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Abstract  8 

Multivariate qualitative methods are an analytical strategy for addressing problems related 9 

to food fraud that cannot be solved with just one variable. Some examples are sample 10 

authentication since the required response is complex in nature and sample adulteration, 11 

when knowing the concentration of adulterant is not looked for. Establishing a multivariate 12 

qualitative method involves several steps: data collection, pre-treatment, exploration 13 

techniques, classification techniques, and method validation. When more than one data 14 

source is available, data fusion can be apply to improve the results of a single technique.  15 

This review describes the state of the art of multivariate qualitative analysis for determining 16 

food fraud, and differentiates between authentication and adulteration. All the mentioned 17 

steps are discussed and, as example, recently published papers are commented. 18 
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Highlights:  28 

 29 

Multivariate qualitative methods can solve problems of food fraud. 30 

Food authentication and food adulteration are discussed. 31 

Classification techniques are the main tools for multivariate qualitative analysis. 32 

Data fusion is a new perspective for improving classification results. 33 

Research into multivariate qualitative method validation is still necessary. 34 

 35 

1. Introduction 36 

Qualitative methods are by no means new. Although they are not used in routine laboratory 37 

tasks as much as quantitative methods, they are currently on the rise and have been 38 

attracting increasingly greater interest, mainly for their screening potential. 39 

 40 

Qualitative methods can be classified using several criteria but in all cases they are used in 41 

problems that require a binary response (yes/no). If response was achieved from multiple 42 

non-specific signals, a multivariate classification approach is required. These strategy is also 43 

referred as non-target analysis since the data set is used as a fingerprint of the sample. 44 

  45 

According to the literature, multivariate qualitative methods are increasingly used in many 46 

fields (chemistry, process monitoring, etc.). Of course, multivariate classification is becoming 47 

increasingly important in food science too (Ballabio et al., 2009). In this paper, we focus 48 

more precisely on multivariate qualitative methods for problems of food fraud. In food fraud 49 

analysis, there are two main problems: a) authenticating the origin of a product in terms of 50 

geographical or botanical/animal provenance, or the manufacturing process, b) proving the 51 

absence of adulteration or the addition of a non-declared substance.  52 

 53 

As far as product authentication is concerned, in many countries there are laws that require 54 

agricultural products to have information about their geographical origin on the labels. The 55 

EU has encouraged the use of labelling to identify products by introducing regulations, first 56 

in 1992 and more recently in 2006 (EU regulations 510/2006, 509/2009 and 1898/2006). 57 

Those regulations define the following geographical indications for food products: protected 58 

designation of origin (PDO), protected geographical indication (PGI) and traditional 59 

specialities guaranteed (TSG). The use of geographical indications implies market 60 

recognition and it is related to the price of the product. To solve the problem of 61 
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authentication, the response required is qualitative; that is, binary (yes / no; belongs / does 62 

not belong, etc.). However, a single signal often cannot solve the problem, so a multivariate 63 

approach is usually required.  64 

  65 

The second problem, food adulteration, is attracting increasing attention because it is an 66 

emerging risk, given the complex and global nature of food supply chains. One of the major 67 

concerns about adulteration is that it may involve a health risk or economic benefit. Food 68 

adulteration problems can be solved in two ways: if the adulterant is known, a quantitative 69 

analysis is usually carried out but, if it is not, a qualitative analysis (it is or it is not adulterated) 70 

may be satisfactory.  71 

 72 

A bibliographic search of the last five years shows how keywords such as “food 73 

authentication” or “food adulteration” and “classification” were increasingly found in scientific 74 

articles. They mainly refer to the use of classification techniques with a multivariate signal 75 

provided by different instrumental techniques. Recently, several reviews have been 76 

published on specific instrumental techniques that are used with a chemometric approach 77 

for food analysis (Bosque-Sendra et al., 2012, Domingo et al., 2014, Casale et al. 2014, 78 

Danezis et al. 2016), the use of chemometric techniques for specific food analysis (Camiña 79 

et al., 2012, Domingo et al., 2014, Esslinger et al., 2014, Haddi et al., 2015; Nascimento et 80 

al. 2017, Kamal et al., 2015), or the metabolomic analysis of food (Cubero-Leon, et al., 81 

2014).  82 

This overview focused on the development of multivariate qualitative methods for the 83 

detection of food fraud. Figure 1 schematically presents an overall protocol for this purpose. 84 

It should be noted that the analytical determinations that give rise to the data set are mainly 85 

instrumental measures that provide multiple data for each sample analysed (i.e. absorbance 86 

at different wavelengths), although they can also be independent measures from different 87 

techniques (i.e. pH, conductivity, etc.). The former are more common, because the 88 

experimental cost is very small. 89 

The paper has been divided into sections that correspond to the different steps implemented 90 

in a multivariate qualitative method. Section 2 (exploratory analysis) and section 3 91 

(classification techniques) are the steps that have been studied most, so the main 92 

characteristics of the different approaches will be commented. Section 4 (data fusion) is the 93 

step more recently introduced in multivariate qualitative analysis. Section 5 focuses on the 94 
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validation step. Recently some studies (Lopez, M.I. et al., 2015; Riedl, J. et al., 2015) deals 95 

with it, although further research is required to develop unified protocols. In each section, 96 

the chemometric techniques are briefly described, although for more in-depth explanations 97 

the reader is addressed to the basic bibliography.   98 

 99 

2. Exploratory analysis 100 

The exploratory or unsupervised analysis provide information about the relationship 101 

between samples, between variables and/or between samples and variables. Various tools 102 

can be used and their theoretical basis has been well explained in many scientific articles 103 

and recent books on chemometrics (Esbensen et al., 2009, Li Vigni et al., 2013). 104 

