Microgravity Science and Technology ISS quasi-steady accelerometric data as a tool for the detection of external disturbances during the period 2009-2016. --Manuscript Draft--

Manuscript Number:							
Full Title:	ISS quasi-steady accelerometric data as a tool for the detection of external disturbances during the period 2009-2016.						
Article Type:	ELGRA2017						
Keywords:	Reduced quasi-steady acceleration data; external disturbances detection; International Space Station; ISS disturbances during 2009 and 2016.						
Corresponding Author:	Diana Cristina Dubert, PhD Universitat Rovira i Virgili Tarragona, Tarragona SPAIN						
Corresponding Author Secondary Information:							
Corresponding Author's Institution:	Universitat Rovira i Virgili						
Corresponding Author's Secondary Institution:							
First Author:	Marc Marin, PhD						
First Author Secondary Information:							
Order of Authors:	Marc Marin, PhD						
	Diana Cristina Dubert, PhD						
	Maria Jose Simón, Engineer						
	Judit Ollé, Chemistry						
	Josefa Gavaldà Martínez, Physics						
	Xavier Ruiz Martí, Physics						
Order of Authors Secondary Information:							
Funding Information:	Ministerio de Economía y Competitividad (ESP2014-53603-P) Dr. Xavier Ruiz Martí						
Abstract:	The present work aims to investigate the degree of correlation existing between the information contained in the ISS reduced quasi-steady accelerometric data and different external mechanical disturbances (reboostings, dockings/undockings, berthings/deberthings and Extra Vehicular Activities), compiled for the period 2009 to 2016. The eight hour mean (Mean8h) and the eight hour root mean square (RMS8h) acceleration values, considered as reduced data, have been extracted from the quasi-steady records provided by NASA Principal Investigator Microgravity Services website. The advantage of applying the present strategy is to drastically reduce the amount of information to be processed all along these eight years. The Mean8h values have been used for the evaluation of trends as function of time while the RMS8h ones were used to define the level (weak, medium and strong) of the different kind of external mechanical disturbances considered. These criteria has been applied for approximately four hundred selected disturbances, compiled in the Annex. Results indicate that reboosting is always detected as a strong disturbance, while dockings/undockings, as weak ones, having lower, though detectable level, depending on the type of spacecraft considered. Extra Vehicular Activities are undetectable by the use of this reduced quasi-steady approach. The inverse problem, in other words, knowing the value of the RMS8h(ai) one could try to predict the kind of disturbance responsible of it, is thus feasible except for berthing/deberthings and Extra Vehicular Activities.						

										Kind	d of di	sturba	nce										
		Re	eboos	ting				Man	ned			6	-1.1	/D =	Unm	anned		/D - I			EVA		Total
						D	OCKIN	g	Ur	Idocki	ng	Do	cking/	Berth	ng	Una	ocking	/Debe	rting				annuai
	Shuttle	Zvezda/Zarya	Progress	ΑΤΛ	Subtotal	Shuttle	Soyuz	Subtotal	Shuttle	Soyuz	Subtotal	Progress	ATV	grappled (HTV.SpaceX.	Subtotal	Progress	ATV	grappled (HTV.SpaceX.	Subtotal	Shuttle	ISS Expeditions	Subtotal	
2009	2	2	1	-	5	4	5	9	4	3	7	5	-	1	6	5	-	1	6	14	3	17	50
2010	1	3	13	-	17	3	7	10	3	4	7	5	-	-	5	4	-	-	4	9	6	15	58
2011	2	6	4	7	19	3	4	7	3	4	7	4	1	3	8	5	1	1	7	6	4	10	58
2012	-	3	3	11	17	-	4	4	I	4	4	5	1	3	9	4	1	3	8	1	5	5	47
2013	-	-	8	5	13	-	4	4	I	4	4	4	1	3	8	4	1	3	8	-	11	11	48
2014	-	I	15	1	15	-	4	4	I	4	4	5	1	4	10	6	-	4	10	1	7	7	50
2015	15 - 15 - 5 5 -							4	4	4	-	4	8	3	1	3	7	-	7	7	46		
2016	6 - 1 8 - 9 - 4 4 -							4	4	2	-	4	6	3	-	5	8	-	4	4	35		
	5	15	67	23	110	10	37	47	10	31	41	34	4	22	60	34	4	20	58	29	47	76	392

Table 1. Quantitative summary of all disturbances considered to support the present study

	Disturbance					I	Man	ned							U	nma	anne	d							
Spacecraft	Туре	Reb	00051	ting	Do	ockir	g	Un	dock	ing	Do	ockir	ng	Un	dock	ing	Be	erthi	ng	Deb	berth	ning		EVA	
		Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za
													%												
	BkD	9	81	76	-	-	-	-	-	-	94	84	91	50	97	97	-	-	-	-	-	-	-	-	-
Dragraga	WkD	0	17	19	-	-	-	-	-	-	6	13	6	50	3	3	-	-	-	-	-	-	-	-	-
Progress	MdD	5	2	3	-	-	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-	-	-	-	-
	StD	86	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	11	11	11	-	-	40	-	-	-	-	-	-	-	-	-	-	-	-	100	96	12
Chuttle	WkD	-	100	100	-	89	89	50	100	60	-	-	-	-	-	-	-	-	-	-	-	-	-	4	88
Shuttle	MdD	100	-	-	89	-	-	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zuesele	WkD	-	69	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zvezda	MdD	19	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	56	71	88	41	72	86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	WkD	-	-	-	44	29	12	59	28	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soyuz	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	5	62	62	-	-	-	-	-	-	100	75	75	100	100	100	-	-	-	-	-	-	-	-	-
A T) /	WkD	-	38	38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AIV	MdD	-	-	-	-	-	-	-	-	-	-	25	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	95	-	-	-	-	-	-	-	-	-	-	25	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	97	97	90
Europelitieus	WkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	10
Expedition	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Others	BkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	86	86	100	94	88	-	-	-
(HTV,	WkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	10	-	-	6	-	-	-
SpaceX	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	4	-	6	-	-	-	-
Cygnus, Dragon)	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	-	-	-

Table 2. – Percentages of the different disturbance levels by using the RMS_{8h} criterion

ISS quasi-steady accelerometric data as a tool for the detection of external disturbances during the period 2009-2016.

- 4 M. Marín^a, D. Dubert^{b*}, M.J. Simón^a, J. Ollé^b, Jna. Gavaldà^b, X. Ruiz^{b,c}
- ⁵ ^a Departament d'Enginyeria Mecànica. Universitat Rovira i Virgili, Tarragona. Spain.
- ^b Departament Química Física i Inorgànica, Universitat Rovira i Virgili. Tarragona, Spain.
- 7 ^c Institut d'Estudis Espacials de Catalunya, IEEC. Barcelona. Spain.
- 8 *Corresponding author: dianacristina.dubert@urv.cat
- 9

1 2

3

10 11

12 Abstract

13

14 The present work aims to investigate the degree of correlation existing between the 15 information contained in the ISS reduced quasi-steady accelerometric data and different 16 external mechanical disturbances (reboostings, dockings/undockings, berthings/deberthings 17 and Extra Vehicular Activities), compiled for the period 2009 to 2016. The eight hour mean 18 (Mean_{8h}) and the eight hour root mean square (RMS_{8h}) acceleration values, considered as 19 reduced data, have been extracted from the quasi-steady records provided by NASA Principal 20 Investigator Microgravity Services website. The advantage of applying the present strategy is 21 to drastically reduce the amount of information to be processed all along these eight years. 22 The Mean_{8h} values have been used for the evaluation of trends as function of time while the 23 RMS_{8h} ones were used to define the level (weak, medium and strong) of the different kind of 24 external mechanical disturbances considered. These criteria has been applied for 25 approximately four hundred selected disturbances, compiled in the Annex. Results indicate 26 that reboosting is always detected as a strong disturbance, while dockings/undockings, as 27 weak ones, having lower, though detectable level, depending on the type of spacecraft 28 considered. Extra Vehicular Activities are undetectable by the use of this reduced quasi-29 steady approach. The inverse problem, in other words, knowing the value of the $RMS_{8h}(a_i)$ 30 one could try to predict the kind of disturbance responsible of it, is thus feasible except for 31 berthing/deberthings and Extra Vehicular Activities.

32

Keywords: Reduced quasi-steady acceleration data; external disturbances detection;
 International Space Station; ISS disturbances during 2009 and 2016.

35

36 Acknowledgements

37

We acknowledge the support offered by Dr. K. Hrovat (ZIN Technologies, Inc.). This work
was supported by the Spanish Ministerio de Economia y Competitividad, MINECO, grant
number ESP2014-53603-P.

- 41
- 42

43 **1. Introduction**

44

From an accelerometric point of view, spacecrafts and in particular International Space Station (ISS) are extremely complex environments. Non-inertial effects, the interactions with the external medium and the elastic nature of the different materials that make up the station (structural vibrations) are the reasons of this complexity (Penley et al. 2002; Zavalishin et al. 2009; Zavalishin et al. 2013).

As a consequence of the above mentioned characteristics great experimental and/or theoretical efforts have been applied (since the nineties) with the aim of studying the impact of these environments on different experiments (Jules 2004). Fortunately there are experiments insensible to this kind of environment, however many others, such as liquid phase -based experiments, present a high degree of sensibility (Ruiz et al. 2004; Ruiz et al. 2005; Ruiz 2007; Ruiz et al. 2012a; Savino et al. 2002; Tryggvason et al. 2001).

56 Concerning the ISS environment, the experimental data is recorded by using 57 accelerometers which are located in different modules and are covering the quasi-steady and 58 the vibratory signal regimes, respectively. The quasi-steady regime comprises the lower end 59 of the spectrum (below 0.01 Hz), with magnitudes of the order of micro-g (Kelly 2004a, b; 60 McPherson et al. 2015). The vibrational regime instead, covers frequencies between 0.01 and 61 250/500 Hz, with magnitudes of the order of mili-g, related with the onboard machinery needed for the crew survival or with the fans and pumps needed for the development of 62 different experiments (Hrovat 2004a, b; McPherson et al. 2015). The amount of information 63 64 given by these sensors is extremely large, making it very difficult any quick analyses of any 65 relevant episode (in a determined period of time), to be applied.

66 To overcome these difficulties the present work centres its attention in the quasi-67 steady part of the spectrum -the most pernicious for the liquid phase experiments (Meseguer 1983; Meseguer et al. 1985; Polezhaev 2004; Ruiz et al. 2010; Ruiz et al. 2012b; Sanz 1985). 68 69 To do so, the study focuses on the reliability and restrictions of reduced quasi-steady 70 accelerometric data utility. In other words, this consists in reducing the whole day 71 acceleration data to only three values, expressed as mean, Mean_{8h} (a_x, a_y, a_z) and Root Mean 72 Square, $RMS_{8h}(a_x, a_y, a_z)$. Using the above approximation, it has been analyzed acceleration 73 data covering the years between 2009 and 2016, which, as well, includes the last building 74 period of the ISS (2009-2011).

