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Abstract— In this paper, a combined analytical-numerical
methodology is developed for detecting subharmonic oscillation
in H-bridge inverters with an LC filter and under double edge
modulation. The prediction of this phenomenon is accomplished
accurately by combining analytical expressions and computa-
tional procedures to determine the switching instants and the
corresponding periodic orbits. Different approximate closed-form
expressions for the stability boundary are derived revealing the
effect of the parameters of the system on its dynamical behavior
and showing that the stability boundary is different from the
ones corresponding to single edge modulation strategies such
as trailing edge and leading edge modulations. The theoretical
results are validated by numerical simulations using a system-
level switched model. Also, a prototype is implemented to validate
he theoretical derivations and the numerical simulations getting
a good matching.

Index Terms— Switching converters, H-bridge inverters,
double edge modulation, subharmonic oscillation.

I. INTRODUCTION

SUBHARMONIC instability in switched mode power
converters has increasingly attracted the interest of

many researchers during the last couple of decades [1]–[3].
A significant amount of knowledge has been reached about
the occurrence of this phenomenon in these systems under
both Current Mode Control (CMC) and Voltage Mode
Control (VMC) [4]–[8]. Most of the previous studies consider
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dc-dc converters under single edge modulation schemes such
as Trailing Edge Modulation (TEM) and Leading Edge Mod-
ulation (LEM). Trailing-edge modulation is most common in
dc-dc converters. However, Double Edge Modulation (DEM)
is used in many applications involving H-bridge structures.
For instance, in dc-ac and ac-dc energy conversion, this
modulation strategy eliminates certain harmonics when the
reference is a sine wave [9, Ch. 3].

With the ever-increasing development of the renewable
energy technology, dc-ac inverters become one of the
most attractive and viable solutions to the power conver-
sion problem. They have been extensively used in various
actual applications and are playing key roles in renewable
energy integration [10], [11]. They are also used in motor
drive [12], [13] and DSTATCOM applications [14] as well
as in many uninterruptible power supply system applications
such as plant facilities and factories, medical equipments
and centers in hospitals, airline computer and communication
systems in server farms and web hosting sites [15].

In stand-alone operation mode, the load is directly supplied
by the inverter. Single-phase H-bridge inverters are simple
bidirectional converter topologies capable of handling both
real and reactive power having their performance evaluated in
terms of power quality and stability. Therefore, generating a
high quality output voltage with low distortion and good volt-
age regulation is the main target. Other relevant performance
metrics include disturbance rejection, transient response, and
insensitivity to load and system parameter variations. These
metrics can only be achieved with a design free from any kind
of instability. Namely, when subharmonic oscillation takes
place in a switched mode power converter, usually the ripple
in the currents and voltages increases and this has a harmful
effect on the system performances since the overall losses
become more significant. In dc-ac inverters, the power quality
is also jeopardized since the subharmonic oscillation increases
the THD and the current stress on the switches. Therefore,
the prediction of this phenomenon is of high importance from
both theoretical and practical point of view and remains an
important research topic.

Accurate modeling and stability analysis are necessary for
exploring the dynamic behavior and predicting the stability
boundaries of dc-ac H-bridge inverters. The first and direct
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TABLE I

EXISTING RESEARCHES ON PREDICTING SUBHARMONIC OSCILLATION WITH DIFFERENT CONTROL METHODS AND MODULATION STRATEGIES

approach that one can use is long time transient simulation
from detailed switched models. This approach, although very
accurate, is very time consuming and can be problematic in
some particular applications where repeated long simulations
are required. State-space averaging [16], [17] and generalized
state space averaging (GSSA) techniques [18] can significantly
reduce the simulation time but the models derived from these
approaches are unable to predict the actual behavior of the
system. In particular, such models are incapable of predicting
the occurrence of subharmonic oscillation.