Information about the relationship between samples reveals whether there are natural 105 

groups or trends in sample distribution that are consistent with prior knowledge about them. 106 

For example, if a strategy is established for detecting authentication and both authentic and 107 

non authentic samples are submitted to an unsupervised analysis, they should present a 108 

distribution that shows some tendencies. If there are not tendencies, the characterization of 109 

the samples must be not adequate and the experimentation carried out must be redefined. 110 

In addition, unsupervised techniques make it possible to detect the presence of possible 111 

outliers: i.e. samples distributed differently and separate from the main group. These 112 

samples should be rejected as they can have a negative impact on the use of supervised 113 

techniques. 114 

The relationship between variables shows which of them give complementary information 115 

and which give similar or redundant information. On the other hand the relationship between 116 

samples and variables indicates which variables are important (and which are not) for 117 

distinguishing groups of samples. This type of information can be valuable to simplify the 118 

database or, in some cases, to reduce experimentation. 119 

 120 

The most popular unsupervised exploratory technique is based on the well-known principal 121 

components analysis (PCA) (Esbensen et al., 2009, Li Vigni et al., 2013). PCA generates 122 

new variables as a linear combination of the original variables. These new variables retain 123 

maximum information from the original data matrix and are called principal components 124 

(PCs). The first PC is the one that retains most explained variance (more data information) 125 
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while the second PC explains the information that is not modelled by the first PCs, and so 126 

on. When it is used as exploratory technique, the information from the two or three first PC’s 127 

are plot. So, sample and variable distribution are showed. Its main limitation is when the first 128 

PC´s do not contain enough information. 129 

 130 

Other exploratory techniques are cluster analysis (CA) (Lee et al., 2009), in which samples 131 

(or variables) are linked to others according to their similarity. Groups considering similarity 132 

values are defined. The main limitation of this technique is that it does not show the overall 133 

relationship between all the samples but only between the ones that are close together. 134 

Neither does it give any information about the relationship between samples and variables. 135 

On the other hand, it uses all the information contained in the data and can be considered 136 

to complement the PCA representation.  137 

 138 

As Table 1 shows, most authentication or adulteration studies use the PCA technique before 139 

applying a classification technique. Some studies also use cluster analysis techniques (Mir-140 

Marqués et al., 2016, Azevedo, M.S. et al. 2017). 141 

 142 

Some of the studies reviewed only present a PCA exploratory analysis, and interpret both 143 

the scores and the loading plot (Malheiro et al., 2013, Boggia et al., 2013, Üçüncüoğlu et 144 

al., 2013, Dahimi et al., 2014). For instance, PCA was used in the study of six fresh wild 145 

mushroom species for taxonomical and authentication purposes (Malheiro et al., 2013). The 146 

authors used the loading plot to identify the volatile secondary metabolites (11 volatile 147 

compounds out of forty-six) that characterize each mushroom species and which have 148 

highest power of discrimination. These compounds seem to play a crucial biomarker role in 149 

the characterization of the six wild species of mushrooms.  150 

 151 

Similarly, a screening method was proposed to detect pomegranate juice adulteration by the 152 

addition of cheaper fruit juices (i.e., grape and apple juices) or by dilution (Boggia et al., 153 

2013). PCA was performed as a preliminary data examination, and the score plots showed 154 

a satisfactory separation among the various juice categories. By analysing the loadings, the 155 

authors once again determined which variables were the most important for separating the 156 

various mixture compositions. In particular, PC1 points to dilution while both of the first two 157 

PCs point to the use of filler juice. 158 

 159 
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There are some works that only analyses the score plot. As an example, (Üçüncüoğlu et al., 160 

2013) the authors talk about the best PCA model, when in fact, they did not build a model 161 

at all; they just used the PC1/PC2 score plot to check whether the test samples were close 162 

to the predefined sample classes (butter, adulterated butter and margarine). It should be 163 

pointed out that unsupervised pattern recognition methods, such as PCA and cluster 164 

analysis must not be confused with classification methods (supervised pattern recognition). 165 

 166 

 167 

3. Classification techniques 168 

The type of binary response required by qualitative analysis (yes/no, belongs/does not 169 

belong, etc.) can be obtained by applying a classification technique. These techniques 170 

require classes (or categories) to be defined. Each class consists of a set of samples with a 171 

common property (i.e authentic sample) and different from the other classes (i.e. non 172 

authentic sample). All samples, from different classes, must be characterized by the same 173 

variables and then a classification rule is set. The final goal is to individually assign a 174 

unknown sample characterized by the same variables to one (or none) of the predefined 175 

classes. 176 

 177 

The classification techniques can be divided into two main blocks. One block is discriminant 178 

analysis (also referred to as ‘hard modelling’), which aims to divide data space up into 179 

separate regions, each of which corresponds to one class. The other main block focuses on 180 

class-modelling analysis (also known as ‘soft modelling’), which models each class 181 

independently (Marini, 2010). 182 

 183 

The main discriminant techniques are: linear discriminant analysis (LDA) and quadratic 184 

discriminant analysis (QDA); k nearest neighbours (KNN) and partial least squares 185 

discriminant analysis (PLS-DA). The main modelling techniques are: soft independent 186 

modelling of class analogy (SIMCA) and unequal dispersed classes (UNEQ). The theoretical 187 

basis of these techniques has been well explained in many scientific articles and recent 188 

books on chemometrics (Bevilacqua et al., 2013). Other techniques with more restricted 189 

applications are: support vector machines (SVM) (Majcher et al., 2015, Mu et al., 2016,), 190 

density-based methods (potential functions) (Oliveri et al., 2014) and artificial neural 191 

networks (Mu et al., 2016). In addition, some applications use techniques similar to the ones 192 

mentioned above (with the same theoretical basis) but with a slight variation. 193 
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 194 