75

76 2. Methodology

77

78 Quasi-steady acceleration values used herein were recorded by the MAMS 79 (Microgravity Acceleration Measurement System) ossbtmf sensor, always located in U.S. 80 LAB 102 ER1 (Express Rack nr. 1), Lockers 3 and 4 (Destiny module), providing one data 81 each sixteen seconds. The sampling frequency is, thus, 0.0625Hz and the cutoff 0.01 Hz, 82 respectively. Raw data have been trimmean filtered and bias compensated, then plotted daily 83 in the NASA Principal Investigator Microgravity Services, PIMS website and finally grouped 84 in three sets of eight hours each, labeled as 00:00, 08:00 and 16:00 ossbtmf roadmaps, 85 respectively. Based on these three time intervals, the Mean_{8h} and RMS_{8h} values are also consigned in the right side of each plot (PIMS website: PIMS 2018). Notice that, in all cases,
the three components of the acceleration are related to the main absolute axes of the Station.
In the present analyses both values (Mean_{8h} and RMS_{8h}) have been extracted and used as
starting data. In this way were obtained approximately 1100 values per year to attempt further
statistical characterization.

91 Depending on the different Mean_{8h} values, general trends of the Station evolution, all along 92 the period 2009-2016, were evaluated. Remark that, mean values do not offer details of the 93 signal characteristics; on the contrary, they try to summarize them in a single number. Moreover, to characterize the different existing disturbances the RMS_{8h} values were taken 94 95 into account. These values seemed to be more adequate, compared to the means ones, to be 96 correlated with the shaking episodes associated to different kind of disturbances: reboosting, 97 docking/undocking, berthing/deberthing and Extra Vehicular Activities. To quantify it, 98 different thresholds have been defined which, depending of the magnitude, conveniently 99 establish the kind of strong, medium and weak disturbance. By definition, quantitative values 100 of the above mentioned thresholds are $\geq 15 \ \mu g$ for strong disturbances, 5-15 μg interval for 101 medium disturbances and 1.1-5 µg for low disturbances. Background is reserved for values 102 lower than 1.1µg. Approximately four hundred disturbances, compiled in the Annex, were 103 analyzed and by using these criteria the percentages of each type of disturbance were 104 established. The use of the above strategy enables the possibility to evaluate if this 105 quantitative indicator, associated with the reduced quasi-steady accelerometric data, is 106 adequate to be used in the detection and classification of the specified disturbances. 107 Obviously, the detection by this method does not mean characterization. By construction, this 108 type of indicators are blind to small details.

109

110111 **3. Results**

112

113 *3.1. Mean*_{8h} analyses

114

115 As an example, Fig. 1 shows the evolution of the Mean_{8h} acceleration components 116 of the quasi-steady values along the year 2009. It can be seen that the acceleration levels are 117 mainly concentrated around zero except some outliers coinciding with disturbances such as 118 reboosting along the X_A direction and docking/undocking in Z_A direction. Notice also that, in 119 this year 2009, the lack of values due to sensor data failures is high, of the order of 24%, 120 though decreased drastically in the following years. This kind of Cartesian representation 121 could be used as standard in the analysis of the different data set, though, Fig. 2 presents a different and more compact tri-dimensional aspect of each of the year studied. Similar 122 123 distribution in the acceleration data has been detected during the last years of the ISS 124 construction (2009-2011). In other words, a very dense cloud of points around (0,0,0) and 125 some outliers especially in the X_A and Z_A direction associated to the main disturbances 126 (reboostings, dockings/ undockings) occurred during this period (see Annex). During the 127 post-construction period, acceleration values followed the same pattern as before, though with 128 a decrease in the maximum values, except 2015 and 2016 where this behavior changed. In

both cases seems that the data was more spread in the Z_A direction compared to the other 129 years. But, analyzing more in details this behavior, it was detected that during a certain time, 130 the sensors seem to record abnormal data distribution along values higher or lower than zero. 131 132 Figures 3.a and 3.b demonstrate such suspicious situation. There was a period in 2015 when 133 the signal was maintained in positive values especially in Z_A direction and in negative ones for X_A and Y_A directions. Spikes, alternating periodically, especially in Y_A and Z_A directions 134 135 have also been found by plotting a short time interval of acceleration signal registered during 2016 (see Fig.3 b). This odd behavior changes the distribution pattern found earlier in Fig. 2 136 137 during these years, so these values must be considered, at least, carefully.

138 On the other hand, to have an overview of the data evolution, the acceleration 139 components were averaged for each year and the results plotted in Fig. 4. It was observed an increment of mean acceleration values in the Π_{YZ} plane, more pronounced in Y_A direction, 140 141 which could be connected to the building of the ISS. Remark once more the strange positive 142 mean value obtained for 2015 and the important increase in the negative mean value for 2016 143 in the Z_A direction due to possible temporal malfunctioning of the MAMS sensor. Notice also that the standard deviation (σ) on the X_A axis, during the construction period (till 2011), has 144 145 increased significantly compared to the other two axes. Obviously, during the construction 146 period the shaking on the acceleration records are more intense than in post-construction 147 period. This decrease and subsequent stabilization is also detected during the following years 148 2012-2016. The interquartile results showed little variability during the years considered, 149 except 2015 when IQR increased.

150

*3.2. RMS*_{8h} analyses

152

153 Concerning reboostings, the RMS_{8h} values compiled all along the period 2009-2016 154 are presented in Fig. 5, for Progress (a), Automated Transfer Vehicle (ATV) (b), Space 155 Shuttle (c) and Zvezda/Zarya (d) spacecrafts. Inspecting the RMS values during the 156 reboosting manoeuvres conducted by the different Progress spacecrafts, strong disturbances 157 (StD) have been detected along the X_A axis (see Fig. 5.a.). This is a consequence of the use of 158 the eight attitude control engines when, docked in the aft port of the Zvezda module, produce 159 a gentle variation of the ISS speed in its moving direction X_A (XVV attitude mode operation) 160 (PIMS website: PIMS 2018). At this respect, it is interesting to mention that there are two possible protocols. In the first one, the so-called "4 Progress +X Thrusters", four thrusters are 161 162 pointed in the X_A direction while that the other four are used for attitude control. In the 163 second protocol, the so-called "8 Progress +X Thrusters", all thrusters are pointed in the X_A 164 direction, yet, four works on continuous mode and four on pulse on/off mode. In both cases 165 important vibrational responses are generated and very clearly detected as strong on the X_A 166 direction. Unfortunately reduced quasi-steady data cannot identify the protocol used, because 167 RMS_{8h} values are blind against these kind of details. In the other two axes, Y_A and Z_A , the disturbances are weak with some exception during the year 2016, when the disturbances 168 169 slightly increased in magnitude. Similar behaviour was encountered in case of ATV and 170 Zvezda/Zarya (Figs.5.b and d), therefore, strong disturbances along the X_A axis and very 171 weak for the other two (Y_A and Z_A). In the first case it should be mentioned that, docked in the

Zvezda's aft port, the ATV uses only two of the four main engines pointed, in the -X 172 direction. The orientation control is then usually provided by Zvezda and Progress thrusters. 173 174 In case of the Zvezda Service Module the two main engines are reserved for orbital 175 manoeuvring, so, for reboostings only 2 from 16 attitude control engines are used. Likewise, 176 the Zarya module has twenty-four large and sixteen small steering jets and two large engines 177 which were used for major orbital changes. But, with the docking of Zvezda in its aft port, 178 these large engines are disabled and only the steering jets are used during reboosting episodes. 179 Concerning Shuttle reboosting results (see Fig.5.c.), the RMS_{8h}(a_i) values indicate a medium level in the X_A direction and a weak one in both Y_A and Z_A directions. These different RMS 180 181 levels are a consequence of the fact that only the Reaction Control System, RCS, was used for 182 reboostings. This system comprised three groups located in the forward fuselage and in the 183 two independent OMS/RCS pods located each one on both sides of the vertical tail of the aft 184 fuselage. Comparing globally the strength of each of this spacecrafts the Zvezda/Zarva 185 modules showed to have the highest impact, while that the Shuttle had the least. However it 186 must be noted that even with the highest impact the velocity change produced is of the same 187 order (see Annex for quantitative comparisons of Δv) (Sánchez et al. 2015).

188 Fig. 6 summarizes all the RMS_{8h}(a_i) information corresponding to the different 189 manned missions carried out during the period analyzed here. It has been considered, all 190 dockings/undockings corresponding both to the different Russian Soyuz spacecrafts (from 191 Soyuz TMA-13 up to Soyuz MS-03) (Fig.6a1, 6a2), and to the Space Shuttle missions (from 192 STS-119 up to STS-135) (Fig. 6b1, 6b2). Points in plots Fig. 6.a1, 6.a2 correspond to the 193 different Soyuz missions always docking in the Poisk and Rassvet modules located in the 194 Russian segment of the Station. Poisk is docked to the zenith port of the Zvezda module while 195 that Rassvet is docked to the nadir port of Zarya. The average time during these spacecrafts 196 are attached to the Station, is long, of the order of 160 days. Practically all Soyuz crafts 197 (Baker 2014; Hall et al. 2003) approached the Station moving orthogonally below -nadir port 198 in case of Rassvet - or above - zenith port in case of Poisk- it (R-bar approach mode). The 199 potentially problematic direction of approximation, in terms of the ISS absolute coordinates 200 is, thus, $\pm Z_A$ (perpendicular to the flying direction). Soyuz docks through a typical androgynous system consisting in a probe which is automatically guided by the radio 201 202 telemetry Kurs system into a cone located in the corresponding ISS port (if the Kurs system 203 fails, the TORU system can manually help in the same task). Then, the ISS port latch closes 204 and the probe retracts to firmly pull the two spacecrafts together. All these procedures lessen 205 the strong vibrations usually generated by sudden contacts and also explain the similarities in 206 weak disturbance for all directions, caught by the sensors during these missions. Note that, the 207 undocking event provoked similar behaviour in terms of disturbances, despite the Station, 208 usually, performs a series of important procedures to complete it, which could introduce extra 209 vibrations. For instance, one hour before the undocking, the Station slowly rotates 90 degrees 210 in a counter clockwise sense around the Y_A axis by the use of a combination of Control 211 Moment Gyroscopes (CMG) and Control Thrusters. At the end of this attitude change the 212 detachment is promoted with the help of a set of springs which separates both crafts. Taking 213 into account the values observed in the Figures 6.a1 and 6.a2 it seems that these procedures 214 do not introduce appreciably changes in the RMS_{8h}(a_i) values.