Early researches on subharmonic instability for dc-ac invert-
ers with DEM have been reported in [2], [3], [19], and [20].
In [2] and [3] the dynamics of the output capacitor voltage has
been overlooked and only the inductor current was considered
as a state variable. In [19] and [20] the complete system has
been analyzed but the analytical results concerning stability
have been reported only for the slow scale low frequency
instabilities using an averaged model. In dc-ac inverters,
subharmonic oscillation is a type of local instability which
manifests itself as a period-doubling bifurcation in some
intervals of a line cycle [19], [20]. In past works subharmonic
oscillation in dc-ac inverters has been merely verified by
means of numerical simulations using either a discrete-time
model or a switched system-level model obtaining the critical
phase angle during the line cycle at which subharmonic
oscillation is exhibited [19], [20]. Another attempt to study
subharmonic oscillation in a dc-dc buck converter with DEM
is in [21]. Apart from the preliminary efforts in [20] and [22],
closed-form expressions for predicting subharmonic oscillation
boundary in H-bridge inverters under DEM have not been
reported to the best of authors knowledge. A summary of the
different existing researches on predicting subharmonic oscil-
lation in switching converters with different control methods
and modulation strategies is given in Table I.

The main contribution of this paper is to develop a method-
ology for analytically determining the boundary of subhar-
monic oscillation in an H-bridge inverter under DEM strategy
for both dc and ac loads. Hence, the stability region in
terms of the different system parameters is located. Numerical
and experimental results are provided to verify the analytical
results. It should be noted that this paper deals with sub-
harmonic oscillation which is a fast scale instability taking
place at the switching scale and does not deal with slow scale
phenomena that can be tackled by averaged models. It should
also be noted that in order to simplify the analysis, only a
linear and resistive load was considered and that propagation
delay has been ignored. Such effects of load nonlinearities and
communication delays like those considered [23] can slightly
alter the results obtained in this paper. The complete analysis

Fig. 1. Circuit diagram of an H-bridge converter with different load types.

taking into account these effects is however considered out of
the scope of our work and will be studied in future works.
In particular, we will demonstrate that although the original
results reported in [20] and [22] are not exact, they lead to a
good estimate for the stability boundary of dc-dc converters
and dc-ac inverters under the DEM strategy. The results also
show that the stability boundary corresponding to the DEM
strategy is different from the ones corresponding to single edge
modulation strategies such as TEM and LEM. In particular,
the stability region corresponding to the DEM strategy is
wider. The theoretical results will be validated by numerical
simulations from the detailed switched model.

The rest of this paper is organized as follows: Section II
presents a brief description of the H-bridge inverter and its
mathematical modeling. Stability analysis is performed in
Section III using Floquet theory. Different approximate closed-
form expressions for the stability boundary are derived in
Section IV using the system state-space model. In Section V,
time-domain numerical simulations are performed to validate
the derived theoretical expressions. An experimental validation
is provided in Section VI using a laboratory prototype. Finally,
in the last section, some concluding remarks of this work and
some perspectives for future works are summarized.

II. SYSTEM DESCRIPTION AND MODELING

The schematic diagram of a dc-ac H-bridge inverter with
DEM and a PI voltage mode control is shown in Fig. 1. The
basic function of such a system is to convert the voltage of
a dc source such as a PV panel or a battery to a sinusoidal
ac output through an LC filter and an appropriate action of
the inverter switches. For practical reasons related to noise
issues, the total inductance L is distributed between the top
side and the bottom side of the LC filter. The activation of
the switches Si (i = 1, . . . , 4) is carried out as follows: the
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Fig. 2. Waveforms of the double edge PWM signals in T−periodic regime.

output voltage vo is sensed using a voltage divider with gain gv

to obtain the voltage vod and the voltage error represented
by the difference voltage vref − vod is processed by means
of a voltage controller in the form of a PI corrector, where
vref is a voltage reference. The output vc of this controller is
connected to the non-inverting pin of the comparator whereas
a symmetric triangular (double edge) signal is applied to the
inverting pin, in such a way that the switches S1 and S4 are ON

(therefore δ1 = δ4 = 1) when vc > vtri and they are turned
OFF when vc < vtri (δ1 = δ4 = 0). S2 and S3 are driven
complementarily to S1 and S4 respectively. Let δ = δ1 = δ4
and δ2 = δ3 = δ = 1 − δ and D be their steady-state duty
cycle. The signal u(t) = 2δ − 1 is defined in such a way
that vgu represents the inverter bridge voltage which is a
square wave signal with the same steady-state duty cycle D
as the signal u. he load can be either a linear resistive load
R or a nonlinear rectifier load including a linear resistance
load RL and nonlinear rectifier. In the last case, the load
can be modeled in different levels of complexity depending
on the phenomena to be studied. A model based on the first
harmonic approximation can be used to show that the effective
resistance to represent the effect of the rectifier and load RL is
R = 8π2/RL [24, Ch. 19].