Discriminant techniques required at least to classes and classify unknown samples in the 195 

closest class (i.e.  they are assigned to the class whose characteristics are most similar). 196 

Because all samples are assigned to a class, it is more difficult to detect outliers. Modelling 197 

techniques classify samples into just one class, in more than one or in none, so the result is 198 

sometimes ambiguous or inconclusive. In particular, class-modelling techniques make it 199 

possible to model only one class. One-class modelling is thus more useful when samples of 200 

only one class are available because it is impossible to cover all other areas (this may be 201 

the case of an authentication problem in which it is easy to characterize the “authentic” class, 202 

but the chance of samples being “non authentic” is almost impossible to cover all). 203 

 204 

Table 1 summarizes a series of studies that focus on classification techniques. They have 205 

been chosen in an attempt to be representative of the subject of this review and cover both 206 

authentication and adulteration applications. 207 

 208 

In food authentication problems, most of the studies revised deal with multi-category 209 

classification strategy. The class of interest and other classes that can potentially lead to 210 

fraud are defined. As examples, three classes (Benicarló, Valencia and Murcia) were 211 

defined to authenticate artichokes from a protected designation of origin (Mir-Marqués et al., 212 

2016). To differentiate rice varieties, eight classes were defined six types of rice and two 213 

types of wild rice (Zhu et al., 2015). To identify the geographical origin of sea cucumber, 214 

seven classes were stablished corresponding to seven areas in northern China (Zhang, X. 215 

Et al., 2017). 216 

 217 

Other studies use a two-category classification strategy (Bevilacqua et al., 2012, Chiesa, L. 218 

et al. 2016), which determines whether a sample is authentic – i.e., it comes from a particular 219 

brand, it was produced in a specific place-origin or with specific raw materials, it complies to 220 

what declared in the label, etc. – or not. By way of example, to authenticate samples of extra 221 

virgin olive oil from the PDO area of Sabina, one class was defined with samples from 222 

Sabina and another class with samples from other origins (other areas of Italy or 223 

Mediterranean countries) (Bevilacqua et al., 2012). Few cases have been found in which 224 

one-class-model is used in authentication problems (Oliveri, P. et al., 2014, Zhang, L. et al; 225 

2015).  226 

 227 
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In food adulteration problems, there are two main approaches. The two-class approach is 228 

implemented when the adulterant is known. Therefore, one class is defined for the 229 

adulterated samples and another for the unadulterated samples. Examples of the two-class 230 

strategy are the evaluation of contamination and degradation in infant formula (Inoue et al., 231 

2015) and the discrimination between authentic beefburgers and beefburgers adulterated 232 

with offal (Zhao et al., 2014). Various papers have used this strategy (López et al., 2014a, 233 

Xu et al., 2013a, Di Anibal et al., 2015).  234 

The one-class approach is implemented when the adulterant is not known and only the 235 

unadulterated class is defined. Although the one-class approach is not new, its application 236 

has recently been increase. It has been employed to detect melamine adulteration in milk 237 

(Chen et al., 2017), and distinguish a range of adulterants in kudzu starch, including four 238 

cheaper plant starches – namely, sweet potato, potato, maize and cassava starches – and 239 

a commonly used illegal whitening agent, talcum powder (Xu et al., 2015). One study 240 

analyses and compares the two strategies on the adulteration of hazelnut paste (López et 241 

al., 2014b). 242 

In some situations, it is known that more than one adulterant can be found in a sample. In 243 

these cases, a multi-class strategy is followed, in which, as well as the unadulterated class, 244 

there are as many other classes as adulterants. As example of this strategy, a class 245 

modelling approach is implemented to detect five common adulterants in raw milk. So, six 246 

classes are defined –unadulterated, hydrogen peroxide, sodium citrate, sodium carbonate, 247 

formaldehyde and starch – (De Souza Godim, 2017a).  248 

Although the main objective in some papers (Fadzlillah et al., 2013, Zhao et al., 2015, Mu 249 

et al., 2016, Santos et al., 2016) was qualitative in nature (i.e. to determine if a sample was 250 

adulterated or not) once the adulteration detection system had been developed, a 251 

multivariate regression method was also developed to determine the concentration of the 252 

adulterant.  253 

In recent works (Georgouli et al. 2017 and Amiry et al. 2017) the number of classes is 254 

established according to the adulterant concentration. This approach involves addressing a 255 

quantitative problem with tools of the qualitative multivariate analysis. 256 

Focusing on the instrumental techniques used, the most common ones are spectroscopic. 257 

Within the field of spectroscopy, one of the most widely used in the food industry is infrared 258 



9 
 

spectroscopy in its different regions (NIR, MIR, FTIR). Their advantages are that can analyse 259 

samples with little or no preparation, it is easy to use, it collects data quickly and it can be 260 

used as a fingerprint technique. Other spectroscopic techniques that are used quite often 261 

are ultra-violet (UV-Vis) (Sen et al., 2016, Boggia et al., 2013), fluorescence (Di Anibal et 262 

al., 2015, Mir-Marqués et al., 2016, Mu et al., 2016), Raman (Üçüncüoğlu et al., 2013, Zhao 263 

et al., 2015) and nuclear magnetic resonance (NMR) (Santos et al., 2016). To a lesser 264 

extent, element techniques such as inductively coupled plasma atomic emission 265 

spectrometry (ICP) (Ortea et al., 2015, Mir-Marqués et al., 2016), parameters such as the 266 

colour index (Sen et al., 2016) and isotope-ratio mass spectrometry (IRMS) (Ortea et al., 267 

