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SUMMARY

This paper presents a unified and exact non-averaged approach to derive a frequency-domain control-oriented

model for accurate prediction of the fast time-scale dynamics and performances of switching converters with fixed

frequency naturally sampled pulse width modulation and integrating feedback loop. Because the approach avoids

averaging and approximations related to this process, a very good accuracy of the derived model is obtained.

The main difference between the presented approach and the existing methodology for accurately predicting the

behavior of switching converters is that here we break the feedback loop and we focus on analyzing the open-

loop gain and the effect of the system parameters on relative stability. This results in an approach much similar to

control systems techniques rather than nonlinear dynamical system approaches. Consequently, the relative stability

is tackled easily in the frequency domain. In particular, by treating the modulator as a gain depending on the

operating point, the new model is formulated in such a way that standard control-oriented tools such as Bode

diagrams and root-loci can be easily used. Therefore, the proposed approach gives some important issues like gain
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and phase margins that are highly useful in controller design. It is noticed that the crossover frequency, gain and

phase margins predicted by using the averaged model may deviate significantly from the actual values given by

the proposed approach. The paper points out the sources of discrepancies and the theoretical results are validated

by simulations using a circuit-level switched model. Copyright c© 2017 John Wiley & Sons, Ltd.

KEY WORDS: Switching converters, PWM control, non-averaged modeling, control-oriented modeling, stability

analysis,

1. Introduction

Pulse Width Modulation (PWM) with natural sampling is the traditional technique for controlling DC-

DC switching converters and it consists in imposing the duration during which a switch is maintained

closed or open according to an appropriate compensated/filtered analog error signal by comparing

it with a repetitive triangular or saw-tooth periodic signal [1, 2]. High performance controllers for

switching converters can be strongly affected by the model accuracy. It is widely recognized that a

great variety of nonlinear phenomena can take place in DC-DC converters. These phenomena greatly

downgrade the performance of these systems and reduce their lifetime. For example, when a period

doubling bifurcation occurs the current ripple doubles and this increases the overall losses. Therefore,

the prediction of these phenomena as in [3–7] with the ultimate aim of their avoidance as in [8–17]

remains an important research topic.

The control loop of these systems is conventionally designed based on well-known linear techniques

after the linearization of the nonlinear averaged model [1]. This makes the controller design a relatively

easy task utilizing frequency-domain approaches such as Bode plots. However, the averaging approach,

widely used in industrial applications, although it can provide useful insights for the designer on the

system performance at the low frequency averaged dynamics, also leads to inaccurate conclusions

about the actual behavior of the switched system at the fast time-scale. It is well known that DC-DC

switching converters can exhibit instabilities at both the slow and the fast time-scale. While slow time-

scale low-frequency instabilities can be deeply analyzed and accurately predicted by using an averaged

approach like in [3], the fast time-scale instabilities such as those corresponding to subharmonic

oscillation are mainly due to the switching action which is destroyed by the averaging procedures.

Therefore, using the averaged model for controller design, the performances are only guaranteed

for the averaged dynamics and for a practical design they are a posteriori checked for the actual

switched converter at a final design stage mainly by performing extensive time consuming trial and
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error numerical simulations to verify that the response of the switched system matches to some extent

with the averaged one. It is worse, under large ripple conditions in the control signals, the averaged

models not only cannot predict correctly the fast time-scale behavior of switching converters but also

can inaccurately predict their DC steady-state value as reported in [18].

Extracting real converter dynamics taking into account the switching action lead to accurate

prediction of the system behavior [2, 19] and, in particular, predict faithfully the fast time-scale

dynamics of these systems. An analysis taking into account the switching action at the modeling

stage may offer an in-depth information about the dynamical behavior of the switched circuit and

can be used to predict the real behavior due to the switching action [?] because eliminating averaging

approximations improves the accuracy and extends the frequency range over which the model is valid.

In an attempt to extend the validity of the design-oriented averaging approach to high frequencies

using small-signal frequency domain models, an approach has been proposed in [20] consisting of

augmenting the dimension of the averaged model by taking into account the switching effects. Recent

results based on the describing function (DF) technique proved that the approach of [20] still fail

short in predicting the behavior of switching converters under ripple-based control strategies that use

the output voltage ripple in the fast loop [22]. Other more advanced small-signal models and their

equivalent circuit representations are also proposed in [23] based on a linearized DF method extending

the results obtained in peak Current Mode Control (CMC) in [20] to average CMC.

Using discrete-time modeling and Floquet theory, it was demonstrated recently in [4] that the

approach based on the DF models [23] is inaccurate for predicting the fast time-scale instabilities

such as subharmonic oscillation in switching converters under ripple-based Voltage Mode Control

(VMC) strategies. Under these circumstances, the use of average models is not justified when an

exact discretization of the system dynamics is possible although much more involved [2]. This exact

discretization lead to a model that circumvents all inaccuracies related to the approximation involved

in the averaging approach.