Fig. 2 shows a sketch of the waveforms of the control signals
when the system works in the stable periodic regime. The
triangular signal can be expressed during one complete period
of length T as follows

vtri(t) =

⎧
⎪⎨

⎪⎩

− VM

2
+ mat if 0 ≤ t ≤ T

2

− VM

2
+ ma(T − t) if

T

2
≤ t ≤ T

(1)

where ma = 2VM/T represents the raising slope of the
triangular signal vtri(t). The state-space model for the dc-ac
H-bridge inverter can be expressed as follows

ẋ = Ax + Bu (2a)

v̇i = vref − vod (2b)

vo = Cᵀx (2c)

where vod = gvvo = gvCᵀx is the signal from the voltage
divider, vi is the integral of the error voltage vref − vod and

A, B and C are given by

A =
⎛

⎝
− α

RC

α

C
−α

L
−αrC + rL

L

⎞

⎠, B =
(

0
vg

L

)

,

C = α

(
1

rC

)

(3)

L is the total inductance of the inductor whose dc resistance
is rL , C is the capacitance of the output capacitor, rC is its
Equivalent Series Resistance (ESR), vg is the input voltage,
R is the effective load resistance and α = R/(R + rC ).
x(t) is the vector of the state variables corresponding to the
power stage (capacitor voltage vC and inductor current iL ).
As an extra state variable we consider the variable vi (t) =∫ t
−∞(vref − gvCᵀx(ζ ))dζ corresponding to the integral of the

error. The control voltage vc can be expressed as follows

vc = k p(vref − gvCᵀx) + Wivi (4)

where Wi and k p are the integral and the proportional gains
of the PI controller.

III. STABILITY ANALYSIS OF PERIODIC ORBITS

A. The Case of Constant Voltage Reference vref

Under DEM, as shown in Fig. 2, a symmetric triangle
wave is used. The periodic state variables comprise transitions
through two different configurations during three subintervals.
The values of time instants at which the system switches from
one configuration to another are to be determined from the
following switching condition

vc(
(D − �)T

2
) − vtri(

(D − �)T

2
). (5)

In particular, the time duration � can be determined by solving
(5) numerically using (1) and (4). The integral action will force
the average value of vod over one switching period to be equal
to vref and hence the average output voltage over the same
period Vo to be equal to vref/gv in steady-state. By performing
a net volt-second balance [24], the steady-state duty cycle can
be expressed as follows

D = 1

2
+ Vo(α(R + rC ) + rL)

2vgα(R + rC)
(6)

Subharmonic oscillations occur when such a periodic orbit
loses stability. The information about the stability of a periodic
orbit is contained in the state transition matrix computed
over a complete cycle. The periodic orbit in continuous
time is represented by the fixed point (x(0) = x(T )) in the
map obtained by sampling the state in synchronism with
the T −periodic triangular signal. The state transition matrix
computed over a complete cycle is the monodromy matrix
of the map computed at the fixed point. The periodic orbit
becomes unstable when any one of the eigenvalue of the
matrix M goes out of the unit circle. According to the Filippov
approach [1], the monodromy matrix can be calculated as a
product of the state transition matrices across each subsystem
and the state transition matrices across the switching events
called saltation matrices S+− and S−+ for transition from the
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subsystem with u = −1 to the subsystem characterized by
u = 1 and vice versa. Thus, an orbit that goes through the two
subsystems corresponding to u = 1 and u = −1 respectively,
the monodromy matrix is given by

