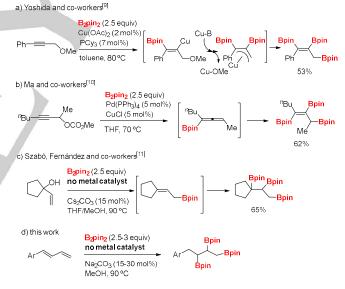
1,2,3-Triboration reaction of 1,3-dienes via transition metal-free one-pot hydroboration/diboration sequence

Elliot Davenport^[a,b] and Elena Fernández*^[a]

Dedication ((optional))

Abstract: 1,2,3-triborated compounds are prepared by simple nucleophilic borylation of activated 1,3-dienes, without assistance of metal catalysts. The reaction is successfully accomplished in a one pot 1,4-hydroboration/diboration sequence, with high yields for terminal 1,3-dienes and moderate values for internal 1,3-dienes. Selective functionalisation of the internal C-B bond of the 1,2,3-triborated compounds, through cross coupling with aryl iodides, highlights the powerful methodology toward polyfunctionalisation.

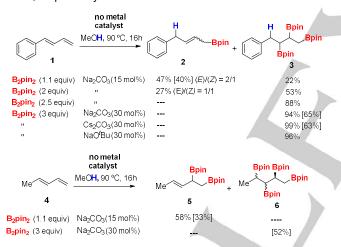

Triboration reactions have been much less studied than the corresponding hydroboration or diboration reactions, where the addition of H-B or B-B reagents to unsaturated substrates principally provides mono- and diborated products.^[1] However, access to triborated compounds significantly enhances the possibilities towards polyfunctionalisation, especially when stereoselectivity is being achieved. That is the case of 1,1,2triborated alkenes, mainly prepared by Pt-diboration^[2,3] or Irdehydrogenative diboration of alkynylboronates,[4] that further undergo stereoselective polyfunctionalization to tetrasubstituted alkenes by consecutive cross-coupling reactions. The synthesis 1,1,1-triborylalkanes, was first achieved by double of hydroboration of alkynylboronates,^[5] and more recently via Ir-, Co- or Ni-catalyzed triboration of terminal primary C(sp3)-H bonds.^[6,7] Chirik and co-workers have also developed an efficient Co-catalyzed sequential 1,1-diboration/hydroboration of terminal alkynes towards selective formation of 1,1,1-triborylalkanes.^[8]

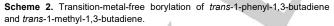
Introducing three vicinal boryl moieties in a one-pot protocol, represents a challenging reaction. The triboration of alkyne towards 1,2,3-triborated compounds has been accomplished by Yoshida and co-workers^[9] via Cu-PCy₃ catalysed borylcupration of phenyl 2-alkynyl methyl ether followed by σ -bond metathesis of the π -allyl copper intermediates (Scheme 1a). Alternatively, Ma and co-workers^[10] proved a highly selective 1,2,3-triboration of propargylic carbonates to generate (*E*)-propen-1,2,3-triboronates, by using two catalytic systems Pd(PPh₃)₄ and CuCl, and suggesting the formation of 1,2-allenyl boronate intermediates (Scheme 1b).

All the efforts devoted to introduce three C-B bonds in a onepot sequential reaction required transition metal complexes to activate the borane reagent and facilitate the addition to the

[a]	Dr. Elena Fernández, Mr. Elliot Davenport
	Department Química Física i Inorgànica
	University Rovira i Virgili
	Tarragona, Spain
	E-mail: mariaelena.fernandez@urv.cat
[b] -	Mr. Elliot Davenport
	Department Chemistry
	Edinburgh University
	Edinburgh, UK

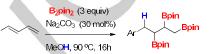
saturated or unsaturated substrates. Our group was the first to observe the possibility to conduct a triboration reaction in a transition-metal-free scenario, using allylic alcohols as substrates and conducting a one-pot allylic borylation/diboration sequence (Scheme 1c).^[11] The activation of the B₂pin₂ reagent was accomplished by the alkoxide formed from MeOH and base, that generates the Lewis acid-base adduct, [Hbase]*[MeO-B2pin2]* characteristic of a nucleophilic sp² boryl unit^[12] to promote the tandem performance (Scheme 1c). 1-Vinyl-1-cyclohexanol, 1vinyl-1-cyclopentanol and 1-vinyl-1-cyclobutanol were transformed into the corresponding 1,2,3-triborated products, in a one-pot sequence.[11] Since transition-metal-free borylations are gaining a representative space in the field of C-B bond formation,^[13] we explored here a new synthetic approach towards 1,2,3-triborated products from 1,3-dienes by the simple addition of B₂pin₂ and MeOH/base (Scheme 1d).