Some discrete-time models reported in the literature are obtained by discretizing the average model

and mapping the s plane to the z-domain using well known approximations such as Euler, bilinear,

zero-order hold and pole zero matching transformations [24–26] and, although they are control-

oriented models, they suffer from the the same inaccuracies inherited from the averaging process

and those from the s-to-z transformation. The discrete-time models obtained by directly sampling

the switched model are obtained using an exact discretization of this model [2, 27–33] are enough

accurate but, except for digitally controlled converters with uniformly sampled PWM [28,29,33], they

are of high level of abstraction to be appropriately used for design purposes. Hence, obtaining an
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optimal compromise between the accuracy and the control-oriented formulation is a real challenge. A

natural question, therefore, arises: can a non-averaged model which takes into account the switching

nonlinearity can be put into a control-oriented formulation for design and stability analysis like when

the problem is addressed using the average approach? In this paper, we will show that the response to

this question is affirmative.

Early developments along this line of research were reported for a boost converter by performing

some approximations justified by the nature of the waveforms in this specific topology and the control

used [2, 30, 32]. Simplified versions of DC-DC power converters that are obtained by removing the

storing capacitors on the output circuits have been studied in [33]. In [34] a first-order current mode

controlled buck converter is analyzed using a root-locus approach. The assumptions made in [30]

allow to linearize the matrix exponentials and this is applicable also to the buck LED driver studied

in [34] and the first-order buck and boost converters considered in [33]. In [35] the authors propose

an approximate current discrete-time model for a digitally controlled multi-loop buck converter which

achieves higher accuracy than the conventional averaged model at the fast time-scale.

The purpose of this paper is to present a general framework to extract small-signal control-oriented

z-domain model of switching converters for accurate prediction of their dynamics and performances at

the fast time-scale. The approach has a starting point an exact discretization of the state variables [2,33].

Hence, the model can be used for practical design to meet the system stability requirements while

maximizing the bandwidth of the system thus and optimizing the fast controllers design. Unlike many

existing models in the literature dealing with accurate prediction of switching converters based on

non-averaging procedures [4, 19, 36–39], here we break the feedback loop and we focus on analyzing

the open-loop gain and the effect of the system parameters on relative stability. As a consequence,

the integral loop widely used in the output feedback to get zero static error, is separated from the rest

of dynamics hence avoiding many singularity problems appearing in the expressions of the system

trajectories and their steady-state values [5,6]. Using the obtained model, the relative stability analysis

and the controller design of the DC-DC switching converter taking into account its switching nature

can be addressed with a relative ease and without any singularity problem. The results are presented in

a way to be control-oriented to facilitate parameter tuning using standard techniques such as root-locus

and bode plots. The approach of this paper can be applied to any switching converter topology under

both CMC and VMC. An example illustrate the different steps of the modeling while comparing the

results from the new approach with those obtained from the conventional averaged model, pointing

out the sources of discrepancies and validating the theoretical results by simulations using a detailed

circuit-level switched model.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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The rest of the paper is organized as follows. Section 2 revisits the unified open-loop piecewise linear

switched model representation of switching regulators. Section 3 presents a review of their discrete-

time modeling, the steady-state values of the state variables and the duty cycle in terms of the system

parameters keeping in mind the previously mentioned separation between the integral variable and

the rest of state variables. Section 4 presents the corresponding small-signal model in the vicinity of

the operating point. From the previous model, the system loop gain is derived in Section 5. Taking a

buck DC-DC converter under VMC with fixed frequency and natural sampling PWM as an example, a

validation of the approach is given in Section 6 using control-oriented plots such as the Bode diagram

and root-locus and a comparison is given with the averaged model highlighting the deficiencies of the

last one in correctly predicting the behavior of the system at the fast-scale. Finally conclusions are

drawn in the last section.

2. Unified open-loop piecewise linear models of switching regulators with an integrating feedback

loop

2.1. The open-loop continuous time switched model

The dynamics of a DC-DC switching regulator can be described by a state-space model that can be

written in the following form [5]:

ẋ(t) = A1x(t) + B1w for u = 1, (1a)

ẋ(t) = A0x(t) + B0w for u = 0, (1b)

v̇i(t) = vr − y. (1c)

where x is the vector of non-integral state variables, A0 ∈ RN×N , A1 ∈ RN×N , B0 ∈ RN×p and

B1 ∈ RN×p are the system state matrices and w ∈ Rp is the vector of the external parameters of the

plant and/or the controller supposed to be constant within a switching cycle. The signal u in the model

(1a)-(1b) is the driving signal which is generated by the PWM process to be described later. Eq. 1c

describes the integrating feedback loop and the variable vi in this equation stands for the integral of the

sensed outer error signal vr − y, where y = Cx is a suitable output variable, vr is its desired reference

and C is row vector with appropriate dimension. The first differential equations for the system exclude

the integral variable throughout. As commented previously, this variable was deliberately separated

from the rest of state variables in the vector x to avoid some matrix singularity problems [5, 6].

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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2.2. The continuous-time switching condition dictated by the PWM

The driving signal u of the main switch is the result of comparing cyclically a control signal vcon

depending on the state variables and a T−periodic ramp signal vramp together with additional logic

rules dictated by a set-reset latch and a clock signal to force a single switching per cycle. Some VMC

implementations do not use a latch [36,38] but the approach presented here is still valid for these cases

provided that the T−periodic orbit is characterized by one and only one switching within the period T .