215 Figs. 6.b1 and 6.b2 shows the data of the ten Shuttle dockings -four Discovery, three Endeavours and three Atlantis- during the period 2009-2011. This period is shorter than the 216 217 total one 2009-2016 because the International part of the ISS was completed during May 2011 218 by the Endeavour's crew. The Shuttle docking port was always the same, the Pressure mating 219 Adapter, PMA-2, currently mounted on the forward port of the Harmony connecting node (or 220 Node 2). The reason of this procedure is that this adapter is the only one that has been 221 outfitted with the Station-to-Shuttle Power Transfer System (SSPTS) hardware which allows 222 the docked Shuttle to make use of the power provided by the Station's solar arrays. In this 223 way, reducing usage of the Shuttle's on-board power-generating fuel cells, Shuttles can stay 224 docked longer to the Station. The method typically used to approach the Space Shuttle to the 225 International Space Station, is called the" V-bar approach". In this case, the Shuttle is 226 positioned orthogonally in front of the Station and then the Station begins to be aligned 227 horizontally along a common velocity vector. This movement is maintained all along the 228 operations even in the last phase when the separation distance between the chaser and the 229 target is less than 10 meters. In terms of the ISS Absolute Coordinates, manoeuvre plane is 230 $\Pi(X_A, Y_A)$ and this fact could reasonably explain the present RMS_{8h}(a_i) results, weak and 231 medium values along the X_A, Y_A directions and only weak along the Z_A one (Shayler 2017a, 232 b).

233 Fig. 7 compiles all the RMS_{8h}(a_i) information corresponding to the different unmanned 234 missions carried out during the above-mentioned period. By one side (Fig. 7a1, 7a2), all 235 dockings/undockings episodes correspond to the different Russian cargo Progress (from 236 Progress M-01M up to Progress MS-03) and, by the other, the rest of the unmanned cargo 237 crafts from Japan, HTV, and the United States, Dragon, Cygnus and SpaceX, successfully 238 berthed/deberthed by the Space Station Remote Manipulator System, SSRMS, during the 239 same period (Fig. 7b1, 7b2). Remark, we have preferred to add the results of the four 240 docked/undocked ATV European missions to the second case together with HTV and SpaceX 241 Dragon, Cygnus cargo crafts before presenting a different subplot with only four points.

242 Concerning the Progress missions note that this kind of spacecraft normally docks in 243 the Pirs and Zvezda modules, both located in the Russian segment of the Station (it must be 244 emphasized the exceptional case of the Progress M-MIM2 which uses the zenith port of the 245 Zvezda module). The average time during these cargo crafts are attached to the Station is 246 long, roughly 120 days. In case of the nadir port of the Pirs module the approximation of the 247 Station is orthogonal (R-bar approach mode) meanwhile in case of the aft port of the Zvezda 248 module the approximation is affected by the horizontal aligning of the spacecraft and the 249 Station along a common velocity vector (V-bar approach mode). Due to this, in terms of the 250 absolute coordinate system, the disturbances should be more relevant in the ZA and XA 251 directions, respectively. Though, Fig.7a1, for dockings events, this kind of disturbances could 252 be considered, at much, as weak as in our classification, because the docking procedure 253 involves a similar androgynous system as the Soyuz one (see explanation above). This 254 tendency is similar in case of separation (undocking) even in the cases of the Space Station 255 performing re-orientation manoeuvres to achieve the proper attitude to support the undocking.

Points in Figure 7.b1 corresponds to nine successful Dragon missions, six Cygnus and six HTV missions. The time during which all these cargo spacecrafts are attached to the Station is moderate, 27, 45 and 42 days in average, respectively. The ISS berthing in case of 259 SpaceX Dragon, Cygnus and HTV are similar, but different than the Progress one, because all 260 the above-mentioned cargo spacecrafts are firstly grappled by the Space Station Remote Manipulator System, SSRMS, and then fastened to the same Common Berthing Mechanism, 261 262 CBM located in the Harmony module (nadir port). In summary, this CBM mechanism is 263 composed of two halves. The first active half supports all systems involved in the capture and 264 closure functions while that the second passive half contains the elements required to complete the closure action as well as the seals enabling a pressurized capability. In terms of 265 the absolute coordinate system the disturbance should be more conflictive in the Z_A direction, 266 267 although the present results do not support this behaviour. In addition, Fig. 7.b1 has also data 268 corresponding to the four ATV missions. The time during which all these European cargo 269 spacecrafts are attached to the Station is longer than before, 140 days in average. In all cases 270 the docking port is always the aft one in the Zvezda module because, during the docking 271 manoeuvres, the ATV and the Station are positioned in such a way that their respective 272 velocity vectors are aligned (V-bar approach). During the last step of this manoeuver the 273 approximation is commanded by a videometer and a telegoniometer which, located in the 274 ATV spacecraft, constantly calculate its distance and orientation against the ISS (Kitmacher 275 2006). So, in terms of the absolute coordinate system the disturbance should be more 276 conflictive in the X_A direction, although the results do not support this fact. Notice finally that, in Fig. 7.b1 there are two big sharp spikes: one related to the berthing of the SpaceX 277 278 Dragon CRS-9 and the other to the ATV-2 cargo craft. First spike could be due to a probable 279 malfunction of the sensor, meanwhile the second spike coincides with an accidental blow 280 during the docking process. There is an extra spike (see Fig. 7b2), related to the deberthing of 281 the Cygnus CRS OA-6, which unfortunately has an unknown source.

Due to the lack of a privileged direction, weak and background $RMS_{8h}(a_i)$ values were observed when EVA events were conducted (see Fig. 8). Until 2011, when the building of ISS finished, these events were carried out by both ISS local and Shuttle coming crews (labelled as Expedition and Shuttle, respectively compiled in the Annex). From 2011 till present, the EVA was always conducted by the different ISS crews (International Space Station User's Guide. ISSUserGuideR2).

288 A quantitative summary of all disturbances considered in the Annex within the eight 289 years analyzed here, is presented in Table 1. There are counted 110 reboostings, 47 manned 290 dockings and 60 unmanned dockings/berthings, 41 manned undockings, 58 unmanned 291 undocking/deberthings and 76 Extra Vehicular Activities. A total of roughly 400 292 disturbances, originated from different activities on the ISS, which could have weak, medium 293 or strong influence on the ongoing experiments. Mention here that the small differences 294 between the number of dockings/berthings and undockings/deberthings is a consequence of 295 the fact that a spacecraft may have visited the Station before 2009 or left it after 2016. In both 296 cases, neither docking/berthing nor undocking/deberthing episodes are consigned in the 297 Annex. Based on Table 1, the Table 2 compiles the percentages of the different disturbances classified by using the RMS_{8h} criterion previously established. In this way, considering the 298 299 results of Progress, Zvezda/Zarya and ATV spacecrafts, more than 80% of the reboostings 300 provoked typical strong disturbances along X_A axis only. The background dominates in the 301 other two Y_A and Z_A directions. In case of manned docking/undocking events medium and 302 weak levels are dominant despite of the values corresponding to the Y_A and Z_A directions are similar to the X_A ones. The noisiest manned vehicle was the Shuttle. On the other side,
 minimum disturbance levels are detected in all directions for unmanned docking/undockings
 and berthing/deberthings and for all cargo spacecrafts considered. Finally, EVA events
 involved 100% background levels for all cases and for all directions.

307

308 4. Conclusions309

310 The present work investigates the degree of correlation existing between the quantitative 311 information contained in a reduced approach to the ISS quasi-steady accelerometric data and 312 different external mechanical disturbances acting on the Station (reboostings, 313 dockings/undockings, bethings/deberthings and Extra Vehicular activities). To achieve this 314 goal, the Mean_{8h} and the RMS_{8h} values have been extracted from the quasi-steady data 315 provided by NASA Principal Investigator Microgravity Services website (PIMS). The Mean_{8h} 316 values have been used in the analysis of the global reduced quasi-steady acceleration trend as 317 a function of time. Clear differences have been observed in these mean values during the pre 318 and post construction periods in all directions. The eight hour root mean square values have 319 also been used to characterize the level of the different kind of external mechanical 320 disturbances considered. Different quantitative thresholds have been established and, using 321 these thresholds, the percentages of the different disturbances have been calculated. Results indicate that only reboosting is always detected as a strong disturbance while manned 322 323 dockings/undockings has a lower, but detectable, level depending also on the type of 324 spacecraft considered. Extra Vehicular Activities are undetectable by the use of this reduced 325 quasi-steady approach. The inverse problem - knowing the value of the RMS_{8h}(a_i) try to 326 predict the kind of disturbance associated - is thus feasible, except in case of unmanned 327 docking/undocking, berthing/deberthings and Extra Vehicular Activities. So, reduced quasi-328 steady accelerometric data could be used as detector, though only partially.

329

330 **References**

- Baker, D.: Soyuz Manual (Owners Workshop Manual), Haynes Publishing (2014)
- Hall, R., Shayler, D.: Soyuz. A Universal Spacecraft, Springer Praxis Books/Space
 Exploration (2003)
- 335 Hrovat, K.: Analysis Techniques for Vibratory Data. NASA 7th Annual Microgravity
- Environment Interpretation Tutorial, MEIT. NASA Glenn Research Center, Ohio AerospaceInstitute (2004a)
- Hrovat, K.: ISS Measured Vibratory Environment. NASA 7th Annual Microgravity
 Environment Interpretation Tutorial, MEIT. NASA Glenn Research Center, Ohio Aerospace
 (2004b)
- 341InternationalSpaceStationUser'sGuide.ISSUserGuideR2342(http://www.spaceref.com/iss/ops/ISS.User.Guide.R2.pdf)
- 343 Jules, K.: Working in a Reduced-gravity Environment: A Primer. NASA 7th Annual
- 344 Microgravity Environment Interpretation Tutorial, MEIT. NASA Glenn Research Center,
- 345 Ohio Aerospace Institute (2004)

- 346 Kelly, E.: Analysis Techniques for Quasi-steady Data. NASA 7th Annual Microgravity
- 347 Environment Interpretation Tutorial, MEIT. NASA Glenn Research Center, Ohio Aerospace348 Institute (2004a)
- 349 Kelly, E.: ISS Measured Quasi-steady Environment. NASA 7th Annual Microgravity
- 350 Environment Interpretation Tutorial, MEIT. NASA Glenn Research Center, Ohio Aerospace
- 351 Institute (2004a)
- 352 Kitmacher, G.: Reference Guide to the International Space Station. National Aeronautics and
- 353 Space Administration, Washington, DC (2006), NASA SP-2006-557
- 354 McPherson, K., Hrovat, K., Kelly, E., Keller, J.: A researcher's guide to: International Space
- 355 Station. Acceleration Environment, National Aeronautics and Space Administration (2015)
- Meseguer J.: The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123-151 (1983)
- Meseguer, J., Sanz, A.: Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 153, 83-101 (1985)
- Penley, N.J., Schafer, C.P., Bartoe, J.D.F.: The international space station as a microgravity
 research platform. Acta Astronaut. 50(11), 691-696 (2002), ISSN 0094-5765
- 362 <u>http://pims.grc.nasa.gov/html/ISSAccelerationArchive.html</u>, (2018). Accessed 18 January
 363 2018
- Polezhaev, V.: The Use of Micro-acceleration Data for Convection Modeling and the
 Analysis of Convection Limits. NASA 7th Annual Microgravity Environment Interpretation
- 366 Tutorial, MEIT. NASA Glenn Research Center, Ohio Aerospace Institute (2004)
- 367 Ruiz, X., Ermakov, M.: Semiconductor Bridgman growth inside inertial flight mode orbiting
- 368 systems of low orbital eccentricity and long orbital period. J. Cryst. Growth. 273, 1-18 (2004)
- 369 Ruiz, X., Ermakov, M.: G-pulses and semiconductor segregation in µg Bridgman growth. J.
- 370 Cryst. Growth. 275, e21-e27 (2005)
- Ruiz, X.: Modelling of the influence of residual gravity on the segregation in directional
 solidification under microgravity. J. Cryst. Growth. 303, 262-268 (2007)
- 373 Ruiz, X., Pallares, J., Grau, F.X.: On the accuracy of the interdiffusion measurements at low
- and moderate Rayleigh numbers. Some computational considerations. Int. J. Heat Mass Tran.
 53, 3708-3720 (2010)
- 376 Ruiz, X., Bitlloch, P., Ramírez-Piscina, L., Casademunt, J.: Impact of stochastic accelerations
- on dopant segregation in microgravity semiconductor crystal growth. J. Cryst. Growth. 355,
- 378 88-100 (2012a)
- Ruiz, X., Pallarés, J.: On the accuracy of the diffusion coefficient measurements using
 different initial shear cell configurations at low and moderate Rayleigh numbers. Int. J. Heat
 Mass Tran. 55, 6966-6978 (2012b)
- 382 Sánchez, O., Ruiz, X., Pujalte, M., Mercader, I., Batiste, O., Gavaldà, Jna.: On the 383 determination of diffusion coefficients in two-component alloys and doped semiconductors.
- 384 Several implications concerning the International Space Station, J. Heat Mass Tran. 86, 508-
- 385 518 (2015).
- 386 Sanz, A.: The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J.
- 387 Fluid Mech. 156, 101-140 (1985)