2015) also appear in the referenced bibliography. More recently, chromatographic 268 

techniques – mainly gas chromatography (Malheiro, R. et al., 2013) with or without mass 269 

spectrometric detection – have been applied. Taking into account that nowadays many 270 

laboratories have a variety of analytical equipment, and they can obtain the instrumental 271 

signal quickly and easily, most of the studies (table 1) analysed more than one instrumental 272 

technique for a specific problem when spectroscopy data were used. 273 

As can be seen in table 1, the most common chemometric approaches use SIMCA and PLS-274 

DA classification techniques or some variation. SIMCA is a modelling classification 275 

technique in which each class is modelled independently from all others, in such a way that 276 

it can be applied to any strategy (from one-class to multi-class). In addition, information 277 

about the modelling power and discriminating power of variables can be obtained. On the 278 

other hand, PLS-DA is a discrimination technique based on the PLS regression technique 279 

adapted to a supervised classification task. Therefore, more than one class has to be defined 280 

(two-class or multi-class) and samples are always assigned to one class. Recently, a 281 

variation of the technique – one-class partial least squares (OCPLS) – has been developed 282 

for the one-class approach, although very few papers can be found. By way of example, 283 

OCPLS was used to detect adulterations in whole milk powder (Xu et al., 2013b, Chen et al. 284 

2017) and in starch (Xu et al., 2015).    285 

The choice of the most appropriate classification technique depends on many factors (class 286 

criteria definition, homogeneous sample distribution, number of input variables, number of 287 

samples, etc.). Therefore, it is common practice to apply more than one classification 288 

technique and evaluate their goodness for the problem under study. It should also be borne 289 

in mind that once the problem has been properly defined and samples characterized by 290 
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variables (samples are analysed), applying more than one classification technique has a 291 

minimum experimental cost. 292 

A wide variety of samples and analytes have been studied. Essentially, food authenticity 293 

involves conforming to the description provided by the producer or processor. So, any food 294 

(processed/natural) is susceptible to fraud in terms of their label specifications (geographic 295 

origin, PDO, etc.). In food adulteration problems, the options are more numerous because 296 

of the wide variety of food types and ingredients (compositional change by 297 

adding/subtracting, sample dilution, etc.). In most cases, food is adulterated for economic 298 

reasons, and the adulterant can be known in advance, i.e. spices are adulterated with 299 

forbidden Sudan dyes (Di Anibal et al., 2015).     300 

 301 

4. Data fusion 302 

At times, some problems can only be solved by using extra instrumental techniques that 303 

provide complementary information. Data fusion, is an approach to obtain a single result 304 

from more than one source. There are three types of data fusion: low-, mid- and high-level 305 

data fusion. The basis of each one are described in literature (Borràs et al., 2015, Marquez 306 

et al, 2016). 307 

Table 2 summarizes a series of studies about data fusion strategies in various food and 308 

quality control processes. Most of the applications addressed authentication problems and, 309 

to a lesser extent, adulteration.  310 

Initially, most of the applications involve fusing data blocks from two complementary 311 

techniques, but recently the fusion of data from three (Alamprese et al., 2013, Ulloa et al., 312 

2013, Erich et al., 2015, Forina el at., 2015, Borràs et al. 2016), four (Erich et al. 2015) and 313 

even five techniques (Biancolillo et al., 2014) has been described. In most cases, at least 314 

one of the fused techniques was spectroscopic, mainly IR vibrational spectroscopy (MIR, 315 

NIR) and, to a lesser extent Raman, NMR, UV-Vis and fluorescence. Also in most cases, 316 

fusion was done with physical–chemical parameters (Pizarro et al., 2013, Nunes et al., 317 

2016), or indexes (Ottavian et al., 2014, Chen et al., 2014) or without spectroscopic 318 

techniques, i.e. sensors (Chen et al., 2014, Haddi et al., 2014), electronic-tongue (Ulloa et 319 

al., 2013, Teye et al. 2015), isotope ratios (Monakhova et al., 2014, Erich et al., 2015), liquid 320 

chromatography (Bajoub et al. 2017, Obisesan et al. 2017), etc 321 
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 322 

All the papers reviewed compare the results obtained with the data fusion strategy with the 323 

ones obtained independently for each data block, and in almost all cases data fusion was 324 

superior. Just one case, the data fusion did not sufficiently improve the results obtained by 325 

a single technique (HS-MS) to classify one out of the six pre-defined classes (Borràs et al., 326 

2016).  327 

Most of them focus on mid-level data fusion and compare it to low-level data fusion. The 328 

comparison shows that mid-level data fusion generally gave better ability of classification 329 

than low-level data fusion. Just one paper (Nunes et al., 2016) reports better results with 330 

low-level data fusion. It should be taken into account that it is not feasible to implement low-331 

level data fusion when there are a very high number of variables if the chosen classification 332 

technique don’t allow to deal with. For instance, the high number of input variables prevented 333 

the LDA classification method from being used (Pizarro et al., 2013). Authors that 334 

implemented LDA with spectroscopic data, usually worked with the scores of the PCA 335 

(Pizarro et al., 2013, Erich et al., 2015, Forina et al., 2015). In this context, it should be 336 

pointed out that only low-level data fusion was implemented in two cases in which each data 337 

block had few variables. Five variables from a data block of tin oxide-based Taguchi Gas 338 