Therefore any non-smooth instabilities due to multiple pulsing during one switching period or border-

collision bifurcations due to non presence of pulsing during one switching period are excluded from

the analysis presented in this paper.

In Trailing Edge Modulation (TEM) strategies, the state of the main switch is forced to be ON (u = 1)

at the beginning of each switching period and it is turned OFF (u = 0) whenever the control signal vcon

and the ramp signal vramp intersect. The previous logic is inverted in Leading Edge Modulation (LEM)

strategies. Hereinafter, let us focus our study on TEM strategies and hence the ratio of the first interval

duration to the complete period (nT, (n + 1)T ), (n ∈ N) is the duty cycle d[n] of the square wave

signal u in that period. This variable is dictated cyclically by the following switching condition that

completes the model given in (1a)-(1c):

vcon(t) = vramp(t). (2)

The variables vcon and vramp stand for the control and the ramp signals that can be expressed by:

vcon(t) = κ(vr −Cx(t)) +Wivi(t) (3a)

vramp(t) = Vl +ma(tmod T ) (3b)

where κ and Wi are suitable proportional and integral gains, Vl is the lower value of the ramp signal,

ma = VM/T is its slope, VM is its amplitude and T is its period. The ramp voltage can be used either

for modulation or for slope compensation. For instance, in conventional VMC, the ramp is used for

modulation [7,19, 36, 38] while in CMC and in ripple-based VMC, it is used for compensation [4, 26].

3. Review of discrete-time modeling of switching converters under PWM and an integrating feedback

loop

3.1. Closed-form solution of the state variables

Our starting point is the discrete-time representation of a switching converter which is detailed in [2].

However, the integral variable is separated from the rest of dynamics hence avoiding many singularity
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problems appearing in the expressions of the system trajectories and their steady-state values [5, 6].

Since the state equations between the switching events are linear we can use the exact analytical

solution to express the value of the state vector at the end of a switching cycle in terms of its value

at the beginning of that cycle. By integrating (1a)-(1b), the trajectory x(t) of the system at time instant

t starting from an initial condition x(t0) at time instant t0 can be expressed as follows:

x(t) = φu(t− t0)x(t0) + ψuBuw (4)

where φu(t) and ψu(t) are defined by:

φu(t) = eAut and ψu(t) = A−1
u (eAut − I) (5)

Although ideally, the matrix A1 for some converter topologies, like boost, Ćuk, SEPIC and flyback is

singular, the parasitic resistances in the reactive components render this matrix invertible. This will not

be the case, however, if the integral variable was included in the vector x.

By taking t0 = nT (n ∈ N) and denoting x[n] = x(nT ), the mapping of the system described by

the state equations given in (1a)-(1b) can be written in the following form [2]:

x[n+ 1] := P(x[n], d[n])

= Φ(d[n])x[n] + Ψ(d[n]) (6)

where Φ(d[n]) and Ψ(d[n]) are given by:

Φ(d[n]) := φ0((1− d[n])T )φ1(d[n]T ) (7a)

Ψ(d[n]) := φ0((1− d[n])T )ψ1(d[n]T )B1w + ψ0(d[n]T )B0w (7b)

According to (1c), the equation describing the error dynamics is given by:

v̇i = vr −Cx (8)

By integrating (8) one obtains the following expression for the integral of the error vi(t):

vi(t) = vi(t0) + (t− t0)vr −C

∫ t

t0

x(t)dτ (9)

Let vi[n] be the integral of the error signal at the beginning of each switching period (at nT ). The value

of this variable at the time instants (n+ d[n])T and (n+ 1)T can therefore be expressed by:

vi[n+ d[n]] = vi[n] + d[n]Tvr −CI1[n] (10a)

vi[n+ 1] = vi[n+ d[n]] + (1− d[n])Tvr −CI0[n] (10b)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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where I1[n] and I0[n] are two integral vectors given by:

I1[n] =

∫ (n+d[n])T

nT

(φ1(t− nT )xn + ψ1(t− nT )B1w)dt (11a)

I0[n] =

∫ (n+1)T

(n+d[n])T

(φ0(t− (n+ d[n])T )(φ1(d[n]T )xn + ψ1(d[n]T )B1w)

+ ψ1(t− (n+ d[n])T )B0w)dt (11b)

Eqs. (10a)-(10b) define the mapping Pi corresponding to the integral variable vi. This mapping can

be expressed as follows:

vi[n+ 1] := Pi(x[n], vi[n], d[n])

= vi[n] + T (vr − yavg[n]) (12)

where yavg[n] is the moving average of the output variable y which is given by:

yavg[n] =
1

T

∫ (n+1)T

nT

y(t)dt =
1

T
C(I1[n] + I0[n]) (13)

The complete model in the discrete-time domain can be obtained by combining (7b) and (12) taking

into account (11a)-(11b) and (13).