388	Savino, R., Paterna, D.: Compatibility of the microgravity environment of the international
389	space station with fluid and material science experimentation. Acta Astronaut. 51(1-9), 229-
390	241 (2002), ISSN 0094-5765
391	Shayler, D.J.: Assembling and Supplying the ISS, The Space Shuttle Fulfills Its Mission,
392	Springer Praxis Books in Space Exploration, Springer Praxis (2017a)
393	Shayler, D.J.: Linking the Space Shuttle and Space Stations: Early docking Technologies,
394	Springer Praxis Books in Space Exploration, Springer Praxis (2017b)
395	Tryggvason, B.V., Duval, W.M.B., Smith, R.W., Rezkallah, K.S., Varma, S., Redden, R.F.,
396	Herring, R.A.: The vibration environment on the international space station: Its significance
397	to fluid-based experiments. Acta Astronaut. 48 (2-3), 59-70 (2001), ISSN 0094-5765
398	Zavalishin, D.A., Belyev, M.Yu., Sazonov, V.V.: Estimation of Dynamic Characteristics of
399	the International Space Station from Measurements of Microaccelerations. Cosmic Res+. 47,
400	173-84 (2009)
401	Zavalishin, D.A., Belyaev, M.Yu., Sazonov, V.V.: Study of Vibration Microaccelerations
402	Onboard the International Space Station. Cosmic Res+. 51, 261-69 (2013)
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	

Tables

430 Table 1. Quantitative summary of all disturbances considered to support the present study

										Kin	d of dis	turban	се										
		R	eboost	ng				Man	ined						Unma	anned					EVA		Total
				•		[Dockinę	3	U	ndockir	ng	D	ocking	/Berthir	ng	Uno	locking	g/Deber	ting				annual
	Shuttle	Progress Antitle Shuttle Shutt				Shuttle	Soyuz	Subtotal	Shuttle	Soyuz	Subtotal	Progress	ATV	SSRMS grappled (HTV,SpaceX,Cygnu	Subtotal	Progress	ATV	SSRMS grappled (HTV,SpaceX,Cygnu	Subtotal	Shuttle	ISS Expeditions	Subtotal	
2009	2	2	1	-	5	4	5	9	4	3	7	5	-	1	6	5	-	1	6	14	3	17	50
2010	1	3	13	-	17	3	7	10	3	4	7	5	-	-	5	4	-	-	4	9	6	15	58
2011	2	6	4	7	19	3	4	7	3	4	7	4	1	3	8	5	1	1	7	6	4	10	58
2012	-	3	3	11	17	-	4	4	-	4	4	5	1	3	9	4	1	3	8	-	5	5	47
2013	-	-	8	5	13	-	4	4	-	4	4	4	1	3	8	4	1	3	8	-	11	11	48
2014	-	-	15	-	15	-	4	4	-	4	4	5	1	4	10	6	-	4	10	-	7	7	50
2015	-	-	15	-	15	-	5	5	-	4	4	4	-	4	8	3	1	3	7	-	7	7	46
2016	-	1	8	-	9	-	4	4	-	4	4	2	-	4	6	3	-	5	8	-	4	4	35
	5	15	67	23	110	10	37	47	10	31	41	34	4	22	60	34	4	20	58	29	47	76	392

Table 2. – Percentages of the different disturbance levels by using the RMS_{8h} criterion

	Disturbance						Man	ned							U	nma	inne	d							
Spacecraft	Туре	Reb	0005	ting	Do	ockir	ng	Und	lock	ing	Do	ocki	ng	Und	lock	ing	Be	rthi	ng	Deb	erth	ing		EVA	
		Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za	Ха	Ya	Za
													%												
	BkD	9	81	76	-	-	-	-	-	-	94	84	91	50	97	97	-	1	-	-	-	-	-	-	-
Dreamage	WkD	0	17	19	-	-	-	-	-	-	6	13	6	50	3	3	-	-	-	-	-	-	-	-	-
Progress	MdD	5	2	3	-	-	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-	-	-	-	-
	StD	86	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	11	11	11	-	-	40	-	-	-	-	-	-	-	-	-	-	-	-	100	96	12
Chuttle	WkD	-	100	100	-	89	89	50	100	60	-	-	-	-	-	-	-	-	-	-	-	-	-	4	88
Snuttle	MdD	100	-	-	89	-	-	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zuezde	WkD	-	69	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zvezda	MdD	19	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	56	71	88	41	72	86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C	WkD	-	-	-	44	29	12	59	28	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soyuz	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	5	62	62	-	-	-	-	-	-	100	75	75	100	100	100	-	-	-	-	-	-	-	-	-
A T)/	WkD	-	38	38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AIV	MdD	-	-	-	-	-	-	-	-	-	-	25	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	95	-	-	-	-	-	-	-	-	-	-	25	-	-	-	-	-	-	-	-	-	-	-	-
	BkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	97	97	90
Expedition	WkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	10
Expedition	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Others	BkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	86	86	100	94	88	-	-	-
(HTV,	WkD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	10	-	-	6	-	-	-
SpaceX	MdD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	4	-	6	-	-	-	-
Cygnus, Dragon)	StD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	-	-	-

435	
436	Figure captions
437	
438 439	Fig.1 Mean _{8h} evolution of the three components of acceleration during the year 2009
440 441	Fig.2 Mean _{8h} acceleration components distribution during the years 2009-2016
442 443 444	Fig.3 One day acceleration signals recorded by MAMS ossbtmf sensor indicating the possible malfunction of the sensor: a) 05/04/2015 and b) 28/07/2016
445 446 447	Fig.4 Yearly Mean _{8h} acceleration components, standard deviation and interquartile ranges during 2009-2016
448 449 450 451	Fig. 5 $RMS_{8h}(a_i)$ values categorized as weak, medium and strong disturbances corresponding to the reboosting events carried out between 2009-2016 and performed by: a) Progress, b) ATV, c) Shuttle and d) Zvezda/Zarya spacecrafts
452 453 454 455	Fig.6 RMS _{8h} (a_i) values categorized as weak, medium and strong disturbances corresponding to the manned missions carried out between 2009-2016 and performed by: a1) Soyuz - docking, a2) Soyuz - undocking, b1) Shuttle - docking and b2) Shuttle - undocking
456 457 458 459 460	Fig.7 RMS _{8h} (a_i) values categorized as weak, medium and strong disturbances, corresponding to the unmanned missions carried out between 2009-2016 and performed by: a1) Progress - docking, a2) Progress - undocking, b1) others (HTV, SpaceX, Cygnus)- berthing and b2) others - deberthing
461 462	Fig.8 $RMS_{8h}(a_i)$ values categorized as weak, medium and strong disturbances to EVA events during 2009-2016
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	

476 **ANNEX**

477

478 Active disturbances considered in this work all along the period 2009 – 2016.

479 Note: The quantitative values in the column "Hour" are only indicative due to the fact that disturbances are not

480 instantaneous and the duration depends on their type. Note also that, the characteristic alterations generated in

481 the acceleration components by the different attitude modes (for instance, the periodic variations detected in the

- 482 a_y, a_z components during the X-axis perpendicular to the Orbital Plane (XPOP) Attitude) have not been 483 considered here. Finally, mention that the quantitative reboosting data are not strictly exact, though they have
- 483 considered here. Finally, mention that the quantitative reboosting data are not strictly exact, though they have 484 been included to give the reader an approximate idea of its order of magnitude as well as the associate velocity
- 485 change.
- 486 *Acronyms:* EVA: Extra Vehicular Activity; STS: Space Transport System; PMA: Pressurized Mating Adapter;
- 487 SSRMS Space Station Remote Manipulator System (also, Canadarm2 robotic arm); CRS: Commercial Resupply
- 488 Service;