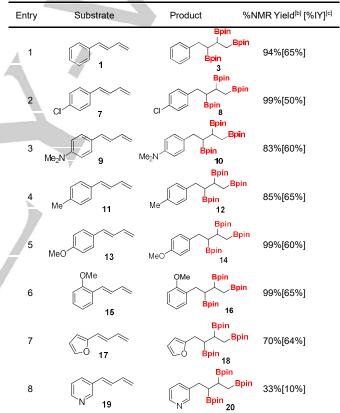



Scheme 1. Synthetic approaches towards 1,2,3-triborated compounds: a) Cu(II) catalyzed triboration of phenyl 2-alkynyl methyl ether, b) Pd(0)/Cu(I) cocatalyzed triboration of propargyl carbonates, c) transition metal-free triboration of allylic alcohols and d) alternative transition-metal-free triboration in this work.

Initial substrate evaluation was conducted with *trans*-1-phenyl-1,3-butadiene (1) and 1.1 equiv of B_2pin_2 in the presence of 15 mol% of Na₂CO₃ and MeOH as solvent (1 mL). The model reaction was carried out at 90°C and the analysis of the unpurified reaction mixture, by ¹H NMR spectroscopy, established 47% conversion towards the 1,4-hydroborated product **2** and 22% of triborated product **3** (Scheme 2). The purification of the allylboronate product **2** allowed its isolation in 40% with a (*E*)/(*Z*) ratio of 2/1, respectively. Remarkably, this is

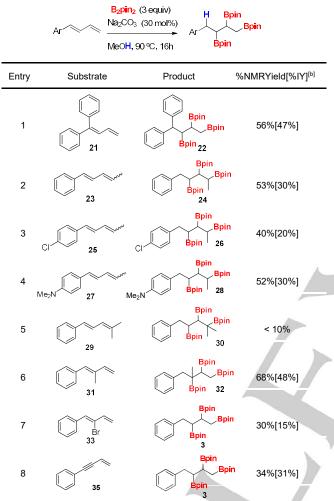
COMMUNICATION


the first attempt to borylate 1,3-dienes in a transition-metal-free context and the results seems to be complementary to Huang and co-workers' work,^[14] where the same substrate 1 underwent 1,4hydroboration with HBpin in the presence of iminopyridine Fe complexes, but forming principally the secondary (Z)allylboronate. The synthesis of primary (Z)-allylboronates from the 1,4-hydroboration of 1 has been carried out with Ni catalysts and HBpin^[15] or Cu catalysts and B₂pin₂.^[16] Under our transition-metalfree initial conditions, we explored the influence of the amount of B₂pin₂, as well as the base involved, and we found that by increasing the amount of diboron reagent to 3 equivalents, the triborated product 3 could be formed exclusively, probably due to the in situ transition-metal-free diboration of 2 towards 3 (Scheme 2). Despite the fact that other bases (Cs₂CO₃, NaO^tBu) worked similarly, we selected Na₂CO₃ to extend the study to other 1substituted 1,3-dienes. When trans-1-methyl-1,3-butadiene (4) reacted with 1.1 equiv of B₂pin₂ the 1,2-diboration of the terminal alkene took place instead, to form product 5 in 58% NMR yield, (33% isolated) (Scheme 2). However, the excess of B₂pin₂ favored the quantitative formation of 1,2,3,4-tetraborylated product 6, that could be isolated in 52% yield (Scheme 2). It seems that the competitive 1,2-diboration versus 1,4hydroboration is favored when there is no conjugation with the alkyl group,[17,18] in contrast to the Fe-Mg catalyzed 1,4hydroboration of 1-alkyl-substituted 1,3-dienes or 2-alkylsubstituted 1,3-dienes, observed by the groups of Huang and Ritter, respectively.[14,19]