As mentioned previously, the duty cycle d[n] is imposed by the PWM process cycle by cycle. The

feedback loop together with the PWM process imposes the following constraint between the duty cycle

d[n], the state vector x[n+ d[n]] and the integral variable vi[n+ d[n]]:

σ(x[n+ d[n]], d[n]) := vcon[n+ d[n]]− vramp[n+ d[n]] = 0 (14)

where, according to (3a)-(3b), vcon[n+ d[n]] and vramp[n+ d[n]] can be expressed as follows:

vcon[n+ d[n]] = κ(vr −Cx[n+ d[n]]) +Wivi[n+ d[n]] (15a)

vramp[n+ d[n]] = Vl +mad[n]T (15b)

The constraint given in (14) is nonlinear in d[n] and it is responsible for many nonlinear phenomena

that takes place in switching converters under PWM.

3.2. The fundamental steady-state periodic response of the system

In this subsection, let D be the steady-state duty cycle d[n] and let D = 1 − D. Let us define

Φ1 = eA1DT , Φ0 = eA0(1−D)T , Ψ1 = A−1
1 (eA1DT − I)−1 and Ψ0 = A−1

0 (eA0DT − I)−1.

Let Φ = Φ1Φ0, Ψ = Φ1Ψ0B0w + Ψ1B1w and Φ = Φ0Φ1, Ψ = Φ0Ψ1B1w + Ψ0B0w.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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Let x(0) and x(DT ) be the steady-state values of the vector x at the starting of the switching period

and at the time instant DT respectively. By enforcing periodicity in steady-state regime, x(0) and

x(DT ) can be obtained and they are given by:

x(0) = (I−Φ)−1Ψ (16a)

x(DT ) = (I−Φ)−1Ψ (16b)

where the matrix (I−Φ) and I−Φ are nonsingular since the integral variable was separated from the

rest of state variables within the vector x. Note that if the integral variable vi was included in the state

vector x, the previous matrices will be singular and their inverse will not exist.

A necessary condition for the system to have a periodic orbit in steady-state is that vi[n] =

vi[n + 1] = vi[∞], where vi[∞] is the steady-state value of vi[n]. Therefore, according to (12), the

following equality must hold in steady-state:

yavg[∞] = vr (17)

In turn, the steady-state average value yavg[∞] is the constant term (DC component) of y(t) and can be

obtained using the averaged model. This establishes the following relationship between the steady-state

duty cycle D and yavg[∞]:

yavg[∞] = −C(A1D + A0D)−1(B1D + B0D)w (18)

As commented in [5, 6], the steady-state value D can be obtained from the previous equation once

all the matrices and the parameters of the system are specified and there is no need to obtain it using

numerical root-finding algorithms such as in previous studies like [4,19,36,38,39]. OnceD is obtained,

the steady-state state vector x(0) and x(DT ) are straightforward from (16a) and (16b) respectively.

4. Control-oriented discrete-time modeling of a switching regulator

Let us define the deviations x̂[n], d̂[n] and ŷ[n] from their respective steady-state values x(0), D and

y(0) in such a way that:

x[n] = x(0) + x̂[n], d[n] = D + d̂[n], y[n] = y(0) + ŷ[n] (19)

Let us assume that these deviations are much smaller than their corresponding steady-state values,

i.e, x̂[n] � x(0), d̂[n] � D and ŷ[n] � y(0). Then, higher order terms can be neglected and by

linearizing (6), (12) and (14), the small-signal model of a switching regulator can be conveniently
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x̂[n+ 1] = Jxx̂[n] + Jdd̂n
d̂[n] x̂[n]

PWM gain

Hm

v̂con

WiJi

z−1

+

K

Figure 1. Equivalent block diagram of a switching DC-DC regulator under a naturally sampled fixed frequency

PWM control strategy..

written in a control-oriented form as follows:

x̂[n+ 1] = Φx̂[n] + Jdd̂[n], (20a)

v̂o,n = Cx̂[n], (20b)

v̂i[n+ 1] = Jix̂[n] + v̂i[n], (20c)

v̂con[n+ d[n]] = −Kx̂[n] +Wiv̂i[n], (20d)

d̂n = Hmv̂con[n+ d[n]]. (20e)

where Jd, Ji, K and Hm are given by the following expressions:

Jd =
∂P

∂d
= T (Φ0(A1 −A0)x(DT ) + (B1 −B0)w), (21a)

Ji =
∂Pi
∂x

= −C(Ψ1 + Ψ0Φ1), (21b)

K = C(κΦ1 +WiΨ1), (21c)

Hm =
1

T (κC(A1x(DT ) + B1w)−Wi(vref −Cx(DT )) +ma)
. (21d)

An equivalent block diagram of the previous model, first proposed in [40] without taking into account

the integral variable, is depicted in Fig. 1.

It is worth to note that (20d) describes the effect of a small perturbation in the control voltage vcon

at time instant d[n]T onto the duty cycle d[n], and therefore Hm stands for the discrete-time PWM

small-signal gain.

Remark 1: Conventionally, using the averaged model, the modulator gain is a constant equal to

the reciprocal of the modulator ramp signal amplitude VM . It has been widely believed for many

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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decades that in VMC with naturally sampling switching frequency, the modulator transfer function

has no dependence of the switching frequency. One can observe in (21d) that if the control signal

has negligible switching ripple in such a way that κC(A1x(t) + B1w)(x(DT )) ≈ 0 and because

Cx(DT ) ≈ vr, the expression of the modulator gain can be simplified as Hm ≈ 1/(Tma) = 1/VM

which is the expression used in the averaged model [1].