	Day / Month	Hour (UTC)	Disturbance Type	Spacecraft / Module	Port (Module)
09/01	14 / 01	18:06	Reboosting	Zvezda thrusters (140 s; $ \Delta v = 3.1$	m/ s)
09/02	03 / 02	?	Reboosting	Zvezda thrusters (? s; $ \Delta v = ? m/s$	s)
09/03	06 / 02	04 : 10	Undocking	Progress M-01M (31P)	-
09/04	13 / 02	07:18	Docking	Progress M-66 (32P)	Nadir (Pirs)
09/05	10 / 03	16 : 22	EVA	Expedition 18; 4 h 49 m	
09/06	17 / 03	21:20	Docking	STS-119 (Discovery)	PMA-2 (Forward, Harmony)
09/07	19 / 03	17:16	EVA	Shuttle STS-119; 6 h 27 m	· · · · · · · · · · · · · · · · · · ·
09/08	21 / 03	16 : 51	EVA	Shuttle STS-119; 6 h 30 m	
09/09	23 / 03	15 : 37	EVA	Shuttle STS-119; 6 h 27 m	
09/10	25 / 03	19 : 53	Undocking	STS-119 (Discovery)	-
09/11	28 / 03	13 : 05	Docking	Soyuz TMA-14 (Altair)	Aft (Zvezda)
09/12	08 / 04	02 : 55	Undocking	Soyuz TMA-13 (Titan)	-
09/13	06 / 05	15 : 18	Undocking	Progress M-66 (32P)	-
09/14	12 / 05	19:24	Docking	Progress M-02M (33P)	Nadir (Pirs)
09/15	29 / 05	12:34	Docking	Soyuz TMA-15 (Parus)	Nadir (Zarya)
09/16	05 / 06	07 : 52	EVA	Expedition 20; 4 h 54 m	
09/17	10 / 06	06 : 55	EVA	Expedition 20; 0 h 07 m	
09/18	30 / 06	18 : 30	Undocking	Progress M-02M (33P)	-
09/19	02 / 07		Docking (relocated)	Soyuz TMA-14 (Altair)	Nadir (Pirs)
09/20	17 / 07	17:47	Docking	STS-127 (Endeavour)	PMA-2 (Forward, Harmony)
09/21		00:30	Reboosting	Shuttle Endeavour thrusters (900s ;	$ \Delta v = 0.8 \text{ m/s}$
09/22	18 / 07	16:19	EVA	Shuttle STS-127; 5 h 32 m	· · · ·
09/23	20 / 07	15 : 27	EVA	Shuttle STS-127; 6 h 53 m	
09/24	22 / 07	14 : 32	EVA	Shuttle STS-127; 5 h 59 m	
09/25	24 / 07	13 : 54	EVA	Shuttle STS-127; 7 h 12 m	
09/26	27 / 07	11 : 33	EVA	Shuttle STS-127; 4h 54 m	
09/27	28 / 07	17 : 26	Undocking	STS-127 (Endeavour)	-
09/28	29 / 07	11 : 12	Docking	Progress M-67 (34P)	Aft (Zvezda)
09/29	01 / 08	08 : 15	Reboosting	Progress M67 thrusters (460 s ; Δ	/ = 1.3 m/s)
09/30	02 / 08	?	Docking	Soyuz TMA-16 (Cepheus)	Aft (Zvezda)
09/31	31 / 08	00 : 54	Docking	STS-128 (Discovery)	PMA-2 (Forward, Harmony)
09/32	01 / 09	21:49	EVA	Shuttle STS-128; 6 h 35 m	
09/33	03 / 09	20:39	EVA	Shuttle STS-128; 6 h 39 m	
09/34	05 / 09	20:39	EVA	Shuttle STS-128; 7 h 01 m	
09/35	08 / 09	19:26	Undocking	STS-128 (Discovery)	-
09/36	17 / 09	22 : 27	Berthing	Japanese cargo vehicle HTV1 (Kounotori 1)	Nadir (Node 2, Harmony) Canadarm2 robotic arm, SSRMS)
09/37	21 / 09	07:25	Undocking	Progress M-67 (34P)	-
09/38	11 / 10	01:07	Undocking	Soyuz TMA-14 (Altair)	-
09/39	18 / 10	01:40	Docking	Progress M-03M (35P)	Nadir (Pirs)
09/40	30 / 10	15 : 02	Deberthing	Japanese cargo vehicle HTV1 (Kounotori 1)	- (Canadarm2 robotic arm, SSRMS)
09/41	12 / 11	15 : 41	Docking	Progress M-MIM2 (containing the Mini-Research Module-2 or, equivalently, Poisk module)	Zenith (Zvezda)
09/42	18 / 11	16 : 51	Docking	STS-129 (Atlantis)	PMA-2 (Forward, Harmony)

09/43	19 / 11	14 : 24	EVA	Shuttle STS-129; 6 h 37 m	
09/44		14 : 31	EVA	Shuttle STS-129; 6 h 8 m	
09/45	23 / 11	13 : 24	EVA	Shuttle STS-129; 5 h 42 m	
09/46	24 / 11	10:07	Reboosting	Shuttle Atlantis thrusters (1620s	; Δv = 1.14 m/s)
09/47	25 / 11	09:53	Undocking	STS-129 (Atlantis)	-
09/48	01 / 12	03 : 56	Undocking	Soyuz TMA - 15 (Parus)	-
09/49	08 / 12	00:16	Undocking	Progress M-MIM2	-
09/50	22 / 12	22 : 48	Docking	Soyuz TMA-17 (Pulsar)	Nadir (Zarya)

Teal: 4	Day / Month	Hour	Disturbance Type	Spacecraft / Module	Port (Module)			
40/24		(UTC)						
10/01	14 / 01	10:05	EVA	Expedition 22; 5h 44 m	1			
10/02	21 / 01	10 : 24	Docking (relocated)	Soyuz TMA-16 (Cepheus)	Zenith (Poisk)			
10/03	22 / 01	09:06	Reboosting	Zvezda thrusters (55 s ; $ \Delta v = 1$ m/s	3)			
10/04	24 / 01	09:01	Reboosting	Zvezda thrusters (155s ; $ \Delta v = 2.8$ r	n/s)			
10/05	05 / 02	04 : 26	Docking	Progress M-04M (36P)	Aft (Zvezda)			
10/06	10 / 02	05 : 06	Docking	STS-130 (Endeavour)	PMA-2 (Forward, Harmony)			
10/07	12 / 02	02 : 17	EVA	Shuttle STS-130; 6h 32 m				
10/08	14 / 02	02 : 20	EVA	Shuttle STS-130; 5h 54m				
10/09	17 / 02	02 : 15	EVA	Shuttle STS-130; 5h 48m				
10/10	18 / 02	07:31	Reboosting	Shuttle Endeavour thrusters (1860 s	; Δv = 1.3 m/s)			
10/11	00 / 00	00 : 54	Undocking	STS - 130 (Endeavour)	-			
10/12	20/02	21:15	Reboosting	Progress M-04M thrusters (1860 s ;	$ \Delta v = 1.3 \text{ m/s}$			
10/13	18 / 03	08:03	Undocking	Soyuz TMA - 16 (Cepheus)	-			
10/14	24 / 03	09:15	Reboosting	Progress M-04M thrusters (425 s :)	$\Delta v = 1 \text{ m/s}$			
10/15	04 / 04	05 : 25	Docking	Sovuz TMA-18 (Cliff)	Zenith (Poisk)			
10/16	07 / 04	07:44	Docking	STS-131 (Discovery)	PMA-2 (Forward, Harmony)			
10/17	09/04	05:31	EVA	Shuttle STS-131: 6 h 27 m				
10/18	11/04	05:30	EVA	Shuttle STS-131: 7 h 26 m				
10/19	13/04	06:14	EVA	Shuttle STS-131 6 h 24 m				
10/20	17/04	12:52	Undocking	STS-131 (Discovery)	-			
10/21	22/04	16:30	Undocking	Progress M-03M (35P)	-			
10/22	23/04	20:30	Reboosting	Progress M-04M thrusters (1245 s	$\Delta v = 3 m/s$			
10/23	01/05	18 · 30	Docking	Progress M-05M (37P)	Nadir (Pirs)			
10/24	10 / 05	11 · 16	Undocking	Progress M-04M (36P)	-			
10/25	12/05	14 · 23	Docking (relocated)	Sovuz TMA-17 (Pulsar)	Aft (Zvezda)			
10/26	16/05	14 . 28	Docking	STS-132 (Atlantis)	PMA-2 (Forward Harmony)			
10/27	17/05	11 · 54	FV/A	Shuttle STS-132 7 h 25 m	T M/ 2 (Forward, Harmony)			
10/28	19/05	10:38	EVA	Shuttle STS-132: 7 h 9 m				
10/29	21/05	10:00	EV/A	Shuttle STS-132 6 h 46 m				
10/30	23/05	15 22	Undocking	STS-132 (Atlantis)	-			
10/31	26 / 05	06 25	Reboosting	Progress M-05M thrusters (590 s : 1/	$v_{\rm l} = 0.8 {\rm m/s}$			
10/32	02/06	00.04	Undocking	Sovuz TMA-17 (Pulsar)	-			
10/33	05/06	03 20	Reboosting	Zvezda SM thrusters (250 s \cdot $ \Delta y = 4$	1.5 m/s)			
10/34	00700	00.10	rtoboooting	Progress M-05M thrusters (580 s : M	$v_{\rm r} = 0.8 {\rm m/s}$			
10/35	08 / 06	01 · 15	Reboosting	Progress M 05M thrustors (465 s : M	w = 0.6 m/s			
10/35	17/06	22 · 21	Docking	$\frac{12}{2}$	$\Delta ft (Zyozda)$			
10/37	28/06	22.21	Docking (relocated)	Sovuz TMA-19 (Olympus)	Nadir (Rassyet)			
10/38	20/00	16 · 17	Docking (relocated)	Progress M-06M (38P)	Aft (Zvezda)			
10/30	16/07	10.17 $07 \cdot 12$	Peboosting	Progress M 06M thrustors (1065 s :	$ \Delta x = 2.1 \text{ m/s}$			
10/30	27/07	$07 \cdot 42$ $04 \cdot 11$	EV/A	Expedition 24: 6 h 43 m	$\Delta V = 2.1 \text{ m/s}$			
10/40	07/08	11 · 10	EVA EVA	Expedition 24: 8 h 3 m				
10/42	11 / 08	12.27	EVA EVA	Expedition 24: 7 h 26 m				
10/42	16/08	10 · 20	EVA EVA	Expedition 24: 7 h 20 m				
10/43	18/08	20 · 30	Reposting	Prograss M 06M thrustors (660 c : M	$y_{1} = 1.3 m/c$			
10/44	31/08	20.30	Lindocking	Progress M 06M (38P)	v = 1.3 m/s)			
10/45	12 / 00	11.20	Docking	Progress M-07M (20D)	- Aft (Zvezda)			
10/40	12/09	00.04	Poboosting	Progress M-07M (39P) All (2Ve2da) Progress M-07M thrusters (530 s \cdot (A)(1 = 1.2 m/s)				
10/47	25 / 00	03.04	Undocking	Sovuz TMA-18 (Cliff)				
10/40	20/09	02.02	Docking	Soyuz TMA-10 (OIIII)	- Zenith (Poisk)			
10/49	20/10	10 . 11	Poboosting	Brogroop M 07M thrustore (220 a 114	$\frac{2}{1} = 0.5 m/s$			
10/50	20/10	12.41	Lindooking	$\frac{1}{2} = \frac{1}{2} $	w = 0.0 m/s)			
10/51	20/10	12:20	Bobosoting	Progrado M 07M thrustone (400 - 14	- v. 0.4 m/o)			
10/52	20/10	10:25	Dealisting	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	Nedir (Dire)			
10/53	30/10	10:30			inauir (Pirs)			
10/54	15/11	14:55	EVA	Expedition 25; 6 n 28 m				
10/55	25 / 11	05:03	Repossting	sung Frogress in-07 in infusiers (400 S; $ \Delta V = 1$ m/S) king Soviuz TMA-19 (Olympus)				
10/56	26 / 11	01:23	Undocking	ing Soyuz IMA-19 (Olympus) -				
10/57	17/12	20:11	Docking	Soyuz TMA-20 (Varagian)	Nadir (Rassvet)			

