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Abstract: A Tm-doped mixed sesquioxide ceramic laser is mode-locked near 2 µm using 
InGaAsSb quantum-well semiconductor saturable absorber and chirped mirrors for dispersion 
compensation. Maximum average output power of 175 mW is achieved for a pulse duration 
of 230 fs at a repetition rate of 78.9 MHz with a 3% output coupler. Applying a 0.2% output 
coupler pulses as short as 63 fs are generated at 2.057 µm. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Thulium (Tm3+) based solid-state lasers generating ultrashort pulses in the eye-safe spectral 
region around 2 µm are currently actively investigated for potential applications in 
environmental monitoring [1] and material processing [2]. They have been already widely 
applied for frequency down-conversion into the mid-IR, as pump sources for synchronously 
pumped optical parametric oscillators [3]. As seeding sources for high power ultrafast 
amplifiers they are expected to play an important role also in high-harmonic and soft X-ray 
generation [4]. Bulk materials exhibit certain advantages over fibers [5] and few families of 
Tm3+-doped laser gain media have been successfully employed so far in passively mode-
locked bulk solid-state lasers emitting in the 2-µm spectral range. The monoclinic tungstates 
Tm:KLu(WO4)2 (KLuW) and Tm:MgWO4 (MgW), exhibiting large emission cross-sections 
and bandwidths, have been one of the most successful ones generating pulses as short as 141 
fs [6] and 86 fs [5]. However, in the quasi-3-level Tm-laser system what counts are the gain 
cross-sections and bandwidths. Another family known for their superior thermo-mechanical 
and thermo-optical properties are the cubic (C-type, bixbyite structure) rare-earth 
sesquioxides A2O3 (where A = Lu, Y, Sc). Employing a Tm:Sc2O3 crystal, 218 fs pulses were 
generated with an ion-implanted InGaAsSb-quantum-well based semiconductor saturable 
absorber mirror (SESAM) [7] and 166 fs by Kerr-lens mode-locking [8]. With Single-Walled 
Carbon Nanotube Saturable Absorbers (SWCNT-SAs) pulses as short as 175 fs were 
generated employing a Tm:Lu2O3 crystal [9]. Pulse durations as short as 105 fs were 
mentioned in a short report [10] employing the mixed LuScO3 crystal with the same SESAM 
as in [7], however, the optical spectrum exhibited a continuous-wave (CW) component. 

Due to the high melting point of the cubic A2O3 crystals (e.g. 2450°C for Lu2O3), their 
growth typically requires the use of expensive rhenium (Rh) crucibles and Rh could be the 
source of the observed crystal coloration [11]. The growth of large-volume highly Tm3+-
doped single crystals with high optical quality is complicated and the fabrication of 
transparent sesquioxide ceramics is a promising alternative. There are few reports on CW 
lasing of transparent Tm:Lu2O3 ceramics in different schemes including thin-disk lasers [12–
14]. Femtosecond lasers based on Tm:Lu2O3 ceramics have also been investigated: using 
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single-layer graphene for mode-locking resulted in pulse duration of ~410 fs [15] while 
SESAM mode-locking produced pulse durations as short as 180 fs [16]. 

Recently, we reported on fabrication, spectroscopy and CW laser operation of novel 
Tm3+:(Lu2/3Sc1/3)2O3 (shortly Tm:LuScO) mixed ceramics [17]. As a consequence of the 
compositional disorder (inhomogeneous spectral line broadening), mixed Tm:LuScO 
ceramics exhibit very broad absorption and emission bands [17] similar to the mixed single 
crystals [18]. Moreover, pumped by a laser diode at 802 nm, a Watt level Tm:LuScO ceramic 
micro-laser at 2.1 µm was demonstrated with a slope efficiency of 24% [17]. These promising 
spectroscopic features and laser performance motivated us to investigate passive mode-
locking of such Tm:LuScO ceramics. Here we report on the realization of this regime 
employing a SESAM and chirped mirrors (CMs) for dispersion management, setting a pulse 
duration record for a mode-locked bulk solid-state laser operating in the 2-µm spectral range. 