Remark 2: The gain Hm in (21d) is not constant and it depends on the steady-state operating duty

cycle D. In particular it depends on the slope −κC(A1x(DT ) + B1w) of the control voltage vcon

evaluated at the time instant DT . If this slope monotonically increases with the steady-state duty cycle

D like in CMC and in ripple-based VMC schemes, Hm is monotonically increasing with D reaching

its maximum value at D = 1 and its minimum value at D = 0. However, in buck converters under a

conventional VMC strategy, the slope of vcon at time instant DT , is a convex function of D and the

gain Hm inherits the same shape.

Remark 3: The gainHm in (21d) is not exactly the complete PWM modulator transfer function since a

term is missing in the expression of Hm and which is included in the expression of the feedback vector

K.

5. The system loop gain in the z-domain

Supposing zero initial conditions and performing z-transform in (20a) and (20b), the d̂-to-v̂o transfer

function can be expressed as follows:

Hp(z) :=
v̂o(z)

d̂(z)
=

Cadj(zI−Φ)Jd
det(zI−Φ)

=
det(zI−Φ + JdC)− det(zI−Φ)

det(zI−Φ)
(22)

According to (20c), the transfer function Hi(z) of the analog integrator can be obtained from the

following expression relating the z-transform of the integral variable vi to the z-transform of the rest

of the state variables x:

Vi(z) =
Ji

z − 1
X(z) (23)

where Vi(z) and X(z) are the z-transform of vi[n] and x[n] respectively. The transfer function between

the vector state variables x and the control signal vcon in the z-domain can be derived by combining

(20d) with (23) hence obtaining:

Vcon(z) = (−K +
Wi

z − 1
Ji)X(z) (24)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 00:1–21
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where Vcon(z) is the z-transform of vcon[n+ d[n]]. Taking into account (20c) and (20d), the d̂-to-v̂con

transfer function (total loop gain L(z) by excluding Hm) can be expressed in the z-domain as follows:
v̂con(z)

d̂(z)
:= L(z) = (−K +

Wi

z − 1
Ji)

adj(zI−Φ)

det(zI−Φ)
Jd (25)

Therefore, L(z) can be expressed in the following form:

L(z) =
∆1 −∆2

(z − 1)∆2
(26)

where ∆1 and ∆2 are given by the following expressions:

∆1 = det(zI−Φ + (WiJi − (z − 1)K)Jd) (27a)

∆2 = det(zI−Φ) (27b)

The open-loop zeros and poles can be straightforwardly calculated from the total loop gain in (26)

and these can be used for controller-design. In particular one can note that in the z-domain the integrator

introduces an open-loop pole at 1 and that the remaining open-loop poles can be obtained by solving

the equation det(zI − Φ) = 0 either analytically for low-order converters or using CAD tools such

as Matlab c© for high-order converters. The closed-loop poles of the system can be obtained from the

following characteristic equation [41]:

1 +HmL(z) = 0 (28)

This is a control-oriented characteristic equation like in digital control systems [41] and can be used

for designing the feedback of the switching converter by considering Hm as a proportional gain for the

total loop L(z). It should be noted that the gain Hm is a static gain but it depends, among others, on

the operating point.

6. Example: A buck converter under analog PI VMC with fixed frequency naturally sampled PWM

6.1. System description

Fig. 2 shows the circuit diagram of a buck DC-DC converter under PI VMC. For simplicity, the voltage

loop is closed by a simple PI controller whose transfer function can be expressed as follows:

Hc(s) = κ

(
1 +

1

τis

)
(29)

where, according to Fig. 2, κ = R2/R1 is a suitable proportional feedback gain and τi = R2Ci is

the integrator time constant (Wi = R2/(R1τi) is the integrator gain). The approach can be applied to

more practical controllers of buck converters such as the type-III compensator [7].
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−
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Figure 2. Circuit diagram of a DC-DC buck converter under analog PI VMC with fixed frequency naturally

sampled PWM.

6.2. The continuous-time piecewise linear switched model

Let vC be the voltage of the output capacitor and iL the inductor current. By applying KVL to the

power stage we obtain the following set of differential equations:
dvC
dt

= −α vC
RC

+ α
iL
C
, (30a)

diL
dt

= −αvC
L
− αrC + rL

L
iL +

vs
L
u, (30b)

where α = R/(R+ rC), C is the capacitance of the output capacitor with ESR rC , L is the inductance

of the inductor with winding resistance rL, R is the load resistance, vs is the input source voltage. All

these parameters can be identified in the schematic circuit diagram of Fig. 2. The output voltage vo

applied to the load R can be expressed as follows:

vo = α(vC + rCiL) (31)

Note that with an ideal capacitor, rC = 0, then α = 1 and vo = vC . Let x = (vC , iL)ᵀ be the vector

of the state variables by excluding the integral variable. Let C = α(1, rC). The matrices A1, A0, B1,

