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Abstract: The available controller chips for power electronic systems are used for specific transient and steady-state
performances. In such systems, the parameter ranges for stable operation are delimited by slow-timescale as well as fast-
timescale instabilities. The usual practice is to design the control loop based on the state-space averaging technique, which
cannot predict the fast-timescale instabilities. In this study, the first attempt has been made to propose a new design of the
controller chip that can suppress these instabilities, thus extending the stable operating range in the parameter space. For this,
the authors make use of the Filippov method which can effectively predict both types of instabilities. In this approach, the
stability of the system is obtained in terms of the state transition matrices across each subsystem and saltation matrices across
each switching event. The basic idea is to exercise control over the saltation matrices to increase the stability margin of the
periodic orbit. Since in the Filippov approach an increase in the number of switching events in a cycle does not increase the
complexity of the analysis, the proposed controller chip will be particularly useful in complex power electronic systems such as
interconnected converters, multi-input multi-output converters, resonant converters, micro-grids and so on.

1 Introduction
Controllers for power electronic systems have the specific
objective of producing switching signals, which is normally done
using well-established strategies like voltage mode or current mode
control. The output voltage is compared with a reference voltage to
produce the control voltage (in case of voltage mode control) or the
current reference for an inner current loop (for current mode
control) using a suitable compensator. The values of the storage
elements are set using the information of maximum allowable
voltage and current ripple, and the parameters of the compensator
are decided from the consideration of transient performance using
the linearised averaged model of the converter and the standard
methods of linear control theory. These strategies are implemented
using analogue or digital controllers. The desirable steady-state
dynamical behaviour is where all state variables undergo small
periodic oscillations at the clock frequency, and electromagnetic
interference (EMI) filters are designed for that frequency.

Even though these design procedures are well established and
universally followed to design converters and controllers, it has
been found that various non-linear instabilities [1–3] may set in at
different parameter ranges producing undesirable dynamical
behaviours with high current and voltage ripples – like
subharmonic oscillations at the clock frequency [4, 5] or a slow-
timescale oscillation at a much lower frequency [6], or even a
chaotic oscillation of the state variables [5]. In digitally controlled
converters, the discrete sampling and quantisation effects can also
induce instabilities [7–9]. The designer therefore sets the ‘design
limits’ of the external parameters (like the input voltage and load)
based on the values of these parameters where such undesirable
behaviour sets in. These limits are obtained through averaged
model, circuit simulation of the switched model or experimentally.
In complex power electronic systems like cascaded converters,
resonant converters and microgrids, the available parameter ranges
for stable operation can be quite small, due to the interaction
between the different stages.

However, to allow larger variations of the parameters, there is a
necessity to extend these design limits. For some controllers
specific strategies have been already developed (e.g. the addition of
a compensating ramp to the reference signal in current mode
control) to extend these design limits, but these are not general in
nature. Therefore, it is necessary to develop methods of avoiding
these non-linear instabilities that can be applied across different
systems and controllers. In [10–13], some preliminary work along
this line was reported and was applied to the simple dc–dc
converter, e.g. buck and boost. The purpose of this paper is to
present the approach in a general framework (both theoretically
and experimentally) and to provide guidelines for the design of a
controller chip that can implement these ideas. Unlike the existing
general chips [14, 15] and application specific chips [16, 17], the
proposed chip will provide the reliable stable operation for larger
parameter ranges by tuning the external resistors proposed
controller chip only.

Notable is the fact that the proposed techniques will be effective
at steady state and in no way interfere with targeted transient
performance set by suitable compensator. Moreover, the proposed
techniques are different from the chaos control methods proposed
earlier [17] that aim at locating and stabilising unstable periodic
orbits. Our approach is based on the Filippov method, where the
stability of the system is given by the eigenvalues of the
monodromy matrix, which is a combination of the state transition
matrices and saltation matrices. By suitable manipulation of the
individual components of the saltation matrices, stability margin of
the system can be extended in practice which in turn increase the
useful parameter range. All these methods are validated
experimentally in a system of voltage-mode controlled cascaded
buck–buck converters.