Sensors were fused with six variables from a data block of potentiometric sensors (Haddi et 339 

al., 2014). The amount of twelve rare earth elements were fused with the amount of fifteen 340 

trace elements for yellow split pea authentication (Drivelos et al., 2014). 341 

Dealing with very high dimensionality data makes it mandatory to select or reduce variables, 342 

so mid-level data fusion is the one to be chosen. To select the variables, there is quite a 343 

variety of methodologies, ranging from very simple ones such as the Fisher criterion (Ni et 344 

al., 2012, Alamprese et al., 2013) analysis of the variance (ANOVA) (Monakhova et al., 345 

2014, Erich et al., 2015) and basic statistics (Márquez et al., 2016) to more complex ones 346 

like stepwise decorrelation (Forina et al. 2015), wavelet transform (Wenjuan et al. 2017) and 347 

interval PLS (Wenjuan et al. 2017, Obisesan et al., 2017). To reduce, or compress, variables 348 

quite simple methodologies based on index calculations (Ulloa,  et al, 2013, Chen et al., 349 

2014, Ottavian  et al., 2014), and scores of the principal component decomposition (PCA) 350 

(Pizarro et al., 2013, Ulloa et al., 2013, Silvestri et al., 2014, Teye et al., 2015, Borràs et al. 351 

2016, Obisesan et al 2017) or of PLS decomposition (Biancolillo et al., 2014, Spiteri et al., 352 

2016, Nunes et al., 2016, Borràs et al. 2016, Bajoub et al. 2017) can be used alongside 353 

more complex ones such as the clustering of latent variables (CLV) (Monakhova et al., 2014, 354 
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Erich et al., 2015), PARAFAC loadings and the peak areas of MCR resolved components 355 

(Silvestri et al., 2014). 356 

Two studies (Márquez et al., 2016, Obisesan et al., 2017) compare the results of mid- and 357 

high-level data fusion. One feature of high–level fusion is that classification models do not 358 

have to be developed with exactly the same samples. This gives additional flexibility to high-359 

level fusion.  360 

Of the three levels of data fusion, low- and mid-level are the most commonly used. The 361 

choice between low- and mid-level, is mainly dependent on the number of variables to be 362 

fused. The main drawback of low-level data fusion is that the increase in information 363 

obtained by adding one or more blocks of data to describe the sample may not compensate 364 

for amount of irrelevant or spurious variance brought by the addition of the same blocks. 365 

When the number of variables is high, mid-level is the recommended one. The comparison 366 

shows that, mid-level data fusion generally has better classification abilities than high-level 367 

data fusion and high-level fusion is better than low-level. 368 

 369 

5. Multivariate qualitative method validation 370 

Nowadays, the validation protocols for qualitative methods are poorly developed. The main 371 

reference is the Commission Decision CD/657/EC, 2002. From it, efforts are being made to 372 

standardize guidelines and terminology (López et al., 2015). Figure 2 shows a proposal of 373 

the steps to be followed in the validation of multivariate qualitative methods. In addition, the 374 

performance parameters are indicated considering whether the model is for quantifiable or 375 

categorical sample property. 376 

To validate a method, a series of samples which are known to belong (or not) to the pre-377 

defined class/es are used. When it is possible, the data set is divided into training and test 378 

set considering that the division has to be representative in each class. Among several 379 

possibilities, randomly (Silvestri et al., 2014, Oliveri et al., 2014, Teye et al., 2015, Erich et 380 

al. 2015, Borràs et al. 2016, Obisesan et al., 2017), Kennard-stone algorithm (Ottavian et 381 

al., 2014, Nunes et al 2016, Wenjuan et al. 2017) or duplex (Biancolillo, et al., 2014, Silvestri 382 

et al., 2014), are the most implemented. It has to be emphasized that the number of objects 383 

used to build a classification model is often critical, since few objects cannot represent all 384 

the factors involved in class variability. 385 
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An alternative, is to use the whole data set as the training set using the cross-validation 386 

strategy. Cross-validation can be carried out through several strategies: contiguous blocks, 387 

leave-one-out, random subsets, cancelation groups, venetian blinds, among others.   388 

The output obtained when a sample is predicted is: belongs / does not belong to the class 389 

considered. Therefore, in comparison to its authentic membership, the result could be: true 390 

positive, false positive, true negative, false negative and inconclusive (not assigned or 391 

assigned to more than one class) (López et al., 2015, De Souza Godim, 2017a). 392 

Generally speaking, almost all the referenced papers validate (performance parameter 393 

estimation) in terms of assignation ability (or error), which give the ratio of properly (or 394 

wrongly) assigned samples for each class. (López et al., 2015).  395 

When the classification problem is to differentiate or discriminate among two or more 396 

categories, ability – or error – are calculated for each category and considering the whole 397 

data set without the categories (global ability). When they are calculated from the training 398 

set (classification abilities) could be too optimistic and sometimes seriously misleading since 399 

they are autopredictive. When they are calculated from the test set (prediction abilities) are 400 

more reliable for assessing the model quality.  401 

In some of the reviewed papers, multivariate performance parameters (either global or for a 402 

category) were also expressed as sensitivity and specificity values (Monakhova et al., 2014, 403 