B0 and the external input vector w are given by:

A1 = A0 = A =

 − α

RC

α

C

−α
L

−αrC + rL
L

 , (32a)

B1 = B =

 0
1

L

 , B0 = 0, w = vs (32b)
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The open-loop poles of the system in the continuous-time domain are the eigenvalues of the matrix

A and these are given in a canonical form in terms of the quality factor Q and the natural frequency

ωn as follows [1]:

p+ = − ω0

2Q
(1−

√
1− 4Q2) (33a)

p− = − ω0

2Q
(1 +

√
1− 4Q2) (33b)

where ωn and 1/Q are

ωn =

√
R+ rL

(R+ rC)LC
,

1

Q
=
Z0 + (R(rC + rL) + rCrL) /Z0√

(R+ rC)(R+ rL)
,

and Z0 =
√
L/C. In z-domain, for this second-order switching converter, the open-loop poles are the

roots of the following polynomial:

∆2(z) = z2 + tr(eAT )z + det(eAT ) (34)

These open-loop poles can be used to predict the evolution of the closed-loop poles (root-locus) in

the z-domain. The open-loop poles in this domain are related to the ones in the s− domain given in

(33a)-(33b) as follows:

p+z = ep
+T = e−

ω0T
2Q (1+

√
1−4Q2) (35a)

p−z = ep
−T = e−

ω0T
2Q (1−

√
1−4Q2) (35b)

The zeros can be derived by setting the numerator of L(z) to zero (∆1 = ∆2) and solving for z. In

particular, one of the zeros is introduced by the integrator and can be approximated by:

zpi ≈ e−WiT/κ = e−T/τi ≈ 1− T

τi
(36)

One can observe that this zero is always smaller than 1 but very close to it and is shifted to the left

when τi increases. Another zero is given by [29]

zc ≈
rC(T 2R+RLC − TL)

LR(T + rCC)
(37)

This zero is located at the origin if rC = 0 and it is shifted to the right when rC increases being its value

independent on the operating duty cycle D. The steady-state value of the vector of the state variables

x(DT ) in (16b) can be expressed for the buck converter as follows:

x(DT ) = (I− eAT )−1A−1(eAT − eADT )Bvs. (38)
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Figure 3. Evolution of the PWM gain Hm in term of the steady-state duty cycle D. The constant gain

corresponding to the averaged model is also shown in dashed line.

Note that because the integral action was separated from the rest of system dynamics, the matrices

A and I− eAT are invertible and x(DT ) is unique. This will not be the case if the integral action was

included in the vector x [5, 6]. According to (18), the value of the steady-state duty cycle is given by

the following expression:

D =
vref

−CA−1Bvs
=
vref(α(R+ rC) + rL)

α(R+ rC)vs
. (39)

which is in agreement with the well-known expression D = vref/vs for the buck converter obtained

from a steady-state analysis based on net volt-seconds assuming low ripple at the output voltage and

ideal components (rC = rL = 0) [1].

6.3. Validation of the small-signal control-oriented model by means of numerical simulations using

the switched circuit-level model

Let us take the following power stage parameter values: inductance L = 120 µH, winding resistance

rL = 0.04 Ω, capacitance C = 22 µF, ESR rC = 0.05 Ω, input voltage vs = 12 V, output voltage

reference vref = 5 V, load resistance R = 2.5 Ω, proportional gain κ = 4 and switching frequency

fs = 50 kHz. The time constant of the PI integrator is selected to be τi = 5
√
LC ≈ 203 µs which is

enough larger than RC = 55 µs and the system is stable at the slow scale according to [3].

Fig. 3 shows the evolution of the PWM gain Hm as function of the steady-state duty cycle D. The

constant gain of the PWM conventionally used in the averaged model is also shown in the same figure.
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Figure 4. The bifurcation diagram of the buck converter taking the modulator gain Hm as a bifurcation parameter.

The critical value is Hm ≈ 0.51.

Note that the different gains coincide only for D = 1. For rC = 0 they also coincide for D = 0.

The error is maximum in the vicinity of D = 0.5. It can also be demonstrated that if a significant

amount of inductor current iL feedback is used in the control signal either through CMC or through

significant effect of the ESR rC , the discrepancy between the modulator gains monotonically increases

by decreasing the steady-state duty cycle D reaching its maximum value at D = 0.

6.4. Steady-state behavior from simulation of the switched model

Let us now focus on the steady-state behavior of the system whose evolution can be checked by using

a bifurcation diagram when a suitable parameter is varied. Such a diagram is shown in Fig. 4 and can

be used to explore the different steady-state regimes that the system can exhibit. Here we consider the

PWM gainHm as bifurcation parameter. According to (21d), this gain can be varied by changing many

parameters such as the steady-state duty cycleD, the switching frequency 1/T or equivalently the slope

ma of the ramp signal. However, it is necessary that only Hm is changed and not the operating points

x(0) and x(DT ). Hence, we cannot use D or T for changing Hm. Varying κ although it does not alter

the operating point, it will change, at the same time, bothHm and K. Hence in order to change onlyHm

while maintaining constant other parameters of the total loop gain L, we do it through the amplitude

of the ramp voltage VM . The obtained bifurcation diagram shows that the system behavior is periodic

for relatively low values of the gain Hm. However, as this parameter is increased beyond a critical
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value Hm ≈ 0.51, one can observe that the system exhibits a period doubling bifurcation leading to

subharmonic oscillation and chaotic regime with the same characteristics reported in [7, 19, 36, 38].