The rest of the paper is organised as follows. Section 2 presents
an overview of stability analysis of periodic orbits using Filippov
method. In Section 3, it has been shown that the instabilities can be
controlled by three different techniques, each of which exercise
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control over a specific component of the saltation matrix. In
Section 4, an example is considered, the voltage-mode controlled
cascaded buck–buck converter, to validate the three specific control
methods. The experimental results along with the implementation
circuit diagram with different IC chips for different functions are
presented in Section 5. In Section 6, an approach to implement the
above ideas in a single controller chip is outlined. Finally, in
Section 7 the conclusions are listed.

2 Stability analysis of a periodic orbit
As shown in Fig. 1a, the periodic orbit comprises transitions
through a number of subsystems given by different sets of
differential equations, and across switching events. For example, in
a simple buck or a boost converter the subsystems are the ON and
OFF conditions of the switch, and the switchings are the transitions
from the OFF state to the ON state and vice versa in continuous
conduction mode (CCM). In a more complicated converter like a
resonant converter, there may be a large number of subsystems and
switching transitions within a cycle. Subharmonic oscillations or
slow-timescale oscillations occur when such a periodic orbit loses
stability. The information about the stability of a periodic orbit is
contained in the state transition matrix computed over a complete
cycle. The periodic orbit in continuous time is nothing but the fixed
point (x(0) = x(Ts)) in the map obtained by sampling the state in
synchronism with the clock period Ts. The state transition matrix
computed over a complete cycle is nothing but the Jacobian matrix
of the map computed at the fixed point. If the magnitude of all the
eigenvalues of this matrix are below 1, the periodic orbit is stable. 

According to the Filippov approach, the state transition matrix
across a full cycle (also called the monodromy matrix) can be
calculated as a product of the state transition matrices across each
subsystem (denoted as Φi, where i identifies the subsystem) and
the state transition matrices across the switching events called
saltation matrices (denoted as Si, j for transition from the ith

subsystem to the jth subsystem). Thus, an orbit that goes through
m subsystems, the monodromy matrix can be written as

Φcycle = Φm ⋅ Sm − 1, m ⋅ Φm − 1⋯Φ2 ⋅ S1, 2 ⋅ Φ1 (1)

Most power electronic systems are composed of linear subsystems.
In that case, the state transition matrices across the subsystems are
given by exponential matrices

Φi = eAit

where Ai is the state matrix for the ith subsystem.
Now let us consider the state transition matrix across switching

events. Suppose there is a switching causing transition from the ith

subsystem to the jth subsystem when a condition h(x, t) = 0 is
satisfied. For example, if the switching occurs when the control
voltage equals a ramp waveform voltage, i.e. vcon − vramp = 0, then
the switching function h(x, t) is vcon − vramp. Suppose that the state
equations for the two subsystems are given by

Subsystem i: ẋ = f i(x, t) = Aix + Biu (2)

Subsystem j: ẋ = f j(x, t) = Ajx + Bju (3)

Then the saltation matrix across the switching event is given by
[18]

Si, j = I + ( f j − f i)n⊺

n⊺ f i + ∂h/∂t
(4)

where I is the identity matrix of the same order as the number of
state variables, h(x, t) = 0 represents the switching condition which
defines a hyper surface in the state-space of the system, n is the

Fig. 1  Schematic diagram of a periodic orbit, switching event and its orientation in a switch-mode converter
(a) Evolution of the state vector x in the state space, (b) Enlarged view of switching event h(x, t) = 0, (c) Orientation of switching surface when vcon depends on only one state
variable (blue) and more than one state variable (black), (d) Different PWM methods: trailing edge and dual edge (colour online)
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vector normal to the switching surface and n⊺ is its transpose. Some
of the components of the saltation matrix are shown in Fig. 1b.

The switching conditions can be of two types:

(a) state-induced switching, where switching occurs when some
condition on the state variables is satisfied (e.g. the inductor
current reaching a reference value),
(b) time-induced switching, where switching occurs when some
condition on time is satisfied (e.g. turning the switch on
periodically).