M = eAa
(D+�)T

2 · S+− · eAa(1−D)T · S−+ · eAa
(D−�)T

2 (7)

where Aa is the augmented state matrix by taking into account
the extra state equation (2b). The saltation matrices across
switching events are as follows

S+− = I + 2Bnᵀ

v̇c(T −
2 ) − ma

, T2 = (1 − D + �

2
)T (8a)

S−+ = I − 2Bnᵀ

v̇c(T −
1 ) + ma

, T1 = D − �

2
T (8b)

where n = gvC is the vector of the feedback coefficients and
I is the identity matrix with appropriate dimension. The terms
v̇c(T −

1 ) and v̇c(T −
2 ) are the time derivatives of the control

voltage vc at time instant just before T1 and T2 respectively
within a switching cycle and they can be expressed as follows

v̇c(T −
2 ) = k pv̇ref − nᵀ(Ax(T2) + B) + Wi v̇i (T2) (9a)

v̇c(T −
1 ) = k pv̇ref − nᵀ(Ax(T1) − B) + Wi v̇i (T1) (9b)

where v̇ref is the time derivative of the reference signal vref .
The terms x(T1) and x(T2) in (9a)-(9b) are needed to compute
the slopes of the control voltage vc at time instants just before
the switching instants T1 and T2 and these slopes in turn
are needed to compute the saltation matrices in (8a)-(8b).
These terms can be obtained by imposing periodicity during
a switching cycle and are given by:

x(T1) = (I − eAT )−1[eADT A−1(eA(1−D)T − I)

+ A−1(eADT − I)]B (10a)

x(T2) = (I − eAT )−1[eA(1−D)T A−1(eADT − I)

+ A−1(eA(1−D)T − I)]B (10b)

According to (2b), the values of v̇i (T1) and v̇i (T2) in (9a) and
(9b) are as follows

v̇i (T1) = vref − nᵀx(T1), v̇i (T2) = vref − nᵀx(T2) (11)

Once a periodic orbit is located, its stability analysis can
be performed by using the expression of the monodromy
matrix M given in (7).

Remark 1: One can note that the monodromy matrix is
invariant when changing the stationary duty cycle D by
its complementary 1 − D. Hence, it is expected that the
same stability status will be obtained for the system for two
complementary values of the steady-state duty cycle D.

To confirm the previous remark, different numerical sim-
ulations are performed. First, bifurcation diagrams with two
complementary values of the steady-state duty cycle are com-
puted by varying the proportional gain kp in the range (10, 12).
Long time integration from the switched model implemented
in PSIM© was used to obtain the bifurcation diagrams for D =
0.755 and D = 0.245 and the results are depicted in Fig. 3.
These show that the same bifurcation patterns are obtained and
that the system undergoes period doubling at the same value of
the proportional gain kp. According to Fig. 3, the critical value

Fig. 3. Bifurcation diagrams when kp is varied for two different but
symmetric values of the steady-state duty cycle D. (a) D = 0.755
(Vo = 10 V). (b) D = 0.245 (Vo = −10 V).

TABLE II

THE USED PARAMETER VALUES FOR THE INVERTER

of this parameter is kp ≈ 11.2. Second, eigenvalues analysis
was performed using Floquet theory and the expression of the
monodromy matrix and the results are depicted in Fig. 4 for
the same previous two complementary values of the steady-
state duty cycle by varying the proportional gain kp in the
same range. It can be observed that the critical values for
losing stability are practically the same. The values of the
fixed parameters used are depicted in Table II. The eigenvalues
of the mnodromy matrix make the same loci for both values
of D as the proportional gain is varied.

