and PLS-DA multi-class predictions of samples from the unadulterated class (UN), the adulterated with cashew class 420 

(CAS) and the adulterated with apple class (APP) for training and test set. nºS: number of samples; NA: not assigned; MA: multiple 421 

assignments; IR: inconclusive ratio 422 

 423 
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 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

Table 2. Sensitivities and specificities for the one-class strategy 437 
 438 

Method Set Sensitivity (%) Specificity (%) 

SIMCA 
Training 93 91 

Test 100 75 

PLS-DA 
Training 100 100 

Test 100 100 

PLS-DM 
Training 82 91 

Test 100 68 

 439 
 440 

    Classified as   

Method Set Class  nºS UN CAS APP NA MA IR (%) 

SIMCA 

Training 

UN 28 26 28 0 0 26 92.86 

CAS  28 5 21 0 7 5 42.86 

APP 28 0 0 22 6 0 21.43 

Test 

UN 14 14 14 0 0 14 50.00 

CAS 14 7 14 0 0 7 25.00 

APP 14 0 0 14 0 0 0.00 

PLS-DA 

Training 

UN 28 28 0 0 0 0 0.00 

CAS  28 0 27 1 1 1 7.14 

APP 28 0 0 28 0 0 0.00 

Test 

UN 14 14 0 0 0 0 0.00 

CAS 14 0 11 0 3 0 21.43 

APP 14 0 0 14 0 0 0.00 