From a design point of view, it is very important to be able to predict the onset of instability using

control-oriented models and standard control system tools such as Bode and root-locus plots rather

than bifurcation diagrams. Next, these two control-oriented plots will be used to predict this critical

value of Hm.

6.5. A control-oriented root-locus approach for and predicting subharmonic oscillation

Fig. 5 shows a root-locus plot of the system by using the Matlab c© command RLOCUS applied to the

loop gain L(z). This plot shows that the closed-loop poles leave the unit circle at the point z = −1

when Hm = 0.51 in agreement with the bifurcation diagram of Fig. 4.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Unit circle

zc

p+z

p−z

ppizpiρ ≈ 0.82
Hm ≈ 0.51

Root Locus

ℜ(z)

ℑ(
z)

Figure 5. The root-locus of the total loop gain as Hm is varied. The critical value is Hm ≈ 0.51 in agreement with

the bifurcation diagram in Fig.4.

Remark 4: It can be observed that one of the closed-loop poles is very close to 1 tending, when Hm is

increased, to the open-loop zero zpi ≈ 0.924 from the open-loop pole ppi = 1, both introduced by the

PI controller. This is in agreement with root-locus theory from which it is well-known that the closed

loop poles tend to the open-loop zeros when the gain increases [41]. From the root-locus in Fig. 5 it can

be observed that the loci of the complex conjugate poles, when the control parameter changes, involves

practically a circle because zpi ≈ ppi and these cancel each other. The center of the circle is at the zero

zc ≈ 0.046 (0 for the ideal buck converter) and its radius is ρ ≈
√
<((p+z )− zc)2 + =(p+z )2 ≈ 0.82.
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The root-locus plot also shows that the closed loop poles are approaching the real axis at z ≈ −0.77.

In general, for finding the points at which the root locus breaks into real axis, one has to maximize or

minimize the gain (Hm) with respect to z [41]. For the buck converter under PI VMC, the break-in

point can be identified easily since the radius of the circle and the location of the zero zc are known.

Remark 5: In previous studies like [36], the monodromy matrix was computed numerically using

central differences and Richardson extrapolation and it was observed that the poles are complex

conjugates that move on a circle of radius equal to ρ = 0.8241. In [36], no ESR rC and no rL have

been considered, α = 1 and only a proportional controller was used. If the same parameter values

in [36] are used, according to (35a)-(35b), the radius of the circle formed by the closed-loop poles

can be obtained from ρ = e−ω0T/(2Q) ≈ 0.8241 in agreement with the results in [36] which have

been entirely determined by numerical procedures. This is also in agreement with [19] which also used

a numerical approach to determine the steady-state duty cycle D and to determine the steady-state

periodic orbit x(DT ). There, the periodic orbit are located by the Newton-Raphson method, and in

the process of convergence, the partial derivatives from which the Jacobian of the mapping can be

derived are obtained. Here, most of the steps are evaluated analytically. On the other hand, while

in previous studies, the evolution of the poles are plotted after solving the eigenvalue problem of the

Jacobian matrix or the monodromy matrix, here available command in commercial software are used.

Hence, the plot of the poles and zero can be obtained using the root-locus plots of most CAD programs.

Except from evaluating the matrix exponential, all the steps are performed analytically including the

determination of the steady-state duty cycle, locating the fixed points x(DT ) and evaluating the z-

domain total loop.

6.6. A control-oriented frequency domain approach for relative stability analysis and predicting

subharmonic oscillation

This section addresses the prediction of the period doubling boundary from a frequency domain

standpoint with the final aim of tuning the system parameters. Having obtained the z-domain transfer

function of the buck switching power converter L(z), its frequency response L(ejωT ) can be easily

derived by substituting, z = ejωT [2, 40, 42] therefore obtaining:

L(ejωT ) = (−K +
Wi

ejωT − 1
Ji)((e

jωT I−Φ)−1)Jd (40)
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Figure 6. Frequency responses estimated from the switched model (dots), Bode plots obtained from the averaged

model (dashes) and the discrete-time (solid) model of the buck converter before and after subharmonic oscillation

takes place. Left: Hm = 0.5 before subharmonic oscillations develop, from both the small-signal discrete-time

and the averaged models the gain and the phase margin are both positive. Right: Hm = 0.54 after subharmonic

oscillations develop, from the averaged model, the system is stable and both the gain margin and the phase margin

are positive. From the small signal discrete-time model, the gain margin (gm = −0.44 dB) is negative and phase

margin ϕm is infinite. The discrepancies between the models increases in the vicinity of the Nyquist frequency

fs/2.