IV. APPROXIMATE ANALYTICAL EXPRESSIONS

FOR STABILITY BOUNDARY

At a point where subharmonic oscillation is born, one of the
eigenvalues of the monodromy matrix is equal to −1. Because
the characteristic equation is det(M−λI) = 0, at the boundary
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Fig. 4. Eigenvalues loci when kp is varied for two different but symmetric
values of the steady-state duty cycle D. (a) D = 0.755 (Vo = 10 V).
(b) D = 0.245 (Vo = −10 V).

of subharmonic oscillation, the following condition is fulfilled

det(M + I) = 0 (12)

The previous equation can be solved numerically to accu-
rately locate the stability boundary of the system in terms of
system parameters. Instead of attempting a fully numerical
solution for the stability boundary, it is better to solve the
problem as thoroughly as possible via analytical techniques.
An approximate expression for locating the stability boundary
corresponding to the H-bridge inverter under DEM will be
derived and will also be contrasted in front of the results
obtained from (12) as well as against those computed from
the analytical expressions corresponding to TEM and LEM
derived in [5] and [8]. Assuming � = 0 and D > 0.5, it
was demonstrated in [20], that a condition for subharmonic
oscillation occurrence in a dc-ac inverter under DEM strategy
is given by the following Fourier-series-based expression

ma = T
∞∑

k=−∞
(e2 jπ(k− 1

2 )D − 1)H ( j (k − 1

2
)
2π

T
)

+ T
∞∑

k=−∞
(1 − e2 j kπ D)H ( jk

2π

T
) (13)

where H is the u-to-vc loop gain of the system. Using
well-known properties of Fourier series such as convolution
and modulation properties (see [5] for more details) one
can demonstrate that the frequency domain condition (13)
can be transformed to the following closed-form matrix-form
condition

ma = k pnᵀ
[

(I − eADT )(I − eAT )−1

+ (I − e−ADT )(I + eAT )−1
]

B + MI (14)

where MI is given by

MI = Wi

2
(vref − nᵀx(

DT

2
)) = Wi

2
(vref − vod(

DT

2
) (15)

This term, which shows the effect of the integral action on
the subharmonic oscillation boundary, is proportional to the
error between vref and the signal vod from the voltage divider
at time instant DT/2. For D < 0.5 the same condition (14)
applies but replacing D with 1 − D and T1 with T2 − T/2.
The steady-state periodic orbit at this instant can be obtained
by forcing the state vector x((D/2 + 1)T ) after a complete
switching cycle to be equal to the initial state x(DT/2) hence:

x(
DT

2
) = A−1(I − eAT )−1(eAT − 2eA(1−D)T + I)B (16)

Remark 2: Note that the matrix (I − eAT ) is nonsingular.
Note also that if the integral variable was included in the
state vector x this matrix will be singular. The separation
of the integral variable from the rest of the state variables
avoid many matrix singularities when calculating the stability
boundary of the system [8].

The output voltage ripple in the presence of an ESR in the
output capacitor can be approximated as follows [24]

�vo ≈ T

L

(
T

8C
+ rC

)

vg(1 − D)D (17)

Due to the fact that in any practical design T 2 � LC and
TrC � L, the ripple �vo is very small and since vref −
vod(DT/2) ≤ �vo, vref − vod (DT/2) is also very small and
the term MI can be ignored without a significant alteration of
the results as it will be shown later. Therefore, ignoring MI �,
the boundary of subharmonic oscillation is given by the
following condition

T k pnᵀ[(I − eADT )((I − eAT )−1)

+ (I − e−ADT )(I + eAT )−1]B − VM = 0 (18)

According to Remark 1, the same expression applies for the
case of D < 0.5 by changing D with its complementary 1−D.
In a practical design of an H-bridge inverter, it is desirable that
the state variables exhibit stable oscillation for all values of
the duty cycle. Based on this concept, stability limit can be
determined at the maximum or the minimum value of D in the
operating region. By considering the extremum values D = 1
or D = 0, one has from (18)

T kp,maxCᵀ[(I − eAT )((I − eAT )−1)

+ (I − e−AT )(I + eAT )−1]B − VM = 0 (19)
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Fig. 5. Stability boundary of the dc-ac H-bridge inverter in terms of the
steady-state duty cycle and the PI controller proportional gain. VM = 2 V.