Nunes et al. 2016, Borràs et al. 2016, Bajoub 2017). The sensitivity of a model is the 404 

percentage of the objects of a class accepted by the class model. The specificity is the 405 

percentage of the objects of the categories different from the modelled one rejected by the 406 

class model.  407 

It should be pointed out that sensitivity and specificity are closely related to ability values. If 408 

the one-class approach is used, these parameters are the same, but when at least two 409 

classes are modelled, these parameters are related but they are not strictly the same if some 410 

samples are classified to none of the categories, or to more than one category (inconclusive 411 

assignations) (Lopez et al., 2015). 412 

Some authors (López et al., 2014, Drivelos et al., 2014, Perez-Castaño et al., 2015) also 413 

present other related performance parameters – for example, Youden's index, likelihood 414 

ratio, efficiency, discriminant power, etc. – as a way of characterizing a qualitative 415 

multivariate model. In these three references, two categories are modelled (i.e. A and B) 416 
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with the classification results being positive (assigned to class A) and negative (assigned to 417 

class B). Therefore, these parameters were calculated from the contingency table obtained 418 

from the classification results. 419 

Finally, how other performance parameters, such as CC (decision limit), CCβ (detection 420 

capability), unreliability region, etc., which may be of interest in adulteration problems, are 421 

estimated is still not well established for multivariate qualitative methods. CCα is the 422 

concentration limit at which the qualitative method detects the contaminant (it is present) 423 

with a  error of stating that the contaminant is present when in fact it is not (false non-424 

compliant decision or false positive result). CCβ is the concentration limit at which the 425 

qualitative method detects the contaminant (it is present) with a  error of stating that the 426 

contaminant is not present when in fact it is (false compliant decision or false negative 427 

result). The unreliability region is defined by the two limits CC and CCβ. To estimate these 428 

parameters in multivariate methods, some authors (López et al., 2014, De Souza et al., 429 

2017b) propose the use of probability of detection (POD) curves, well known in univariate 430 

qualitative methods. 431 

 432 

6. Conclusions 433 

Multivariate qualitative methods are a good option for addressing problems of food fraud 434 

that cannot be solved with just one variable, either because the required response is 435 

complex in nature or because no single signal acts as an unambiguous marker. For food 436 

authentication, they are the only option and for food adulteration they are recommended 437 

when the adulterant is not known. 438 

The steps for conducting a multivariate qualitative analysis are well established and 439 

documented in the literature, although research is still being carried out in an attempt to seek 440 

improvements, either by experimenting with new data sources or developing new 441 

algorithms.  442 

The authentication and assessing non adulteration of foodstuff will benefit from advances in 443 

data fusion and the synergic information obtained from more than one technique. Since 444 

laboratories nowadays have a variety of analytical equipment, any data fusion strategy is a 445 

feasible way of dealing with qualitative analysis. Combining information from different 446 
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instrumental sources can improve the results but, depending on the problem and on the 447 

maximum permitted error, the improvement has to be carefully evaluated in term of cost-448 

benefit ratio. However, although spectroscopic measurements (most used ) are economical, 449 

measuring by more than one technique represents an additional cost.  450 

The validation stage still needs to be developed further and, in our opinion, this is where 451 

research efforts ought to lie. Validation involves establishing a set of measurable attributes 452 

(performance parameters) that define the method´s quality. Quantitative methods have been 453 

the subject of numerous studies, which have resulted in the production of international 454 

guidelines. By contrast, there is still no consensus about the validation protocol and the 455 

terminology used for qualitative methods. Such basic performance parameters as sensitivity 456 

and specificity are already being used but others like robustness, stability, detection limits 457 

and the unreliability region still require a great deal of work to be done.  458 
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Figure Captions 791 
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Fig. 1. Schematic overview of the whole process for multivariate qualitative method 793 

development and validation. 794 
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Fig. 2. Validation scheme of multivariate qualitative models and the performance 796 

parameters.  797 
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Table 1. Applications of 
multivariate exploratory and 
classification techniques in 
food fraud 

 
 
Authentication       

author/year goal sample classes 
instrumental 
Technique 

chemometric 
technique 

Azevedo, M.S. et al., 2017 geographical origin honey ………. GC-MS PCA, CA 

Bevilacqua, M. et al. 2012 PDO olive oil 2 MIR,NIR PLS-DA,SIMCA 

Binetti, G. et al., 2017 varieties olive oil 4 NIR, H-NMR, MEO 
par. 

PCA, ANN 

Bona, E. et al., 2017 geographical origin coffee 4 NIR, FTIR PCA, SVM 

Chiesa, L. et al. 2016 PDO lard 2 NIR/GC PLS-DA 

Dahimini, O. et al.; 2014 pig lard, beef tallow and chicken fat fats ……… DSC PCA 

Jimenez-Carvelo et al., 2017 type of vegetal oil oil 1,2 HPLC PCA, SVM, SIMCA 

Kalogiouri, N. P. et al., 2016 sample quality oil 2 LC-MS PLS-DA 

Majcher, M. et al, 2015 PDO cheese 4 SPME-MS PCA,LDA,SIMCA,SVM 

Malheiro, R. et al.; 2013 botanical species mushroom …………. GC-MS PCA 

Mir-Marqués, A. et al. ; 2016 PDO artichokes 3 ICP-OES, NIR , XRF PCA,CA,PLS-DA 

Oliveri, P. et al., 2014 varieties olives in brine 2 NIR PLS-DM 

Ortea, I. et al, 2015 geographical , production method 
and biological 

shrimps 9, 2 and 7 IR-MS, ICP-MS PCA,KNN,DA 

Sen, I. et al.; 2016 vintage year and variety wines 4 and 3 UV-VIS, physical 
parameters 

PCA, OPLS-DA, PLS-
DA 
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Serrano-Lourido, J. et 
al.2012 

geographical origin wines 3 HPLC PCA, PLS-DA 

Zhu, D et al, 2015 varieties rice 8 UPLC-HR-Q-TOF-
MS 

PCA,OPLS-DA 

Zhang, X. et al., 2017 geographical origin sea cucumber 7 IRMS, GC PCA, DA 

Adulteration      

author/year goal (adulterants) sample classes 
Instrumental 
Technique 

Chemometric 
thecnique 

Amiry, S. et al., 2017 direct and invert sugar syrup honey 6 DSC, refactometry, 
VIS,.. 