The subharmonic oscillation occurrence implies that −1 is a pole of the characteristic equation, i.e.,

1 +HmL(−1) = 0. In the frequency domain this condition can be expressed as follows: [40]:

HmL(−1) = −1⇒


|L(−1)| = 1

|Hm|
∠L(−1) = 180o − ∠Hm

(41)

This will only occur at a crossover frequency ωc = π/T = ωs/2. Fig. 6 shows the Bode plot

from the averaged (dashed) and the discrete-time (solid) models of the system before and just after

subharmonic oscillation takes place. The frequency response estimated using numerical simulations

from the switched model is also shown (dots).

While the plot obtained from the averaged model predicts always a stable system, the Bode plot from

the discrete-time model and estimated from the switched model predict that the system has a negative

gain margin after period doubling takes palace. This instability is in agreement with the root-locus

analysis presented in the previous section and confirmed by the waveforms of the system obtained

from the switched model and depicted in Fig. 7.

A careful examination of the different Bode plots close to one half the switching frequency reveals
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Figure 7. Time domain responses from the switched model. Left: Hm = 0.54 after subharmonic oscillations

develop. Right: Hm = 0.5, the system exhibits stable periodic behavior.

that:

• The crossover frequency predicted by the averaged model is smaller than the one predicted by

the discrete-time model and estimated from the switched model.

• At the Nyquist frequency f = fs/2, the maximum discrepancy is observed in the phase plot.

The phase calculated from the discrete-time model is -180o while the phase predicted from the

averaged model is higher. Close to the Nyquist frequency, the loop gain amplitude from the

discrete-time model matches well with the switched model. The subharmonic instability takes

place because the loop gain obtained from the discrete-time model has a negative gain margin

at half the switching frequency. This is different from the slow time-scale instability that can

be detected by the averaged model. When this instability takes place, the crossover frequency is

smaller than fs/2 and the phase margin is negative for both the averaged and the discrete-time

models. This instability can be easily avoided by selecting the time constant of the PI integrator

to be enough larger than the time constant RC [3].

• According to the Bode plot from the averaged model (dashed curve), when the gain is increased,

the crossover frequency and the phase margin also increases. Hence, erroneously, the model

predicts that the bigger the gain is the more stable the system is. However, according to the

Bode plot from the discrete-time model, when the gain is increased the crossover frequency

increases but the gain margin decreases and the plot correctly predict the subharmonic oscillation

instability.
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• The plotted frequency responses beyond the Nyquist frequency fs/2 has no relevance for both

non averaged and averaged models. This is because the corresponding variables cannot change

faster than one half the switching converter.

7. Conclusions

Conventional applications of switching converters require loop bandwidths much lower than the

switching frequency and the average models works quite well under these circumstances. However,

Many emerging switching converters applications are aggressively requiring faster DC-DC converters

with the system bandwidth close to the switching frequency. In this case, designing and optimizing

the performances is a challenging task. The compensation design typically involves various iterations

of the controller using averaging procedures. This is not only time consuming, but is also inaccurate

in a switching converter whose bandwidth and stability margin can be affected by many parameters.

Determining accurately the performances of switching converters at the fast time-scale is considerably

involved and crucial because of the strong switching nonlinearity at the switching time-scale. Except

for switching converters under digital control, the existing conventional discrete-time models in the

literature are of high level of abstraction and cannot be used for design purposes. In this paper, the

basic concepts and methods of discrete-time control-oriented modeling of switching mode power

converters with naturally sampled pulse width modulation and integrating feedback loop are presented.

The main advantage of the proposed approach is its straightforwardness and accuracy. Moreover, the

integral action in the feedback loop is explicitly taken into account without any singularity problem

in determining the system steady-state operating point and its z-domain loop gain. The location of

the open loop and closed loop poles and zeros and how these are affected by circuit parameters can

be easily studied using standard CAD tools. This help to design accurate compensators and reduce

inaccuracies at the fast time-scale. The buck converter under voltage mode control was used as an

example and its corresponding model was validated against simulation results obtained by the circuit-

level switched model yielding very good agreement. In particular, the loop gain derived here agrees

very well with the simulation. Unlike the design using the average model which is independent on the

duty cycle in the buck converter, the loop gain depends on this variable and hence care must be taken for

the design of the modulator, selection of switching frequency and feedback compensation. In particular,

by treating the modulator as a gain depending on the operating point, in the new approach the discrete-

time model is formulated in such a way that standard control-oriented tools such as Bode diagrams

and root-loci can be easily used. The same concepts can also be applied to other switching converter
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topologies and compensation schemes with the only modification that the matrices Au and Bu will

be different. The main difference between the presented approach and the existing methodology

in predicting the behavior of the converter at the fast time-scale is that the proposed approach

performs the system analysis using the open-loop model, which results in an analysis much similar

to control systems techniques rather than nonlinear dynamical system approaches. Some important

issues like crossover frequency, gain and phase margins, that are highly useful in control design, can

be determined. A systematic computational realization, avoiding the numerical determination of the

operating point is also possible for this kind of systems. The method and model presented in this

work can help to compensate DC-DC converters more effectively which is especially challenging in

switching regulators with a bandwidth close to the switching frequency such as in those under ripple-

based voltage mode control strategies that use the output voltage ripple in the fast loop or in high power

applications where the switching frequency could be relatively low.
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