Based on the optimized reaction conditions for the triboration of trans-1-phenyl 1,3-dienes with the Lewis acid-base adduct, [Hbase]⁺[MeO-B₂pin₂]⁻, we extended the study to a representative scope of trans-1-aryl-1,3-butadienes. Table 1 shows the range of aryl substituents that efficiently followed the sequential one-pot 1,4-hydroboration/diboration reaction, with exclusive formation of the 1,2,3-triborated product. The substrate (E)-1-(buta-1,3-dien-1-yl)-4-chlorobenzene (7) was quantitatively transformed into the corresponding triborated product 8 (Table 1, entry 2), whereas the electron rich substrates (E)-4-(buta-1,3-dien-1-yl)-N,Ndimethylaniline (9), (E)-1-(buta-1,3-dien-1-yl)-4-methylbenzene (11) and (E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (13) generated the triborated products 10, 12 and 14 in 80-99% NMR yield (Table 1, entries 3-5). For the ortho-substituted-aryl-1,3diene (*E*)-1-(buta-1,3-dien-1-yl)-2-methoxybenzene (**15**) the triboration reaction also proceed with high conversions (Table 1, entry 6). Substrates with furyl and pyridyl groups such as (*E*)-2-(buta-1,3-dien-1-yl)furan (**17**) and (*E*)-3-(buta-1,3-dien-1-yl)pyridine (**19**) could be moderately triborated (Table 1, entries 7, 8), although substrate **19** experimented some polymerization as a secondary reaction. Interestingly, two distinctive type of signals appeared in the ¹¹B NMR spectra of triborated products **18** and **20**. In particular, **18** showed signals at 33.5 ppm and 30.4 ppm presumably as a result of a plausible interaction between the closest Bpin unit and O, whereas product **20** had the expected signal at 34.4 ppm and another at 22.2 ppm, probably due to a stronger interaction between B and N.

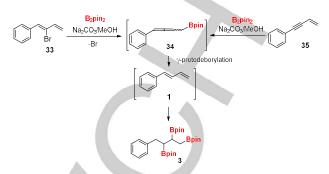
 Table 1. Transition-metal-free triboration of trans-1-aryl-1,3-butadienes, (E)-2-(buta-1,3-dien-1-yl)furan and (E)-3-(buta-1,3-dien-1-yl)pyridine.^[a]



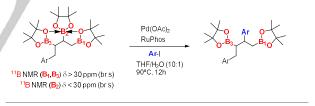
^[a]Reaction conditions: Substrate (0.2 mmol), B₂pin₂ (3 eq), Na₂CO₃ (30 mol%), MeOH (1 mL), 90°C, 16h. ^[b]% NMR yields calculated in ¹H NMR spectra with naphthalene as internal standard. ^[c][% Isolated yields].

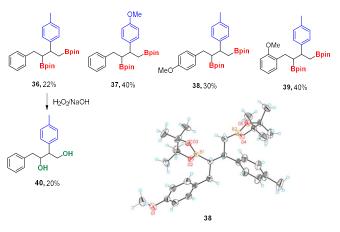
The more sterically hindered substrate buta-1,3-diene-1,1diyldibenzene (**21**) was triborated under the previous optimized reaction conditions. The expected 1,2,3-triborated product was formed in 56% but the ¹H NMR of the crude also showed the presence of 1,4-hydroborated (14%) and 1,2-hydroborated (15%) as byproducts (Table 2, entry 1). The more sterically hindrance in **21** might difficult the diboration from the 1,4-hydroborated intermediate. The internal 1,3-dienes (penta-1,3-dien-1yl)benzene (**23**), 1-chloro-4-(penta-1,3-dien-1-yl)benzene (**25**)

COMMUNICATION


and N,N-dimethyl-4-(penta-1,3-dien-1-yl)aniline (**27**) are triborated with less extension (substrate is still remained in the ¹H NMR of the crude) since the first nucleophilic borylation is sterically disfavored (Table 2, entries 2-4). From the previous results we expected no triboration of substrate (*E*)-(4-methylpenta-1,3-dien-1-yl)benzene (**29**), and in fact less than 10% was detected by ¹H NMR (Table 2, entry 5).

^[a]Reaction conditions: Substrate (0.2 mmol), B₂pin₂ (3 eq) Na₂CO₃ (30 mol%), MeOH (1 mL), 90°C, 16h; ^[b]%NMR yields, [%]solated yields]; ^[c]110°C


Interestingly, substrate (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene (**31**) could be efficiently converted to the desired product **32**, despite the methyl-substitution at the internal double bond (Table 2, entry 6). When the similar substrate (*Z*)-(2-bromobuta-1,3-dien-1-yl)benzene (**33**) was borylated, we observed as the unique product the triborated compound **3** (Table 2, entry 7). Its formation might be explained by the bromide elimination after the initial C-B formation, generating an allene intermediate (**34**) that could suffer γ -protodeborylation to form the model 1,3-diene **1** that is *in situ* triborated towards **3** (Scheme 3). In order to confirm the implication of the allene intermediate **34** in the reaction, we conducted the triboration of but-3-en-1-yn-1-ylbenzene (**35**) under the same reaction conditions (Scheme 3). This experiment allowed product **3** as the unique triborated product with similar


percentage as the triboration of **33** (Table 2, entry 8). The low yield might be due to the consumption of the diboron reagent along the sequential hydroboration of the original substrate, followed by hydroboration/diboration of the 1,3-diene intermediate.