PCA/LDA 

Boggia, R. et al. 2013 type of fruit juices ……….. UV-VIS PCA 

 Chen,H. et al., 2017 melamine milk 1 NIR PCA, OCPLS 

Di Anibal, C. et al.; 2015 Sudan I spices 2 SF PLS-DA 

De Souza, C. et al; 2017  Formaldehyde, Hydrogen peroxide, 
Sodium carbonate, Sodium citrate, 

Starch 

milk 6 MIR PCA, SIMCA 

Fadzlillah,  N. et al., 2013 mutton fat Butter 2 FTIR DA 

Georguli, K. et al 2017 hazelnut oil virgin olive oil 10 and 4 Raman, FTIR LDA, CLPP 

Lopez, M.I et al., 2014 almond paste and chickpea flour hazelnut paste 2 and 2 NIR PCA,SIMCA 

Maia,M. et al, 2013 unspecific beewax 2 GC-MS CA, PCA, LDA 

Mu, T. et al.; 2016 worst vegetable oils extra virgin olive 
oil 

3 LIF PCA, SVM, ANN  

Santos, P. et al. 2016 water, whey, urea, hydrogen 
peroxide, synthetic urine 

and synthetic milk 

milk 2 H-NMR PCA,SIMCA,KNN 

Üçüncüoğlu, D. et al; 2013 margarine  bakery products ………………. NIR, Raman PCA  

Xu L. et al.; 2013 cassava, sweet potato, potato and 
maize starches 

lotus root powder 2 NIR SIMCA,PLSCM 

Xu, L. et al. 2013 edible and industrial gelatine powder 
and soy protein powder 

whole milk 
powder 

1 NIR OCPLS 
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Xu, L. et al. 2016 unspecific adulterants kudzu starch 1 NIR OCPLS 

Zhao M, et al., 2014 Beef Offal  beef burgers 2 MIR SIMCA,PLS-DA 

Zhao, M. et al; 2015 Beef Offal   beef burgers 2 DRS PCA,PLS-DA,SIMCA 

 
    

 

Abbreviations: 
Chemometric techniques: ANN, Artificial neural networks; CA, Cluster analysis; CBT, Classification binary trees; CDA, Canonical discriminant analysis; CLPP: Continuous locality preserving 
projections; CT, Classification  
Tree; DA, Discriminant analysis; KNN, K-nearest neighbour;   LDA, Linear discriminant analysis, OPLS, Orthogonal  partial least squares; OCPLS, One-class partial least squares; PLSCM, 
Partial least squares class model; 
PLS-DM, Partial least squares density modelling;  PLS-DA, Partial least square discriminant analysis; PCA, Principal component analysis; SIMCA, Soft independent modelling of class 
analogy; SVM, Support vector machines. 

Instrumental techniques: DSC, Differential scanning calorimetry; DRS, Dispersive Raman spectroscopy; FTIR, Fourier transform Infrared; GC–MS, Gas chromatography mass spectrometry; 
 H -NMR, Hydrogen magnetic nuclear resonance; HPLC, High performance liquid chromatography; ICP-MS Inductively coupled plasma mass spectrometry; ICP-OES, Inductively coupled 
plasma optical emission spectrometry.  
 IRMS, Isotope-ratio mass spectrometry; LIF, Laser induced fluorescence;  MEO_par, merceological parameters; MIR, Mid-infrared spectroscopy;  NIR, Near-infrared spectroscopy; P-NMR, 
Phosphor magnetic nuclear resonance; SF, Synchronous fluorescence;  
 SPM-MS, Solid phase micro extraction-mass spectrometry; UV-VIS, Ultraviolet and visible spectroscopy; UPLC-MS, Ultra performance liquid chromatography mass spectrometry; XRF, X-
ray fluorescence. 

Others:  PDO, Protected Designation of Origin. 
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 813 

 814 

 815 

Table 2. Examples of data fusion strategies in food authentication/adulteration problems. 816 

author/year sample category/analyte 
instrumental  

technique 
chemometric 

technique 
fusion level  

(variable selection) 
raw variables  

Alamprese C. et al., 2013 minced beef unadulterated,  
4 adulteration levels 

UV-Vis, NIR, MIR PCA, LDA, PLS mid (FC) 290, 1090, 
825 

Bajoub A. et al., 2017 olive oil 5 geographical origin HPLC-DAD, HPLC-FLD PCA, PLS-DA, 
SIMCA, KNN 

low, mid (PLS-DA 
scores) 

not specified 

Biancolillo A. et al., 2014 beer 2 quality (high, low)  TG, MIR, NIR, 
UV, Vis 

SIMCA, PLS-DA  low, mid (PLS-DA 
scores) 

817, 1650, 
3112, 165, 

441  
Borràs E. et al., 2016 olive oil 6 classes HS-MS, MIR, UV-Vis PLS-DA Low, mid (PLS-DA 

scores) 
301, 594, 701 

Chen Q. et al.,  2014 vinegar 4 ages (year) ISEs, RGB PCA, LDA  mid (C-index)  20, 3 

Drivelos S.A. et al., 2014 yellow split 
pea 

2 classes ICP-MS  
(rare earth, trace elements) 