The value of kp,max can be obtained by solving (19). If the
magnitude of the eigenvalues of the matrix A are much smaller
than the switching frequency, as it is the case in switching
converters, (18) can be approximated by a polynomial function
in terms of D as follows

k pCᵀ(IDT + 1

2
AD2T 2+ 1

6
A2(D3−3D2−D)T 3)B−VM =0

(20)

By considering the values D = 1 or D = 0, one obtains

k p,maxCᵀ(IT + 1

2
AT 2 + 1

2
A2T 3)B − VM = 0 (21)

Expressing the matrices in (21) leads to

k p,max

2LC

(

T 2gvvg

(

1 + T

RC

))

− VM = 0 (22)

This expression gives an accurate, but conservative, assessment
of critical stability limit and does capture the effect of all the
parameters upon this limit. This gives an easy and a useful way
to select dc-ac H-bridge inverter parameters for guaranteing
a system response free from subharmonic oscillation during
all the line cycle. In the sequel, the validity of the derived
expressions will be confirmed by numerical simulations and
experimental results using an example of H-bridge dc-ac
inverter with a DEM strategy.

Using the parameter values shown in Table II, the stability
boundary corresponding of the H-bridge inverter under DEM
strategy is depicted in Fig. 5. The boundaries corresponding to
the TEM and the LEM strategies from [5] are also shown in the
same plot demonstrating that different modulation strategies
lead to different stability boundaries. For the DEM case, the
boundary obtained by ignoring the term MI is also plotted but
its corresponding curve is practically identical to the case when
MI is included. The results show that except in the vicinity of
D = 0.5, the closed-form expression (18) is accurate enough
in a wide range of system parameter values. According to the
conservative expression (22), the expression at the extremum
values of the steady-state duty cycle gives kp,max ≈ 2.75.

A. The Case of Sinusoidal Voltage Reference vref

In dc-ac applications, the reference voltage is varied sinu-
soidally as follows: vref = Vref sin(ωl t), where Vref is the
peak value of the reference signal. In practice, the switching
period is much smaller than the line period and a quasi-static
approximation can be used. Let φ = ωl t . Therefore, from (6)
and using this approximation, the quasi-static duty cycle Dφ

can be seen as a sinusoidally varying signal according to the
following expression:

Dφ = 1

2
+ Vref(α(R + rC ) + rL) sin(φ)

2gvvgα(R + rC )
(23)

Hence, for a slowly varying voltage reference, the condi-
tion (18) for stability boundary is still valid for dc-ac H-bridge
inverters with sinusoidal output after substituting the constant
steady-sate duty cycle D from (6) by the time-varying duty
cycle Dφ given in (23).

V. PSIM© NUMERICAL SIMULATIONS

In order to validate the theoretical results concerning the
stability boundaries, time-domain numerical simulations have
been performed using the detailed switched model of the
H-bridge inverter implemented in PSIM© software.

A. The Case of Constant Voltage Reference vref

Two different but symmetric output voltage references
vref = 10/7 V (Vo = 10 V) and vref = −10/7 V
(Vo = −10 V) were selected. According to (6), their cor-
responding steady-state duty cycles are D = 0.755 and its
complementary value D = 0.245. In order to explore the
dependence of the system dynamic behavior in terms of its
parameters, the proportional gain has been selected as the
parameter to be varied. The results are depicted in Fig. 6 where
the waveforms of the state variables and the control signals
just before and after subharmonic oscillation takes place are
shown. The results show that for both D = 0.755 and its
complementary value D = 0.245, the critical value of the
proportional gain is k p ≈ 11.1. This value is in a very good
agreement with the theoretical results from the closed-form
condition (18) plotted in Fig. 5 and the numerically computed
bifurcation diagrams depicted in Fig. 3.

B. The Case of Sinusoidal Voltage Reference vref

Fig. 7 shows the waveforms of the state variables and the
control signals of the system before and after subharmonic
oscillation takes place in the dc-ac H-bridge inverter with a
sinusoidal reference voltage vref = Vref sin(ωl t). Subharmonic
oscillations starts appearing in some switching cycles at a
value of kp ≈ 8.3. By increasing kp , the number of switching
cycles during which this phenomenon appear increases.