Scheme 3. Transition-metal-free triboration of substrate (*Z*)-(2-bromobuta-1,3-dien-1-yl)benzene and but-3-en-1-yn-1-ylbenzene.

In order to explore a plausible polifunctionalisation of the 1,2,3triborated products, we conducted a straightforward cross coupling reaction of the model triborated product 3 with 1-iodo-4methylbenzene and, to our delight, we could observe that the internal C-B₂ bond from the 1,2,3-vicinal triborated specie reacted selectively to form the new C-C bond providing the compound 36 (Scheme 4). Similarly, 3 was transformed into the arylated product 37 when reacted with 1-iodo-4-methoxybenzene (Scheme 4). To the best of our knowledge, this is the first time that this type of 1,3diborated products have been prepared, and only the unsaturated version 2,4-diphenyl 1,3-bis(4,4,5,5-tetramethyl[1,3,2] dioxaborolan-2-yl)-buta-1Z,3E-diene was prepared through zirconocene-mediated reductive cyclization of alkynylboronates followed by treatment with acid.[20]

Scheme 4. Cross-coupling of 1,2,3-triborated products with 1-iodo-4methylbenzene and 1-iodo-4-methoxybenzene in the presence of Pd(OAc)₂/RuPhos, and in situ oxidation of 36. X-Ray Diffraction Data for compound 38.

COMMUNICATION

Surprisingly, in contrast to the functionalisation of the terminal C-B bond in 1,2-diborated vicinal products observed by Morken et al.,[21] in our hands the 1,2,3-triborated species allows a selective cross-coupling at the internal B2, under the same reaction conditions. It has been postulated^[21] that a vicinal boronate can assist the cross-coupling of organodiboron compounds when Pd(OAc)₂/RuPhos is being used as catalytic system, and in the triborated products the observation of two broad signals at the ¹¹B NMR spectra (> 30 ppm and < 30 ppm) might indicate that B_2 can be doubly assisted by the two vicinal boronates, and consequently that could be the reason for the exclusive cross-coupling at the internal position. The reaction has been extended to the crosscoupling between 1-iodo-4-methylbenzene and the 1,2,3triborated compounds 14 or 16, making the protocol general for para- and ortho- substituted aryl systems forming the desired products 38 and 39, respectively (Scheme 4). Product 38 could be full characterised by X-Ray diffraction. Following with the attempt to fully functionalize the triborated compounds, we proceeded towards the in situ oxidation of the diborated product 36, in the presence of H₂O₂/NaOH, forming the corresponding 1,3-butanediol 2,4-diaryl system 40 (Scheme 4).

In conclusion, we have been able to perform a direct 1,2,3triboration reaction in a transition metal-free context, by 1,4hydroboration of 1,3-dienes followed by in situ diboration reaction of the internal double bond. The reactions are carried out with quantitative conversion for terminal 1,2-dienes, and moderate yields for internal 1,3-dienes, with tolerance to heterofunctional groups. When the 1,2,3-triborated compounds were exposed to cross coupling conditions, only the internal C-B bond could be arylated in a selective way, as a plausible double assistance of the two vicinal boryl moieties. This is an unprecented access to 1,2,3-triborated compounds but also the fact that they can be exclusively functionalised makes this methodology of great applicability in synthetic organic purposes.

Experimental Section

Experimental Details can be found at the Supporting Information Document.

Acknowledgements

The present research was supported by the Spanish Ministerio de Economia y competitividad (MINECO) through project FEDER-CTQ2016-80328-P. We thank AllyChem for the gift of diboranes.

Keywords: triboration • 1,4-hydroboration • diboration • 1,2,3triborated products • 1,3-dienes

 a) E. C. Neeve, S. J. Geiger, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, *Chem. Rev.*, **2016**, *116*, 9091; b) J. Takaya, N. Iwasawa, ACS Catal., **2012**, *2*, 1993; c) J. F. Hartwig, *Chem. Soc. Rev.*, **2011**, *40*, 1992; d) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, *Chem. Rev.*, **2010**, *110*, 890; e) H. E. Burks, J. P. Morken, *Chem. Commun.*, **2007**, 4717.