Year: 2011

11/56

30 / 11

23:11

Reboosting

	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)
11/01	13 / 01	09:00	Reboosting	Progress M-07M thrusters (670 s ;	∆v = 1.4 m/s)
11/02	21 / 01	14 : 29	EVA	Expedition 26; 5 h 23 m	1
11/03	24 / 01	00 : 43	Undocking	Progress M-08M (40P)	-
11/04	27 / 01	14 : 51	Berthing	Japanese cargo vehicle HTV2 (Kounotori 2)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
11/05	30 / 01	02:39	Docking	Progress M-09M (41P)	Nadir (Pirs)
11/06	09 / 02	21:37	Reboosting	Progress M-07M thrusters (250 s ;]	∆v = 0.5 m/s)
11/07	16 / 02	11 : 42	EVA	Expedition 26; 4 h 51 m	
11/08	19 / 02	19 : 26	Berthing (relocated)	Japanese cargo vehicle HTV2 (Kounotori 2)	Zenith (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
11/09	20 / 02	13 : 12	Undocking	Progress M-07M (39P)	
11/10	24 / 02	15 : 59	Docking	Automated Transfer Vehicle ATV-2, "Johannes Kepler"	Aft (Zvezda)
11/11	26 / 02	19:14	Docking	STS-133 (Discovery)	PMA-2 (Forward, Harmony)
11/12	28 / 02	15 : 46	EVA	Shuttle STS-133; 6 h 34 m	
11/13	02 / 03	15 : 42	EVA	Shuttle STS-133; 6 h 14 m	
11/14	03 / 03	14 : 03	Reboosting	Shuttle Discovery thrusters (1560 s	$ \Delta v = 1 \text{ m/s}$
11/15	07 / 03	12:00	Undocking	STS 133 mission (Discovery)	-
11/16	10 / 03	16 : 00	Berthing (relocated)	Japanese cargo vehicle HTV2 (Kounotori 2)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
11/17	16 / 03	03 : 27	Undocking	Soyuz TMA-01M (Ingul)	-
11/18	18 / 03	06 : 00	Reboosting	ATV-002 thrusters (880 s ; $ \Delta v = 2.2$	2 m/s)
11/19	28 / 03	10 : 15	Deberthing	Japanese cargo vehicle HTV2 (Kounotori 2)	- (Canadarm2 robotic arm, SSRMS)
11/20	02 / 04	02:36	Reboosting	ATV-002 (240 s ; ∆v = 0.6 m/s)	
11/21	06 / 04	23:09	Docking	Soyuz TMA-21 (Tarkhaniy)	Zenith (Poisk)
11/22	22 / 04	13 : 38	Undocking	Progress M-09M (41P)	-
11/23	29 / 04	14 : 28	Docking	Progress M-10M (42P)	Nadir (Pirs)
11/24	05 / 05	11:20	Reboosting	ATV-002 thrusters (240 s ; $ \Delta v = 0.6$	Sm/s)
11/25	18 / 05	10:14	Docking	STS-134 (Endeavour)	PMA-2 (Forward, Harmony)
11/26	20/05	07:10	EVA	Shuttle STS-134; 6 h 19 m	
11/27	22/05	06:05	EVA	Shuttle STS-134; 8 h 7 m	
11/28	23/05	21:35		Soyuz IMA-20 (Varagian)	-
11/29	23705	05.43	EVA	Shuttle STS-134, 011 54 m)	
11/30	27 / 05	04 : 15	EVA	ISS complete (International part)	
11/31	29/05	05:03	Reboosting	Shuttle Endeavour thrusters (860 s	$ \Delta y = 0.6 \text{ m/s}$
11/32	30 / 05	03:55	Undocking	STS 134 (Endeavour)	-
11/33	09 / 06	21:18	Docking	Soyuz TMA-02M (Eridanus)	Nadir (Rassvet)
11/34	40 / 00	14 : 10	Reboosting	ATV-002 thrusters (2300 s ; $ \Delta v = 5$.6 m/s)
11/35	12/06	18 : 15	Reboosting	ATV-002 thrusters (2450 s ; $ \Delta v = 6$.2 m/s)
11/36	15 / 06	15 : 55	Reboosting	ATV-002 thrusters (2500 s ; $ \Delta v = 6$.2 m/s)
11/37	17 / 06	16:21	Reboosting	ATV-002 thrusters (1700 s ; $ \Delta v = 4$.4 m/s)
11/38	20 / 06	14 : 46	Undocking	Automated Transfer Vehicle ATV- 002. Johannes Kepler	-
11/39	23 / 06	16:37	Docking	Progress M-11M (43P)	Aft (Zvezda)
11/40	29 / 06	12 : 15	Reboosting	Progress M-11M thrusters (1985 s ;	$\Delta v = 2.1 \text{ m/s}$
11/41	<u>0</u> 1 / 07	12 : 11	Reboosting	Progress M-11M thrusters (1770 s ;	$\Delta v = 1.9 \text{ m/s}$
11/42	10 / 07	15 : 07	Docking	STS 135 (Atlantis)	Pressurized Mating Adapter 2, PMA-2 (Forward, Harmony)
11/43	12 / 07	13 : 22	EVA	Expedition 28; 6 h 31 m Last spacewalk performed while a station	space shuttle was docked to the
11/44	19 / 07	06:28	Undocking	STS 135 (Atlantis)	-
11/45	03 / 08	14 : 51	EVA	Expedition 28; 6 h 22 m	<u>.</u>
11/46	23 / 08	09:37	Undocking	Progress M-11M (43P)	-
11/47	16 / 09	00:38	Undocking	Soyuz TMA-21 (Tarkhaniy)	-
11/48	29 / 09	16 : 44	Reboosting	Zarya thrusters (170 s ; $ \Delta v = 2.5 \text{ m}$	/s)
11/49	19 / 10	16 : 15	Reboosting	Zvezda thrusters (110 s ; $ \Delta v = 1.8$ r	m/s)
11/50	26 / 10	12 : 52	Reboosting	Zvezda thrusters (110 s ; $ \Delta v = 1.8$ r	m/s)
11/51	29 / 10	09:04	Undocking	Progress M-10M (42P)	
11/52	02/11	11:41	Docking	Progress M-13M (45P)	Nadir (Pirs)
11/53	16/11	05:24	Docking	Soyuz IMA-22 (Astraeus)	∠enith (Poisk)
11/54	18/11	04:07	Reboosting	\angle vezda SM thrusters (215 s; $ \Delta v = 3$	3.4 m/s
11/55	21 / 11	23:00	Undocking	Soyuz TMA-02M (Eridanus)	-

Zvezda SM thrusters (220 s ; $|\Delta v| = 1$ m/s)

11/57	09 / 12	19 : 50	Reboosting	Zvezda SM thrusters (80 s ; $ \Delta v = 1$.	3 m/s)
11/58	23 / 12	15:18	Docking	Soyuz TMA-03M (Antares)	Nadir (Rassvet)

Year: 2	Year: 2012						
	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)		
12/01	13 / 01	16:10	Reboosting	Zvezda thrusters (55 s ; $ \Delta v = 0.8$ n	n/s)		
12/02	23 / 01	22:09	Undocking	Progresss M-13M (45P)	-		
12/03	28 / 01	00 : 08	Docking	Progress M-14M (46P)	Nadir (Pirs)		
12/04	207 01	23 : 50	Reboosting	Zvezda SM thrusters (65 s ; $ \Delta v = 1$	m/s)		
12/05	16 / 02	14 : 31	EVA	Expedition 30; 6 h 16 m			
12/06	29 / 02	10 : 12	Reboosting	Zvezda thrusters (75 s ; $ \Delta v = 1.2$ n	n/s)		
12/07	28 / 03	22 : 31	Docking	Automated Transfer Vehicle ATV3, "Edoardo Amaldi"	Aft (Zvezda)		
12/08	31 / 03	21: 54	Reboosting	ATV-003 thrusters (410 s ; $ \Delta v =$	1 m/s)		
12/09	05 / 04	19:06	Reboosting	ATV-003 thrusters (895 s ; $ \Delta v =$	2.2 m/s)		
12/10	19 / 04	11:03	Undocking	Progress M – 14M (46P)	-		
12/11	22 / 04	14:04	Docking	Progress M – 15M (47P)	Nadir (Pirs)		
12/12	25 / 04	12 : 13	Reboosting	ATV-003 thrusters (970 s ; $ \Delta v = 2$.	3 m/s)		
12/13	27 / 04	08 : 18	Undocking	Soyuz TMA-22 (Astraeus)	-		
12/14	04 / 05	08:37	Reboosting	ATV-003 thrusters (1220 s : $ \Delta v = 3$	<u>3 m/s)</u>		
12/15	17 / 05	04 : 35	Docking	Soyuz TMA-04M (Altair)	Zenith (Poisk)		
12/16	25 / 05	14 : 56	Berthing	SpaceX Dragon	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)		
12/17	26 / 05	00:10	Reboosting	ATV-003 thrusters (380 s; $ \Delta v = 0$.	8 m/s)		
12/18	31 / 05	09:49	Deberthing	SpaceX Dragon	-		
12/19	20 / 06	13 : 55	Reboosting	ATV-003 thrusters (560 s ; $ \Delta v = 1$.	3 m/s)		
12/20	01 / 07	04:47	Undocking	Soyuz TMA-03M (Antares)	-		
12/21	17 / 07	04 : 51	Docking	Soyuz TMA-05M (Agate)	Nadir (Rassvet)		
12/22	18 / 07	03 :16	Reboosting	ATV-003 thrusters (1160 s ; $ \Delta v = 2$	2.8 m/s)		
12/23	22 / 07	20:05	Undocking	Progress M – 15M (47P)	-		
12/24	27 / 07	13 : 20	Berthing	Japanese cargo vehicle HTV3 (Kounotori 3)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)		
12/25	29 / 07	01 : 00	Docking (relocated)	Progress M-15M (47P)	Nadir (Pirs)		
12/26	30 / 07	22:19	Undocking	Progress M-15M (47P)	-		
12/27	02 / 08	01:18	Docking	Progress M – 16M (48P)	Nadir (Pirs)		
12/28	15 / 08	16:00	Reboosting	ATV-003 thrusters (1880 s; $ \Delta v = 4$	1.4 m/s)		
12/29	20 / 08	15 : 38	EVA	Expedition 32; 5 h 50 m			
12/30	00 / 00	09:45	Reboosting	ATV-003 thrusters (385 s; $ \Delta v = 0$.	9 m/s)		
12/31	22/08	13 : 17	Reboosting	ATV-003 thrusters (2090 s ; $ \Delta v = 4$	1.9 m/s)		
12/32	30 / 08	12:16	EVA	Expedition 32; 8 h 17 m			
12/33	05 / 09	11:06	EVA	Expedition 32; 6 h 28 m			
12/34	11 / 09	12 : 50	Deberthing	Japanese cargo vehicle HTV3 (Kounotori 3)	- (Canadarm2 robotic arm, SSRMS)		
12/35	14 / 09	03 : 05	Reboosting	ATV-003 thrusters (540 s ; $ \Delta v = 1$.	3 m/s)		
12/36	16 / 09	23:09	Undocking	Soyuz TMA-04M (Altair)			
12/37	28 / 09	21: 44	Undocking	Automated Transfer Vehicle, ATV–3 "Edoardo Amaldi"	-		
12/38	10 / 10	10 : 56	Berthing	SpaceX Dragon CRS-1	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)		
12/39	25 / 10	12 : 29	Docking	Soyuz TMA-06M (Kazbek)	Zenith (Poisk)		
12/40	28 / 10	13 : 29	Deberthing	SpaceX Dragon CRS-1	- (Canadarm2 robotic arm, SSRMS)		
12/41	31 / 10	13:33	Docking	Progress M-17M (49P)	Aft (Zvezda)		
12/42	51/10	23:08	Reboosting	Progress M-16M thrusters (405 s ;	$\Delta v = 0.4 \text{ m/s}$		
12/43	01 / 11	12:29	EVA	Expedition 33; 6 h 38 m			
12/44	18 / 11	22:26	Undocking	Soyuz TMA-05M (Agate)	-		
12/45	16 / 12	13 : 34	Reboosting	Progress M-16M thrusters (510 s;	$\Delta v = 0.5 \text{ m/s}$		
12/46	21 / 12	14:08	Docking	Soyuz TMA-07M (Sail)	Nadir (Rassvet)		
12/47	23 / 12	11:28	Reboosting	Progress M-16M thrusters (250 s;	Δv = 0.5 m/s)		