The expression (4) gives the state transition matrix for state-
induced switching transitions. For time-induced switching the Si, j
matrix is unity [10]. The periodic orbit becomes unstable when any
of the eigenvalues of the matrix Φcycle goes out of the unit circle.
This can happen in three different ways:

• if an eigenvalue becomes equal to −1, a subharmonic oscillation
sets in;

• if an eigenvalue becomes equal to +1, a saddle-node bifurcation
happens;

• if a pair of complex conjugate eigenvalues has a magnitude of
unity, a slow-timescale oscillation sets in.

3 Control of instabilities using saltation matrix
At first, it is to be noted that the matrix Φcycle that ultimately
decides the stability of the orbit is composed of two types of
component matrices: the state transition matrices Φi along the
subsystems, and Si, j for transitions across subsystems. We now
focus on each one, individually.

The current practice of power electronic design is aimed at
deciding the parameter values that appear in the state matrices Ai.
These include the values of the inductances, capacitances, the
compensator parameters and so on. We propose to keep these
design procedures unaffected, and so do not aim at making any
alteration in the state transition matrices Φi. This ensures that the
ripple magnitudes and the transient performance – aimed at which
the controller was designed – remains unchanged.

Our proposed techniques focus on making small alterations in
the matrices Si, j to push the eigenvalues of the monodromy matrix
inside the unit circle. Since the state transition matrix across a
time-induced switching transition is an identity matrix, it is further
narrowed down on the events of state-induced switching.

Upon a closer examination of the expression (4) it has been
noticed that it is composed of the following components:

f i, f j: the right-hand side of the state equations before and after
switching.
n: the vector normal to the switching surface.
∂h/∂t: the rate at which the switching surface h(x, t) moves with
respect to time.

Out of these, f i (or Ai and Bi) and f j (or Aj and Bj) contain the
design parameters, which were decided to leave unaltered.
Therefore, the control of instabilities can be affected by the
remaining two components, ∂h/∂t and n. In the following sections,
we illustrate various ways in which these two can be altered, and in
a given situation any of these possibilities can be adopted
depending on the preference of the designer.

3.1 Controlling the normal vector n

The normal vector depends on the orientation of the switching
surface in the state space as illustrated in Fig. 1c. Consider a
voltage mode controlled buck converter with a proportional
controller Kp. The control voltage vcon = Kp(Vref − vo) is dependent
on the output voltage alone. Therefore, in the capacitor voltage
versus inductor current state space, h(x, t) = vcon − vramp will be a
straight line parallel to the inductor current axis for an ideal
capacitor (equivalent series resistance = 0). The vector n normal to

that is parallel to the voltage axis. Due to the time variation of
vramp, the function h sweeps through the state space, and switching
occurs when it meets the state point.

It is clear that, so long as the control voltage is generated
through capacitor voltage feedback alone, the orientation of the
switching function h will be the same (shown by blue colour). If
the inductor current iL is also used to generate the control signal
vcon, the orientation of h will change (shown by black colour) and
the expression of vcon becomes as follows:

vcon = Kp(Vref − vo) − KiLiL

where KiL is the gain for current feedback. If a proportional–
integral (PI) controller is used for the voltage loop together with
current feedback, the expression becomes

vcon = Kp(Vref − vo) + Ki∫ (Vref − vo) dt − KiLiL

where Ki is the integrator gain. The integrator has an associated
state variable ρ = ∫ (Vref − vo) dt. The new switching surface is

h(x, t) = vcon − vramp = Kp(Vref − vo) + Kiρ − KiLiL − vramp

Therefore, the normal vector to the switching surface is given by

n =
∂h/∂vo

∂h/∂iL
∂h/∂ρ

=
−Kp

−KiL

Ki

By controlling the ratio of Kp and KiL, the normal vector can be
controlled. This approach is particularly applicable in situations
where the current signal is available in the voltage across the
capacitor, because of the equivalent series resistance (ESR) of the
capacitor [19].