- a) G. Lesley, P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W. Clegg, N. C. Norman, *Organometallics* 1996, *15*, 5137; b) H. Abu Ali, A. E. A. Al Quntar, I. Goldberg, M. Srebnik, *Organometallics* 2002, *21*, 4533.
- [3] K. Hyodo, M. Suetsugu, Y. Nishihara, *Org. Lett.* **2014**, *16*, 440.
- [4] C.-I. Lee, W.-C. Shih, J. Zhou, J. H. Reibenspies, O. V. Ozerov, Angew. Chem., Int. Ed. 2015, 54, 14003.
- [5] Y. Gu, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. 2001, 373.
- [6] T. Mita, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun., 2013, 49, 5601.
- [7] a) W. N. Palmer, J. V. Obligacion, I. Pappas, P. J. Chirik, J. Am. Chem. Soc., 2016, 138, 766; b) W. N. Palmer, C. Zarate, P. J. Chirik, J. Am. Chem. Soc., 2017, 139, 2589.
- [8] S. Krautwald, M. J. Bezdek, P. J. Chirik, J. Am. Chem. Soc., 2017, 139, 3868.
- [9] H. Yoshida, S. Kawashima, Y. Takemoto, K. Okada, J. Ohshita, K. Takaki, Angew. Chem. Int. Ed., 2012, 51, 235.
- [10] Z. Yang, T. Cao, Y. Han, W. Lin, Q. Liu, Y. Tang, Y. Zhai, M. Jia, W. Zhang, T. Zhu, S. Ma, *Chin. J. Chem.* **2017**, *35*, 1251.
- [11] N. Miralles, R. Alam, K. Szabó, E. Fernández, Angew. Chem. Int. Ed., 2016, 55, 4303.
- [12] J. Cid, H. Gulyás, J. J. Carbó, E. Fernández, Chem. Soc. Rev. 2012, 41, 3558
- [13] A. B. Cuenca, R. Shishido, H. Ito, E. Fernández, Chem. Soc. Rev. 2017, 46, 415.
- [14] Y. Cao, Y. Zhang, L. Zhang, D. Zhang, X. Leng, Z. Huang, Org. Chem. Front., 2014, 1,1101.
- [15] a) R. J. Ely, J. P. Morken, J. Am. Chem. Soc., 2010, 132, 2534; b) R. J.
 Ely,, Z. Yu, J. P. Morken, Tetrahedron Lett., 2015, 56, 3402.
- [16] K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Eur. J.* 2013, *19*, 7125.
- [17] M. Zaidlewicz, J. Meller, *Tetrahedron Lett.*, **1997**, 38, 7279.
- [18] Competitive copper catalyzed 1,2- versus 1,4-arylborylation: S. R. Sardini, M. K. Brown, J. Am. Chem. Soc., 2017, 139, 9823.
- [19] J. Y. Wu, B. Moreau, T. Ritter, J. Am. Chem. Soc., 2009, 131, 12915.
- [20] a) G. Desurmont, R. Klein, S. Uhlenbrock, L. Laloe, L. Deloux D. M. Giolando, J. M. Kim, S. Pereira, M. Srebnik M. Organometallics 1996, 15, 3323; b) A. Shibli, H. Abu Ali, I. Goldberg, M. Srebnik, Appl. Organomet. Chem., 2005, 19, 171.
- [21] S. N. Mlynarski, C. H. Schuster, J. P. Morken, Nature, 2014, 505, 386.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION

Text for Table of Contents

Author(s), Corresponding Author(s)*

Page No. – Page No.

Title

((Insert TOC Graphic here))

Layout 2:

COMMUNICATION

1,2,3-triborated compounds are prepared by simple nucleophilic borylation of activated 1,3-dienes, without assistance of metal catalysts. The reaction is successfully accomplished in a one pot 1,4-hydroboration/diboration sequence. Selective functionalisation of the internal C-B bond of the 1,2,3-triborated compounds, through cross coupling with aryl iodides, highlights the powerful methodology toward polyfunctionalisation

Elliot Davenport and Elena Fernández*

Page No. – Page No.

1,2,3-Triboration reaction of 1,3dienes via transition metal-free onepot hydroboration/diboration sequence