Year : 2013							
	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)		
13/01	17 / 01	02 : 15	Reboosting	Progress M-16M thrusters (270 s;	∆v = 0.6 m/s)		
13/02	09 / 02	11:30	Undocking	Progress M-16M (48P)	-		
13/03	12 / 02	20 : 35	Docking	Progress M-18M (50P)	Nadir (Pirs)		
13/04	22 / 02	10:30	Reboosting	Progress M-17M thrusters (350 s;	$ \Delta v = 0.8 \text{ m/s}$		

					Nadir (Node2 Harmony)
13/05	03 / 03	11 : 31	Berthing	SpaceX Dragon CRS-2	(Canadarm2 robotic arm, SSRMS)
13/06	15 / 03	23:00	Undocking	Soyuz TMA-06M (Kazbek)	-
13/07	20 / 03	23:30	Reboosting	Progress M-17M thrusters (750 s;	∆v = 1.7 m/s)
13/08	26 / 03	09:10	Deberthing	SpaceX Dragon CRS-2	-
13/09	29 / 03	02 : 28	Docking	Soyuz TMA-08M (Carat)	Zenith (Poisk)
13/10	15 / 04	12:02	Undocking	Progress M-17M (49P)	-
13/11	19 / 04	14 : 03	EVA	Expedition 35; 6 h 38 m	·
13/12	26 / 04	12 : 25	Docking	Progress M-19M (51P)	Aft (Zvezda)
13/13	28 / 04	10:03	Reboosting	Progress M-19M thrusters (770 s;	$ \Delta v = 1.6 \text{ m/s}$
13/14	08 / 05	06:45	Reboosting	Progress M-19M thrusters (950 s;	$ \Delta v = 1.7 \text{ m/s}$
13/15	11 / 05	12:44	EVA	Expedition 35; 5 h 30 m	
13/16	13 / 05	22:30	Undocking	Soyuz TMA-07M (Sail)	-
13/17	17 / 05	02 : 15	Reboosting	Progress M-19M thrusters (1020 s	; Δv = 1.8 m/s)
13/18	29 / 05	02:10	Docking	Soyuz TMA-09M (Olympus)	Nadir (Rassvet)
13/19	11 / 06	13 : 58	Undocking	Progress M-19M (51P)	-
40/00	45 / 00	44.07	Deelvine	Automated Transfer Vehicle,	$\Delta t (7, r_{r})$
13/20	15/06	14:07	Docking	ATV-4 "Albert Einstein"	Aff (Zvezda)
13/21	19 / 06	13:05	Reboosting	ATV-4 thrusters (430 s; $ \Delta v = 1 \text{ m/}$	s)
13/22	24 / 06	13 : 32	EVA	Expedition 36; 6 h 34 m	/
13/23	09 / 07	12:02	EVA	Expedition 36; 6 h 07 m	
13/24	10 / 07	05:30	Reboosting	ATV-4 thrusters (640 s ; $ \Delta v = 1.6$ r	n/s)
13/25	16 / 07	11:57	EVA	Expedition 36; 1 h 32 m	,
13/26	25 / 07	20:43	Undocking	Progress M-18M (50P)	-
13/27	28 / 07	02 : 26	Docking	Progress M-20M (52P)	Nadir (Pirs)
13/28	09 / 08	13 : 22	Berthing	Japanese cargo vehicle HTV4 (Kounotori 4)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
13/29	16 / 08	14 : 36	EVA	Expedition 36; 7 h 29 m	•••
13/30	22 / 08	11:34	EVA	Expedition 36; 5 h 58 m	
13/31	31 / 08	07 : 15	Reboosting	ATV-4 thrusters (260 s; $ \Delta v = 0.6$ r	n/s)
10/00	04/00	45.07	Deherthing	Japanese cargo vehicle HTV4	-
13/32	04/09	15:07	Depending	(Kounotori 4)	(Canadarm2 robotic arm, SSRMS)
13/33	10 / 09	23 : 37	Undocking	Soyuz TMA-08M (Carat)	-
13/34	15 / 09	12 : 42	Reboosting	ATV-4 thrusters (210 s ; $ \Delta v = 0.5$ r	n/s)
13/35	26 / 09	00 : 45	Docking	Soyuz TMA-10M (Pulsar)	Zenith (Poisk)
13/36	29 / 09	11 : 45	Berthing	Cygnus Orb-D1	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
13/37	02 / 10	19 : 22	Reboosting	ATV-4 thrusters (800 s ; $ \Delta v = 1.9$ r	n/s)
13/38	22 / 10	10 : 45	Deberthing	Cygnus Orb-D1	- (Canadarm2 robotic arm, SSRMS)
13/39	28 / 10	08 : 55	Undocking	Automated Transfer Vehicle, ATV-4 "Albert Einstein"	-
13/40	07 / 11	08:00	Docking	Soyuz TMA-11M (Vostok)	Nadir (Rassvet)
13/41	09 / 11	14 : 34	EVA	Expedition 37; 5 h 50 m	• • • •
13/42	10 / 11	23 : 26	Undocking	Soyuz TMA-09M (Olympus)	-
13/43	29 / 11	22:30	Docking	Progress M-21M (53P)	Aft (Zvezda)
13/44	11 / 12	16 : 34	Reboosting	Progress M-21M thrusters (495 s ;	$ \Delta v = 1 \text{ m/s}$
13/45	13 / 12	14 : 57	Reboosting	Progress M-21M thrusters (620 s :	$ \Delta v = 1.3 \text{ m/s}$
13/46	21 / 12	12:01	EVA	Expedition 38: 5 h 28 m	1 1 1
		_			
13/47	24 / 12	11:53	EVA	Expedition 38; 7 h 30 m	

Year: 2	/ear: 2014							
	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)			
14/01	12 / 01	10 : 30	Berthing	Cygnus CRS Orb-1	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)			
14/02	18 / 01	00 : 15	Reboosting	Progress M-21M thrusters (620 s;	$ \Delta v = 1.3 \text{ m/s}$			
14/03	27 / 01	11:30	EVA	Expedition 38; 6 h 08 m				
14/04	03 / 02	16:21	Undocking	Progress M-20M (51P)	-			
14/05	05 / 02	21:22	Docking	Progress M-22M (54P)	Nadir (Pirs)			
14/06	18 / 02	11 : 25	Deberthing	Cygnus CRS Orb-1	- (Canadarm2 robotic arm, SSRMS)			
14/07	10 / 03	23:02	Undocking	Soyuz TMA-10M (Pulsar)	-			
14/08	13 / 03	04:00	Reboosting	Progress M-21M thrusters (530 s;	$\Delta v = 1.2 \text{ m/s}$			
14/09	17 / 03	01:30	Reboosting	Progress M-21M thrusters (480 s;	$ \Delta v = 0.6 \text{ m/s}$			
14/10	27 / 03	21:45	Docking	Soyuz TMA-12M (Cliff)	Zenith (Poisk)			
14/11	28 / 03	22 : 40	Reboosting	Progress M-21M thrusters (490 s;	$ \Delta v = 1.1 \text{ m/s}$			
14/12	03 / 04	20:45	Reboosting	Progress M-21M thrusters (260 s ;	$ \Delta v = 0.6 \text{ m/s}$			
14/13	07 / 04	12 : 58	Undocking	Progress M-22M (54P)	-			

	14/14	09 / 04	21:14	Docking	Progress M-23M (54P)	Nadir (Pirs)
	14/15	12 / 04	15 : 25	Reboosting	Progress M-23M thrusters (850 s;	$ \Delta v = 1.9 \text{ m/s}$
	14/16	20 / 04	11 : 14	Berthing	SpaceX Dragon CRS-3	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
	14/17	00 / 04	08:58	Undocking	Progress M-21M (53P)	-
	14/18	23/04	13 : 56	EVA	Expedition 39; 1 h 36 m	
	14/19	25 / 04	12:13	Docking	Progress M-21M (53P)	Aft (Zvezda)
	14/20	29 / 04	07:45	Reboosting	Progress M-21M thrusters (610 s ;	$ \Delta v = 1.4 \text{ m/s}$
	14/21	13 / 05	21:36	Undocking	Soyuz TMA-11M (Vostok)	-
	14/22	18 / 05	12 : 55	Deberthing	SpaceX Dragon CRS-3	- (Canadarm2 robotic arm, SSRMS)
	14/23	29 / 05	01:44	Docking	Soyuz TMA-13M (Cepheus)	Nadir (Rassvet)
	14/24	09 / 06	13 : 29	Undocking	Progress M-21M (53P)	-
	14/25	16 / 06	10 : 36 - 12 : 53	Berthing	Cygnus CRS Orb-2	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
	14/26	19 / 06	14:10	EVA	Expedition 40; 7 h 23 m	
	14/27	25 / 06	10:30	Reboosting	Progress? (1105 s ; $ \Delta v = 1.8 \text{ m/s}$)	
	14/28	11 / 07	14 : 50	Reboosting	Progress? (90 s; $ \Delta v = 1.4 \text{ m/s}$)	
	14/29	21 / 07	21:44	Undocking	Progress M-23M (55P)	-
	14/30	23 / 07	10 : 50	Reboosting	Progress? (80 s, ; $ \Delta v = 0.6$ m/s)	
	14/31	24 / 07	03:31	Docking	Progress M-24M (56P)	Nadir (Pirs)
	14/32	14 / 08	16 : 55	Reboosting	Progress M-24M thrusters (510 s;	$ \Delta v = 1.2 \text{ m/s}$
	14/33	15 / 08	09 : 30	Deberthing	Cygnus CRS Orb-2	- (Canadarm2 robotic arm, SSRMS)
	14/34	27 / 08	08:30	Reboosting	Progress M-22M thrusters (230 s;	$ \Delta v = 0.6 \text{ m/s}$
	14/35	18 / 08	14:02	EVA	Expedition 40; 5 h 11 m	
	14/36	10 / 09	23:01	Undocking	Soyuz TMA-12M (Cliff)	-
	14/37	14 / 09	02 : 10	Reboosting	Progress M-24M thrusters (260 s;	$ \Delta v = 0.6 \text{ m/s}$
	14/38	23 / 09	10 : 52	Berthing	SpaceX Dragon CRS-4	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
	14/39	26 / 09	02:11	Docking	Soyuz TMA-14M (Tarkhaniy)	Zenith (Poisk)
	14/40	07 / 10	12:30	EVA	Expedition 41; 6 h 13 m	
	14/41	08 / 10	09 : 15	Reboosting	Progress M-24M thrusters (570 s;	$ \Delta v = 1.4 \text{ m/s}$
	14/42	12 / 10	13 : 30	Docking	Automated Transfer Vehicle, ATV-5 "Georges Lemaître"	Aft (Zvezda)
	14/43		12:16	EVA	Expedition 41; 6 h 34 m	
	14/44	22 / 10	13 : 28	EVA	Expedition 41; 3 h 38 m	
	14/45	25 / 10	12 : 02	Deberthing	SpaceX Dragon CRS-4	- (Canadarm2 robotic arm, SSRMS)
	14/46	27 / 10	04 : 38	Undocking	Progress M-24M (56P)	-
	14/47	29 / 10	13:08	Docking	Progress M-25M (57P)	Nadir (Pirs)
	14/48	10 / 11	00:32	Undocking	Soyuz TMA-13M (Cepheus)	-
	14/49	12 / 11	12:30	Reboosting	Progress? (240 s ; $ \Delta v = 0.6 \text{ m/s}$)	
407	14/50	24 / 11	00:40	Docking	Soyuz TMA-15M (Astraeus)	Nadir (Rassvet)
49/	V 00					