OPA, MD, PLS-DA, 
KNN 

low 12, 15 

Erich S. et al., 2015 milk 2 classes H-NMR, C-NMR, GC-FID, 
IRMS 

PCA, LDA, FDA,  
PLS-DA 

mid (M-ANOVA, CLV) not specified, 
3 

Forina M. et al., 2015 olive oil 5 geographical origin HS-MS, NIR, UV-visible PCA, LDA,  
QDA-UNEQ 

mid (STEP-DA) 20, 1500, 810 

Haddi Z. et al., 2014 fruit juice 11 flavours  TGS, ISEs PCA, CA ,  
ARTMAP-NN  

low 5, 6 

Márquez C. et al., 2016 hazelnut unadulterated, 
 2 adulterants   

FT-Raman, NIR SIMCA high, mid (xdiff) 1510, 2166 

Monakhova Y.B. et al., 
2014 

wine  grape variety, 
geographical origin, 

vintage year 

H-NMR, IRMS PCA, LDA, PLS-DA, 
FDA, ICA, MBPLS-DA 

low, mid (M-ANOVA, 
CLV) 

869, 5 

Ni Y. et al., 2012 rhizome 
curcuma 

3 types GC-MS , HPLC-DAD PCA, LDA, BP-ANN, 
LS-SVM 

mid (FC) 27, 16 

Nunes K.M. et al., 2016 bovine meat unadulterated, 
 4 adulteration levels 

ATR-FTIR, Phy-Chem PCA, PLS-DA low, mid (VIPscores) 1803, 5 

Obisesan K.A. et al., 
2017 

palm oil 3 origin HPLC-DAD, HPLC-CAD PCA, PLS-DA high, mid (PCA, iPLS) 3436, 1609 
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Ottavian M. et al., 2014 Goatfish 2 classes (fresh, frozen)  NIR, RGB  PCA, PLS-DA mid (C-index)  401, 3 

Pizarro C. et al., 2013 olive oil 3 geographical origin UV, Phy-Chem PCA, LDA, PLS-DA low, mid (PCA) 206, 5 

Silvestri M. et al., 2014 wine 3 varieties H-NMR, EEM,  
HPLC-DAD 

PCA, PLS-DA,  
NPLS-DA 

mid (PCA, one-
PARAFAC, MCR-area) 

not specified  

Spiteri M. et al., 2016 honey 5 monofloral origins H-NMR, LC-HRMS-O MS, 
LC-HRMS-TOF MS  

PCA, PLS-DA low, mid (PCA, 
VIPscores) 

29380, 
58843, 1729 

Teye E. et al., 2015 cocoa bean  5 varieties NIR, ISEs PCA, SVM mid (PCA) 1557, 7 

Ulloa P.A. et al., 2013 honey 4 commercial brands 
(botanical origin) 

UV–Vis, NIR, 
e-tongue 

PCA, CA (KNN), 
MPCA  

low, mid (PCA, RII-
Index) 

201, 3348, 
252 

Wenjuan, S. et al., 2017 rhubarb 2 classes 
(official/unofficial) 

NIR, MIR PCA, PLS-DA, 
SIMCA, SVM, ANN 

low, mid (WT, iPLS) 700, 700  

 817 

Abbreviations:  818 

Instrumental techniques: ATR-FTIR, attenuated total reflectance Fourier transform infrared spectroscopy; CSA, colorimetric sensor arrays; C-NMR, carbon nuclear magnetic resonance spectroscopy; 819 
EEM, emission-excitation fluorescence spectroscopy; e-nose, non-selective chemical sensors; e-tongue, impedance electronic tongue; FT-Raman, fourier transform raman spectroscopy; GC, gas 820 
chromatography; GC-FID gas chromatography with FID detector; HPLC, high-performance liquid chromatography; H-NMR, proton nuclear magnetic resonance spectroscopy; HPLC–DAD, HPLC–diode 821 
array detector; HPLC-FLD, HPLC fluorescence detector; HS-MS, head-space mass spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry; IRMS, isotope ratio MS; ISEs, potentiometric 822 
chemical sensors or electronic tongue; LC-HRMS, liquid chromatography high resolution mass spectrometry; MIR, mid infrared spectroscopy; MS, mas spectroscopy or e-nose; NIR, near infrared 823 
spectroscopy; O MS, orbitrap mas spectroscopy detector; Phy-Chem, physico-chemical parameters; RGB, digital RGB image; SNIF-NMR, site-specific natural isotope fractionation – nuclear magnetic 824 
resonance; TG, thermogravimetry; TGS, gas sensor; TOF MS, time of flight MS; UV, ultraviolet spectroscopy; Vis, visible spectroscopy.  825 

Chemometrics techniques: ANN, artificial neural network; ARTAMAP NN, fuzzy ARTMAP neural network; BP-ANN, back propagation-artificial neural networks; CA, cluster analysis; CDA, canonical 826 
discriminant analysis; FDA, factorial discriminant analysis; ICA, independent components analysis; KNN, K-Nearest Neighbours; LDA, linear discriminant analysis; LS-SVM, least squares-support vector 827 
machine; MD, Mahalanobis distance; MBPLS-DA, multi-block extension of PLS-DA; MPCA, multi-way PCA; NPLS-DA, multilinear PLS-DA; PARAFAC, OPA, orthogonal projection analysis; parallel factor 828 
analysis; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; SIMCA, soft Independent modelling of class analogy; SVM, support vector machine; UNEQ-QDA, 829 
unequal-quadratic discriminant analysis.  830 

Variable selection: ANOVA, one-way variance analysis; CLV, clustering of latent variables; C-index, color-index; D-index, distance-index; FC, fisher weight criterion; iPLS, interval partial least squares; M-831 
ANOVA, multiway analysis of variance; MCR-area, peaks areas of multivariate curve resolution; one-PARAFAC, mode one PARAFAC loadings; PCA, principal components scores; RII-index, ratio of inter-832 
distance to intra-distance in the score space, SWD, stepwise decorrelation; STEP-LDA Stepwise-Linear Discriminant Analysis; SWS, stepwise selection; VIPscores, weighted sums of squares of the PLS 833 
weights; WT, wavelet transform. 834 
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