In order to show the effect of subharmonic oscillation on
the system performance metrics, different tests have been
performed for the three modulation schemes LEM, TEM and
DEM and the results are summarized in Table III for the set
of parameter values depicted in Table II and for kp = 9. The
voltage THD is limited within 0.6% for the case of the DEM
while it is much higher in the case of the LEM and TEM
schemes for the same set of parameter values.
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Fig. 6. PSIM© simulation showing the time-domain waveforms of the state variables and the control signals just before and after subharmonic oscillation
takes place for two symmetric values of the duty cycles corresponding to average output voltage Vo = −10 V and Vo = +10 V. Left: kp = 11, the system
is stable. Right: kp = 11.2, the system exhibits subharmonic oscillation. (a) kp = 11 and D = 0.755. (b) kp = 11.2 and D = 0.755. (c) kp = 11 and
D = 0.245. (d) kp = 11.2 and D = 0.245.

TABLE III

THE PERFORMANCE METRICS FOR THREE DIFFERENT MODULATION

STRATEGIES FROM NUMERICAL SIMULATIONS FOR kp = 9

VI. EXPERIMENTAL VALIDATION

An experimental prototype of an H-bridge inverter, using the
parameters shown in Table II, has been built. The schematic of
the experimental prototype is shown in Fig. 8. The power stage
is made up of an H-bridge circuit, employing four W45NM50
MOSFETs with the driver IRS21834. Two identical radial
inductors 1433428C from Murata Power Solutions whose
nominal values are 330 μH ± 10% were connected in the
top and the bottom sides of the H-bridge inverter. Their
dc resistance was measured to be approximately rL = 0.1 
.
A film capacitor whose capacitance value is 68 μF was
placed in parallel with the output load resistance. The ESR
of the capacitor was measured to be 0.1 
. The voltage error

is processed by a PI controller implemented using standard
OA devices shown in Fig. 8. The output of this controller is
compared with a 10 kHz triangular signal provided from the
signal generator Tektronix AFG2021. The results shown below
were measured by using the oscilloscope Tektronix MDO3014
and the probes TEKTRONIX TPP0250 for illustrating the
current waveforms.

The integrator proportional gain is selected as the parameter
to be varied to explore the possible dynamical behaviors
that the system could exhibit. First, it has been checked
experimentally that the stability boundary is symmetric with
respect to D = 0.5 and that the behavior of the system is the
same for two different complementary steady-state values of
the duty cycle D. Fig. 9 shows the control signals and the
state variables for D = 0.755 (Vo = 10 V) and D = 0.245
(Vo = −10 V) confirming the previous claims concerning this
symmetry. Next, the results corresponding to a sinusoidally
time varying voltage reference will be presented.

As stated previously, in dc-ac applications, the reference
voltage is a time varying sinusoidal signal and accordingly
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Fig. 7. Steady-state time-domain waveforms from PSIM© simulations before (a) and after (b) losing stability of the H-bridge converter with sinusoidal
reference voltage vref with amplitude Vref = 2.2875 V (Vo=16 V). (a) the system is stable during the complete line cycle. (b) subharmonic oscillation starts
taking place during some switching cycles. Increasing kp further, subharmonic oscillation and chaotic regimes occupy more switching cycles.

Fig. 8. Schematic circuit diagram of the experimentally implemented circuit for performing laboratory measurements.

the steady-state quasi-static duty cycle Dφ is given by (23).
In such a situation, the phase φ is a quasi-static parameter
like Dφ . One way to show the dynamic of the system along one
half line cycle is by considering the phase φ as a slowly time
varying parameter and perform the stability analysis in terms
of this parameter together with other suitable parameters [19].

The stability boundary of the system is plotted in Fig. 10,
in terms of the PI controller gain kp and the phase angle

φ ∈ (0, π). In [19] such a plot has been obtained using
numerical simulations from the switched model. Here, the plot
in Fig. 10 is predicted from the closed-form expressions (18)
and (23). The results from the numerical and experimental
measurements are shown in the same plot. For estimating the
experimental boundary and because of the non-stationarity of
the experimental waveforms, for each value of the propor-
tional gain, six different line cycles have been used to detect
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Fig. 9. Experimental waveforms of the state variables and the control signals
just before and after subharmonic oscillation takes place for two symmetric
values of the duty cycles corresponding to average output voltage Vo = −10 V
and Vo = +10 V. (a) and (c): the system is stable. (b) and (d) the system
exhibits subharmonic oscillation.

the critical phase where subharmonic oscillation starts to be
exhibited.