3.2 Control of ∂h/∂t

In case of pulse-width modulation (PWM) techniques, the
switching surface sweeps through the state space. For example, in a
voltage mode controlled converter, the switching occurs when the
control voltage equals the ramp voltage

h(x, t) = vcon − vramp

= vcon − VL + (VU − VL) t
Ts

mod 1 (5)

The expression (5) shows that the time dependence of h depends on
both the control voltage and the ramp voltage. The lower and upper
thresholds of the vramp are denoted by VL and VU, respectively, and
Ts is the clock period.

3.2.1 Slope control of vramp: In a voltage mode controlled
converter, the switching surface h(x, t) sweeps through the state
space at a speed of

∂h
∂t = − VU − VL

Ts

This is nothing but the slope of the ramp waveform. This slope can
be altered by making small changes in (VU − VL) while keeping the
clock period constant, or by varying the clock period Ts while
keeping amplitude of the ramp signal constant. The second option
may not be desirable because the EMI filters are tuned to the clock
frequency.

It is interesting to note that in current mode control, the widely
known technique of adding a stabilising ramp achieves exactly this,
as it induces a change in ∂h/∂t. In this paper, we are generalising
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the idea, to make it applicable to any converter and control
strategy.

3.2.2 Addition of external signal with vcon: Normally, the control
voltage is generated through a linear compensator using the
feedback of the output voltage and eventually the inductor current
that needs to be regulated. Therefore, vcon does not have any
explicit dependence on time. However, the injection of a time-
varying signal can make vcon explicitly dependent on time, which
can act as a lever in controlling ∂h/∂t.

An interesting possibility is offered by the injection of a
sinusoidal signal synchronised with the clock frequency f s (or at an
integer multiple of the clock frequency). It has been shown earlier
that this strategy can effectively increase the parameter range for
stable operation [10, 12]. Suppose that the injected signal is given
by q(t) = asin(ωst + θ) where ωs = 2π f s. In order to be used as an
effective stabilisation strategy, the design guideline has to take into
account the following considerations. First, this injected signal is
not likely to be invasive of the desired steady-state operation and
therefore to alter the duty ratio in the steady state. Therefore, its
value should be zero at the switching instant, i.e.

sin(ωst + θ) = 0 at the switching instant

or, θ = − 2π where d is the duty ratio. The steady-state duty ratio
can be calculated using the information about the input voltage and
the demanded output voltage, which can be used to set the phase of
the injected sinusoidal signal. Second, a maximum effect on ∂h/∂t
at the switching instant is desired. This is automatically guaranteed
if the injected signal is a sinusoid, because the derivative is a
cosinusoid, which assumes a maximum value when the signal itself
has zero value.

3.2.3 Utilising the edges of triangular wave: Fig. 1d shows two
different pulse-width modulation (PWM) methods: trailing edge
and dual edge which can give different stability margins. If a ramp
waveform with an instantaneous reset (trailing edge) is used to
generate the PWM, the first switching within a clock cycle is a
state-dependent switching and the second one is time dependent.
Thus, saltation matrix across the second switching is always an
identity matrix. However, if the trailing edge of the waveform does
not drop instantaneously and goes through a steady decline with a
definite slope (dual edge), one can have state-dependent switching
there also. Thus, there would be a non-identity state transition
matrix at the second switching event within a clock cycle, and that
would have an effect on Φcycle, which can be used to push the
eigenvalues into the unit circle. Note here that the number of
subsystems within a switching cycle increases and the dynamics of
the overall system will change. This fact has to be taken into
account when designing the controller.

In all practical analogue implementations, the trailing edge of
the PWM waveform is generated by discharging a capacitor –
which cannot happen instantaneously. Therefore, to implement the
proposed strategy, all that one has to do is to enforce a state-
dependent switching. In digital implementations, the sampling
must be done when there is no ringing noise and the easiest way to
implement this is by changing the ramp waveform to a triangular
wave (dual edge).

4 Example: cascaded buck–buck converter
Cascaded converters are used in many applications such as
telecommunication systems, computers and military applications
(space stations, aircraft, ships) [20]. It has flexible configuration,
high efficiency and reduced weight and size. Many criteria have
been proposed [21] to analyse the stability of such systems, e.g.
impedance criterion, phase margin and gain margin criterion, the
opposing argument criterion, the energy source analysis, the
maximum peak criterion. The authors in [22, 23] have shown, with
counter-examples and case studies, that these methods are not
applicable to all power electronic systems in general. Some
alternate stability assessment methods are also available [24–26].