2. Tm:LuScO mixed ceramics 

High quality Tm:(Lu,Sc)2O3 ceramics were fabricated by the Hot Isostatic Pressing (HIP) 
sintering method using powders of Sc2O3, Lu2O3, and Tm2O3 (purity: 99.99%, Alfa Aesar). 
The raw materials, with a stoichiometric amount of 100 at. % Lu + Sc (taken in a proportion 
of Lu:Sc = 2:1, the only ratio for which good optical quality could be obtained) and 5 at. % 
Tm over it, were mixed uniformly by ball milling for 24 h, dried for 6 h at 70°C, sieved, dry-
pressed at 10 MPa, and cold isostatically pressed at 200 MPa. The green bodies of 
Tm:(Lu,Sc)2O3 ceramics were first pre-sintered at 1750°C for 10 h under vacuum (pressure, P 
< 10−3 Pa) to densify the preforms. For further densification, the pre-sintered ceramic samples 
were post-sintered by HIP at 1800°C for 2 h in an Ar atmosphere (P = 195 MPa) to eliminate 
the closed pores around the grain boundaries. Finally, the ceramics were annealed at 1500°C 
for 10 h in an O2 atmosphere to eliminate the oxygen vacancies and remove internal stresses. 
The composition of the ceramics can be represented as 4.76 at. % Tm:(Lu2/3Sc1/3)2O3 or 
shortly Tm:LuScO. Samples with a diameter of 15 mm and a thickness of 5 mm were 
obtained, see Fig. 1(a). For the laser experiments, a 2.95 mm thick active element was cut and 
its input and output surfaces (aperture ~3 × 3 mm2) were polished to laser-grade quality. 
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Fig. 1. (a) The fabricated 4.76 at.% Tm:LuScO mixed ceramic disks (laser-grade-polished) and 
(b) calculated gain cross section σgain for different inversion levels β of the Tm:LuScO mixed 
ceramic in the 2-µm spectral range. 

In order to estimate the potential spectral emission of the Tm:LuScO ceramics, the gain 
cross section σgain = βσe − (1−β)σa where σe and σa denote the emission and absorption cross 
sections, respectively, was calculated for several values of the population inversion parameter 
β, see Fig. 1(b) [17]. β is the ratio of the excited Tm3+-ions in the 3F4 manifold to the total 
Tm3+-ion density. All the Tm:LuScO ceramics cross sections are very similar to those of their 
single crystal counterparts [18]. Similar to the mixed crystals, the mixed ceramics exhibit 
smoother wavelength dependence compared with the single ceramics which is potentially 
advantageous for enhancing the mode-locked pulse bandwidth. For low inversion levels 
emission of the free running laser is expected above 2 µm. This is beneficial for femtosecond 
pulse generation because the strong water absorption below 1.95 µm is avoided. 
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3. Experimental setup 

The experimental setup of the Tm:LuScO ceramic laser shown in Fig. 2 was based on an X-
shaped cavity. A narrow-linewidth Ti:sapphire laser tuned to 0.795 µm was used for pumping 
in the absorption peak corresponding to the 3H6 → 3H4 transition. The single pass absorption 
amounted to ~74%. Note that this absorption band at 0.74-0.83 μm is rather broad (FWHM = 
25 nm) and thus suitable for AlGaAs laser diode pumping [17]. The pump beam was focused 
with a 70 mm lens. The Tm:LuScO ceramic sample was placed at Brewster angle between 
two dichroic folding mirrors M1 and M2 with a separation of ~100 mm. It was wrapped in In-
foil for good contact (4 lateral sides) with the water cooled (14°C) Cu-holder. 

 

Fig. 2. Scheme of the Tm:LuScO mixed ceramic laser (L: lens, M: dichroic mirror, CM: 
chirped mirror, OC: output coupler, r: radius of curvature, f: focal length). 

For CW tunable operation, a 3.2 mm thick quartz plate was inserted as a Lyot filter close 
to the wedged output coupler OC1 (transmission T = 1.5%). A plain mirror M3 was used as an 
end mirror in this case leading to a cavity length of ~150 cm. In the mode-locking 
experiments, 5 chirped mirrors (CM1-5) with a group-delay dispersion of GDD = −125 fs2 per 
bounce were used for intracavity dispersion management. This leads to a total GDD of −1250 
fs2 per round-trip. An InGaAsSb quantum-well based SESAM with 2 quantum-wells and 50 
nm thick cap layer design [19] served as an end mirror in this case leading to a cavity length 
of 190 cm. Output couplers OC2 with T = 3.0%, 1.5%, 0.5% and 0.2% were tested. 

4. Experimental results and discussion 

Smooth and continuous tuning from 1.978 to 2.108 µm was achieved with the 1.5% OC in the 
CW regime as shown in Fig. 3 for an absorbed power of Pabs = 1.09 W. The total CW tuning 
range of 130 nm is limited on the long-wave side by the mirror transmissions (3% for the 
OC). 
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Fig. 3. Tuning of the CW Tm:LuScO mixed ceramic laser with a Lyot filter and 1.5% OC. 