Inside the region delimited by the curves, subharmonic
oscillation takes place. This region gets wider when the

Fig. 10. Stability boundary of the H-bridge dc-ac inverter in terms of the
phase angle φ and the PI controller gain kp for VM = 2 V. Solid curve:
theoretical result from (18), � PSIM simulations. The cloud of points stand
for the experimental results.

Fig. 11. Experimental waveforms (a) before and (b) after losing stability of
the H-bridge converter with sinusoidal reference voltage vref . VM = 2 V.

proportional gain k p increases. At the left side of this region,
the system exhibits stable operation during the entire line
cycle. Since an expression of the theoretical critical value
kp,max of the PI controller gain ensuring stability during the
entire line cycle is available, this can be used as a safe value
to get a system free from subharmonic oscillations. Vertical
dashed line in Fig. 10 indicates this theoretical critical value
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TABLE IV

THE PERFORMANCE METRICS FOR THREE DIFFERENT MODULATION
STRATEGIES FROM EXPERIMENTAL MEASUREMENTS

for the set of parameter values shown in Table II. Both (19)
and (22) can be used to determine this value and no significant
difference is noticed. Fig. 11 shows the steady-state response
of the system obtained from experimental measurements using
the experimental prototype of the dc-ac H-bridge inverter.

For k p = 3, the system is stable during the entire line
cycle because k p < k p,max|VM =2 ≈ 5.5. Let us select kp = 9.
The system exhibits subharmonic oscillation at a certain phase
angle φ1 ≈ 90o in a close agreement with the theoretical value
φ1 ≈ 83o in Fig. 10. The other critical phase angle during
the same half line cycle is φ2 ≈ 131o. Its estimate value is
φ2 ≈ 180 − φ1 ≈ 98o as reported in [20]. This estimate
value differs slightly from the theoretical value in Fig. 10.
The discrepancies between the theoretical analysis and the
simulation results can be attributed to the use of the quasi
static approximation. The discrepancies with the experimental
results can be attributed to the non-modeled dynamics and the
non considered parasitic parameters. Different experimental
tests have been performed for the three modulation schemes
LEM, TEM and DEM and the results are summarized in
Table IV for the set of parameter values depicted in Table II
and for k p = 8. As it can be observed, like for numerical
simulation tests, the DEM strategy outperforms the LEM and
TEM schemes in terms of stability and also power quality.

VII. CONCLUSIONS

This paper has focused on subharmonic oscillation boundary
in single phase dc-ac H-bridge converters with double edge
pulse width modulation strategy. In past studies, with this
modulation strategy, subharmonic oscillation has merely been
characterized by means of numerical simulations using either
a discrete-time model, Floquet theory combined with the
Filippov method or a switched system-level model. In this
work an approximate closed-form expression for subharmonic
oscillation occurrence has been derived. Based on the method-
ology presented, critical values of the system parameters are
located accurately. The results reported here could help in
selecting the parameter values of the system for avoiding
subharmonic oscillation in a practical design, hence improving
the power quality. A simple inspection of the expressions of
the critical curves reveals the effect of the parameters on
stability boundaries such as the amplitude of the triangu-
lar signal, the input voltage supply, the PI coefficients, the
output load, the switching frequency, the inductance of the
inductor and finally, the output capacitor. The conclusions
obtained from the closed-form expression are confirmed using
numerical simulations from PSIM© software. An experimental
validation has been provided using a hardware prototype
of an H-bridge inverter. Future works will deal with the
extension of the approach used in this paper to more complex

dc-ac inverter topologies such as multi-level structures as well
as to ac-dc power factor correction circuits. Exploration of the
results for designing advanced controllers that can avoid these
instabilities, taking into account communication delays and
load nonlinearities is also a subject of further investigation.
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