However, in these methods, the switching dynamics implicitly
appear in the expressions, and so these are difficult to apply in
complex systems with a large number of switching in a cycle.

The proposed techniques in this paper have been illustrated with
a cascade connection of two buck converters which is used in
applications that require a low output voltage. More specifically,
there is a standard voltage mode controlled buck converter with PI
compensator followed by another one as shown in Fig. 2a. Unlike
the approximate linearised state-space averaged model which
neglects the switching dynamics, we have used an exact model of
the overall switched non-linear system considering the interaction
between two stages. 

So far most of the research on cascaded converters has been
done for the converters operating in CCM, feeding constant power
loads. In this paper, a system is considered in which the first
converter operates in discontinuous conduction mode (DCM) and
the second in CCM – a configuration on which very few reports are
available [27, 28]. In this system there are eight subsystems, and
there can be many switching events within a clock cycle. Such a
system is very difficult to analyse using the methods mentioned
earlier. However in our approach, the complexity of the system
does not increase the complexity of the model.

4.1 System description

As shown in Fig. 2a, both the switches S1 and S2 are driven by
pulse-width modulated switch signals u1 and u2. These signals are
generated by comparing the control voltage vcon with a ramp signal
vramp. When vcon is greater than vramp, the switch signal u is ‘HIGH’
and is ‘LOW’ otherwise. The PI compensators are used to get zero
steady-state error for both the output voltages. To prevent multiple
switching within a clock cycle S-R flip-flops (FF1 and FF2) have
been introduced.

For the first converter, the control voltage and the ramp voltage
are given by

vcon1 = Kp1(Vref1 − vo1) + Ki1∫ (Vref1 − vo1) dt

vramp1 = VL1 + (VU1 − VL1) t
Ts

mod 1

where Kp1 and Ki1 denote the proportional and integral gains,
respectively, vo1 is the output voltage, VL1 and VU1 are the threshold
voltages of the ramp and Ts is the switching period.

4.2 Mathematical modelling

The power stage of the system (Fig. 2a) is described by the
following set of differential equations:

diL1

dt = 1
L1

−vo1 + u1Vin , dvo1

dt = 1
C1

iL1 − u2iL2 , (6)

diL2

dt = 1
L2

u2vo1 − vo2 , dvo2

dt = 1
C2

iL2 − vo2

RL
(7)

where u1 = 1 and u2 = 1 if both the switches S1 and S2 are ON
(u1 = 0 and u2 = 0 if S1 and S2 are OFF).

The two integrators of the PI compensators are given by the
following state equations:

dρ1

dt = Ki1[Vref1 − vo1],
dρ2

dt = Ki2[Vref2 − vo2] . (8)

For different operating conditions there are different switch signals
u (subsystems Mk) as given in (Table 1). For two switches (S1 and
S2), 22 different set of linear differential equations are possible in
CCM. In DCM of the first stage (iL1 = 0, both S1 and D1 are OFF),
the number of subsystem increases by four (Table 1). 
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As shown in Fig. 2b, when the first stage is in DCM there are
four subsystems (M3 − M1 − M0 − M4) within a switching cycle (or
clock period) for a typical steady-state operation.

Each subsystem is represented using state-space model as

Mk: ẋ = Akx + bku

where x = iL1 vo1 ρ1 iL2 vo2 ρ2
⊺, u = Vin Vref1 Vref2

⊺.
The subsystems Mk are defined in Table 1 and some of them are
appearing in a typical steady state and are shown in Fig. 2b.

The transitions between subsystems occur after satisfying
switching conditions which change the status of the switch signals.
Therefore, the switching instants can be determined from the
following switching conditions:

h1:vcon1 − vramp1 = 0, h2:vcon2 − vramp2 = 0, h3: iL1 = 0.

4.3 Design of the overall system

Based on the specifications (Table 2a), the design values of the
power stage and controllers are given in Table 2b. The current
ripple in the second stage is kept within ±20% of the output current
(Fig. 3). 