Year: 2	Year: 2015							
	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)			
15/01	12 / 01	10:54	Berthing	SpaceX Dragon CRS-5	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)			
15/02	10 / 02	17:11	Deberthing	SpaceX Dragon CRS-5	- (Canadarm2 robotic arm, SSRMS)			
15/03	14 / 02	13:42	Undocking	Automated Transfer Vehicle, ATV-5 "Georges Lemaître"				
15/04	17 / 02	16 : 57	Docking	Progress M-26M (58P)	Aft (Zvezda)			
15/05	21 / 02	12 : 45	EVA	Expedition 42; 6 h 41 m				
15/06	25 / 02	11:51	EVA	Expedition 42; 6 h 43 m				
15/07	26 / 02	09:20	Reboosting	Progress M-26M thrusters (320 s ;	Δv = 0.7 m/s)			
15/08	01 / 03	11 : 52	EVA	Expedition 42; 5 h 38 m				
15/09	03 / 03	08:00	Reboosting	Progress M-26M thrusters (250 s;	∆v = 0.6 m/s)			
15/10	11 / 03	22:44	Undocking	Soyuz TMA-14M (Tarkhaniy)	-			
15/11	18 / 03	23 : 45	Reboosting	Progress M-26M thrusters (310 s ;	∆v = 0.7 m/s)			
15/12	28 / 03	01:33	Docking	Soyuz TMA-16M (Altair)	Zenith (Poisk)			
15/13	02 / 04	18 : 30	Reboosting	Progress M-26M thrusters (230 s ;	∆v = 0.5 m/s)			
15/14	17 / 04	10 : 55	Berthing	SpaceX Dragon CRS-6	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)			
15/15	25 / 04	06:41	Undocking	Progress M-25M (57P)	-			
15/16	06 / 05	05 : 20	Reboosting	Progress M-26M thrusters (750 s;	∆v = 1.5 m/s)			
15/17	18 / 05	00:30	Reboosting	Progress M-26M thrusters (1920 s ;	Δv = 1.8 m/s)			
15/18	21 / 05	09 : 29	Deberthing	SpaceX Dragon CRS-6	- (Canadarm2 robotic arm, SSRMS)			

15/19	08 / 06	19 : 50	Reboosting	Progress M-26M thrusters (380 s ;	∆v = 0.4 m/s)
15/20	11 / 06	10:20	Undocking	Soyuz TMA-15M (Astraeus)	-
15/21	18 / 06	10 : 50	Reboosting	Progress M-26M thrusters (290 s ;	∆v = 0.6 m/s)
15/22	05 / 07	07 : 11	Docking	Progress M-28M (60P)	Nadir (Pirs)
15/23	10 / 07	02 : 50	Reboosting	Progress M-26M thrusters (720 s;	∆v = 1.4 m/s)
15/24	23 / 07	00 : 35	Docking	Soyuz TMA-17M (Antares)	Nadir (Rassvet)
15/25	26 / 07	03 : 40	Reboosting	Progress M-26M thrusters (290 s;	∆v = 0.6 m/s)
15/26	10 / 08	14 : 20	EVA	Expedition 44; 5 h 31 m	
15/27	14 / 08	10 : 19	Undocking	Progress M-26M (58P)	-
15/28	24 / 08	14 : 28	Berthing	Japanese cargo vehicle HTV5 (Kounotori 5)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)
15/29	28 / 08	?	Docking (relocated)	Soyuz TMA-16M (Altair)	Aft (Zvezda)
15/30	31 / 08	07:00	Reboosting	Progress? (530 s ; $ \Delta v = 0.5 \text{ m/s}$)	
15/31	04 / 09	05 : 30	Docking	Soyuz TMA-18M (Eridanus)	Zenith (Poisk)
15/32	07 / 09	04 : 20	Reboosting	Progress? (530 s; $ \Delta v = 0.5 \text{ m/s}$)	· · · ·
15/33	11 / 09	23 : 39	Undocking	Soyuz TMA-16M (Altair)	-
15/34	14 / 09	01:20	Reboosting	Progress? (80 s ; $ \Delta v = 0.1 \text{ m/s}$)	
15/35	27 / 09	09:00	Reboosting	Progress? (370 s ; $ \Delta v = 0.3 \text{ m/s}$)	
15/36	28 / 09	12 : 12	Deberthing	Japanese cargo vehicle HTV5 (Kounotori 5)	- (Canadarm2 robotic arm, SSRMS)
15/37	01 / 10	22 : 52	Docking	Progress M-29M (61P)	Aft (Zvezda)
15/38	28 / 10	12:03	EVA	Expedition 45; 7 h 16 m	
15/39	06 / 11	11:22	EVA	Expedition 45; 7 h 48 m	
15/40	25 / 11	19:30	Reboosting	Progress M-29M (61P) (970 s ; Δ	v = 2.1 m/s
15/41	09 / 12	09 : 10 _ 13 : 00	Berthing	Cygnus CRS OA-4	Nadir (Node 1, Unity) (Canadarm2 robotic arm, SSRMS)
15/42	11 / 12	09:00	Undocking	Soyuz TMA-17M (Antares)	-
15/43	15 / 12	17:04	Docking	Soyuz TMA-19M (Agat)	Nadir (Rassvet)
15/44	19 / 12	07:35	Undocking	Progress M-28M (60P)	-
15/45	21 / 12	13 : 45	EVA	Expedition 46; 3 h 16 m	
15/46	23 / 12	10:27	Docking	Progress MS-01 (62P)	Nadir (Pirs)

Year: 2	Year: 2016						
	Day / Month	Hour (UTC)	Disturbance type	Spacecraft / Module	Port (Module)		
16/01	11 / 01	02:00	Reboosting	Progress M-29M (61P) (1100 s ; Δ	v = 1.8 m/s)		
16/02	15 / 01	12 : 48	EVA	Expedition 46; 4 h 43 m	, ,		
16/03	27 / 01	19:40	Reboosting	Progress M-29M (61P) (420 s ; Δv	⟨ = 0.8 m/s)		
16/04	03 / 02	12 : 55	EVA	Expedition 46; 4 h 45 m			
16/05	17 / 02	10 : 45	Reboosting	Progress M-29M (61P) (750 s ; Δv	/ = 1.2 m/s)		
16/06	19 / 02	10 : 38	Deberthing	Cygnus CRS OA-4	- (Canadarm2 robotic arm, SSRMS)		
16/07	02 / 03	01:03	Undocking	Soyuz TMA-18M (Eridanus)	-		
16/08	05 / 03	04 : 15	Reboosting	Progress M-29M (61P) (590 s ; Δv	= 1.1 m/s)		
16/09	19 / 03	03 : 10	Docking	Soyuz TMA-20M (Burlak)	Zenith (Poisk)		
16/10	26 / 03	10 : 51	Berthing	Cygnus CRS OA-6	Nadir (Node 1, Unity) (Canadarm2 robotic arm, SSRMS)		
16/11	30 / 03	14:14	Undocking	Progress M-29M (61P)	-		
16/12	02 / 04	17 : 58	Docking	Progress MS-02 (63P)	Aft (Zvezda)		
16/13	10 / 04	11 : 23	Berthing	SpaceX Dragon CRS-8	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)		
16/14	13 / 04	12 : 25	Reboosting	Progress MS-02 (63P) (350 s ; Δv	= 0.7 m/s)		
16/15	11 / 05	13 : 19	Deberthing	SpaceX Dragon CRS-8	- (Canadarm2 robotic arm, SSRMS)		
16/16	08 / 06	14:00	Reboosting	Progress MS-02 (63P) (320 s ; Δν	= 0.6 m/s)		
16/17	14 / 06	13 : 30	Deberthing	Cygnus CRS OA-6	- (Canadarm2 robotic arm, SSRMS)		
16/18	18 / 06	05 : 52	Undocking	Soyuz TMA-19M (Agat)	-		
16/19	03 / 07	01:48	Undocking	Progress MS-01 (62P)	-		
16/20	09 / 07	04:07	Docking	Soyuz MS-01 (Irkut)	Nadir (Rassvet)		
16/21	19 / 07	00:20	Docking	Progress MS-03 (64P)	Nadir (Pirs)		
16/22	20 / 07	10 : 56	Berthing	SpaceX Dragon CRS-9	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)		
16/23	19 / 08	13 : 04	EVA	Expedition 48; 5 h 58 m			
	25 / 08	21:00			_		
16/24	- 26 / 08	- 10 : 11	Deberthing	SpaceX Dragon CRS-9	(Canadarm2 robotic arm, SSRMS)		
16/25	01 / 09	11:53	EVA	Expedition 48; 6 h 48 m			
16/26	06 / 09	21:51	Undocking	Soyuz TMA-20M (Burlak)	-		
16/27	10 / 09	00 : 45	Reboosting	Progress MS-02 (63P) (690 s ; ∆v	= 1.3 m/s)		

16/28	14 / 10	09:37	Undocking	Progress MS-02 (63P)	-
16/29	21 / 10	07:43	Docking	Soyuz MS-02 (Favor)	Zenith (Poisk)
16/30	23 / 10	09 : 30	Berthing	Cygnus CRS OA-5	Nadir (Node 1, Unity) (Canadarm2 robotic arm, SSRMS)
16/31	30 / 10	00:35	Undocking	Soyuz MS-01 (Irkut)	-
16/32	02 / 11	02:40	Reboosting	Zvezda/Zarya? (140 s ; $ \Delta v = 2.3$	m/s)
16/33	19 / 11	20:59	Docking	Soyuz MS-03 (Kazbek)	Nadir (Rassvet)
16/34	22 / 11	12 : 45	Deberthing	Cygnus CRS OA-5	- (Canadarm2 robotic arm, SSRMS)
16/35	13 / 12	12 : 00	Berthing	Japanese cargo vehicle HTV6 (Kounotori 6)	Nadir (Node 2, Harmony) (Canadarm2 robotic arm, SSRMS)