Mode-locking with the SESAM was self-starting and stable for hours without disruption 
during the daily operation with all the OCs. The performance applying different OCs was 
compared at a fixed incident power of 1.67 W (measured in front of L) corresponding to Pabs 
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~1.2 W. The non-collinear autocorrelation traces and the optical spectra of the mode-locked 
laser are shown in Fig. 4 and all relevant parameters are summarized in Table 1. The highest 
average output power of 175 mW was achieved with the 3.0% OC for a pulse duration of τ = 
230 fs (FWHM for a sech2-pulse shape), Fig. 4(a). The OCs with decreasing transmission 
enabled substantial pulse shortening albeit at the expense of the average output power. 
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Fig. 4. Autocorrelation traces (a, c, e and g) measured by type-I second-harmonic generation in 
a 3-mm thick β-BaB2O4 crystal and optical spectra (b, d, f and h) of the mode-locked 
Tm:LuScO mixed ceramic laser measured with a 0.5 nm resolution rotating grating 
spectrometer for different OCs. Blue lines indicate calculated round trip GDD of the chirped 
mirrors and the 0.2% OC reflectivity, in (b) and (h), respectively. 

Table 1. Mode-locking results with the Tm:LuScO ceramics laser with different OCs 
(Pout, average output power; τ, pulse duration; Δλ, spectra bandwidth as FWHM; TBP, 

time bandwidth product). 

OC 
Pout 

[mW] 
τ 

 [fs]
Δλ 

[nm] TBP 

3.0% 175 230 20.1 0.321 
1.5% 120 104 44.4 0.327 
0.5% 50 78 61.0 0.337 
0.2% 34 74 71.6 0.375 

0.2% (compressed)  63 71.6 0.320 

The shortest pulses with a FWHM of τ = 74 fs and ultimate stability were achieved using 
the 0.2% OC, at an average output power of 34 mW. No post- or pre-pulses were observed 
which was confirmed by a measurement in a longer (50 ps) time window. The spectrum was 
71.6 nm broad and centered at ~2.057 µm as shown in Fig. 4(h). The secondary peak at 
longer wavelengths is considered to be leakage through the OC whose transmission increases 
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to about 10% at 2.184 µm. The resulting time-bandwidth product (TBP) was 0.375, i.e. higher 
compared with the other OCs which yielded nearly transform-limited pulses. Thus a 3 mm 
thick ZnS plate (GDD = 462 fs2) was placed after OC2 as an extra-cavity compression 
element. The pulse could be compressed in this way to 63 fs which corresponds to ~9.2 
optical cycles. It is also important to point out that the SESAM applied in the experiment has 
a rather long relaxation time of ~20 ps [19]. Only picosecond or sub-picosecond pulses down 
to ~650 fs could be generated previously with such a SESAM [20,21]. This indicates that the 
Kerr effect plays an important role for the sub-100 fs operation in the present work. However, 
pure Kerr-lens mode-locking was not achieved with an end mirror instead of the SESAM. 

0.0 0.2 0.4 0.6 0.8 1.0

-80

-60

-40

-20

0

78.6 78.7 78.8 78.9 79.0 79.1

-100

-80

-60

-40

-20

0
RBW = 30 kHz

a

Frequency (GHz)

RF
 p

ow
er

 d
en

sit
y 

(d
B)

b

Frequency (MHz)

RBW = 100 Hz

RF
 p

ow
er

 d
en

sit
y 

(d
B)

78 dBc

 

Fig. 5. Radio frequency spectra of the SESAM mode-locked Tm:LuScO ceramic laser with the 
0.2% OC: (a) 1-GHz-wide span, (b) fundamental beat note (RBW: resolution bandwidth). 

To further characterize the stability of the mode-locked Tm:LuScO ceramic laser, the 
radio frequency (RF) spectra were measured. With different OCs the performance was similar 
and the results with 0.2% OC are shown in Fig. 5. The wide-span RF measurement with 
resolution bandwidth of 30 kHz in Fig. 5(a) shows almost constant harmonics intensity within 
the 1 GHz span range. The narrow-band fundamental beat note was at 78.9 MHz with a high 
extinction ratio of 78 dB above noise level as shown in Fig. 5(b), measured with a resolution 
bandwidth of 100 Hz. Both RF spectra indicate clean CW mode-locking without Q-switching 
instabilities or any multi-pulse behavior [22]. 

5. Conclusion 

In conclusion, sub-10 optical-cycle pulses were generated for the first time with a mode-
locked 2 µm bulk solid-state laser. A Tm:LuScO (4.76 at.% Tm:(Lu2/3Sc1/3)2O3) mixed 
ceramic laser passively mode-locked by a SESAM produced nearly transform-limited pulses 
as short as 63 fs at ~2.057 µm after careful optimization of the intracavity dispersion using 
chirped mirrors and minor extracavity compression in a lossless bulk material. The substantial 
pulse shortening achieved in comparison to previous work with sesquioxide crystalline or 
ceramic hosts is attributed to the flat and smooth gain spectra of Tm:LuScO mixed ceramics. 

Further possibilities for pulse shortening are seen in the optimization of the Lu2O3 and 
Sc2O3 mixing ratio and/or co-doping with Holmium for further spectral gain broadening. In 
such a way, we believe that there is still great potential for such mixed sesquioxide ceramic 
systems to generate sub-50 fs or even few-cycle pulses around 2 µm. 
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