With a set of parameters given in Table 2b, the first stage is in
DCM and the second stage is in CCM. The stable region has been

Fig. 2  Cascaded buck–buck converters with voltage mode control
(a) Closed-loop circuit diagram, (b) Nominal period-1 waveforms of the control voltages, ramps and currents when the first converter is in DCM and the second converter is in CCM,
(c) Stable region in the Kp1 − Kp2 parameter space with Vin = 24 V, RL = 5 Ω, (d) Stable region in the Vin − RL parameter space with Kp1 = Kp2 = 2. Other parameters are given in
Table 2b

 
Table 1 Status of switch signals and different subsystems in CCM and in DCM of the first stage
u2 u1 iL1 Mk u2 u1 iL1 Mk

0 0 >0 M0 0 0 0 M4

0 1 >0 M1 0 1 0 M5

1 0 >0 M2 1 0 0 M6

1 1 >0 M3 1 1 0 M7

 

Fig. 3  Bifurcation diagram and waveforms
(a) Bifurcation diagram with Vin as varying parameter, (b) waveforms at Vin = 20 V, slow-time-scale or quasi-periodic oscillations, (c) Waveforms at Vin = 30 V, subharmonic
oscillation. Other parameters are given in Table 2b

 
Table 2a Continued
(a) Specifications
Specifications Values
input voltage Vin = 24 V
output voltage (first stage) vo1 = 12 V ± 5%
output voltage (second stage) vo2 = 5 V ± 1%
output power Po2 = 5 W
switching frequency f s = 10 kHz
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shown in the parameter space of proportional controller gains
(Fig. 2c). If Kp1 is increased beyond 5.82, a border collision
bifurcation occurs resulting in chaotic oscillations. The stable
region in the Vin − RL parameter space is shown in Fig. 2d. If RL is
held at 5 Ω the system is stable over a small range of input voltage
[23.33, 26.90] V. As shown in Fig. 3a, Vin goes below 23.33 V, a
slow-timescale instability sets in through a Neimark–Sacker
bifurcation (Fig. 3b), and as Vin goes above 26.90 V, a period
doubling bifurcation occurs resulting in subharmonic oscillations
(Fig. 3c). The calculated eigenvalues of the monodromy matrix for
different input voltages are given in Table 3. 

4.4 Avoiding instabilities

Fig. 4 shows the increase of stability limits using three different
techniques: with an injected sinusoidal signal (Fig. 4a), by

changing the ramp threshold voltages (Fig. 4b), and by current
feedback (Fig. 4c). It is clear that the stable range of the input
voltage has increased in all the cases. It can be noted that the phase
of the injected sinusoidal signal is zero. This value was used
because it is easy to implement, though, as we have seen earlier in
Section 3.2.2, this method has maximum effect if θ = 2π where d is
the duty ratio of the converter. 

Fig. 4d shows that, when all the proposed techniques are
applied simultaneously, an even higher range of input voltage for
stable operation can be obtained. The waveforms for the steady-
state period-1 operation at Vin = 15 V and Vin = 60 V are given in
Figs. 5a and b, respectively. After applying sinusoidal injection and
current feedback mechanisms the control voltage is modified as
vcon1 = Kp1(Vref1 − vo1) + ρ1 + asin(2π f st) + KiL1

iL1, where integral
state ρ1 = Ki1∫ (Vref1 − vo1) dt. The amplitude of the ramp voltage
vramp1 is increased by changing the difference of the thresholds
(VU1 − VL1). The calculated eigenvalues of the monodromy matrix
for different input voltages are given in Table 4. This shows that
one chip with all these facilities (Fig. 5c) can be very useful in
control-oriented design of the converters that can operate stably
over very large parameter ranges as given in Fig. 5d. Note that the
region delimited by black lines increases to that delimited by blue
lines as a result of the proposed control. 

5 Experimental validation using discrete
components
In this section, theoretical results corresponding to the cascaded
buck converter has been validated using an experimental prototype.
The parameter values for the power stage and controller stage are
given in Table 2b. The schematic diagram of the system with the
conventional voltage mode controller with PI compensator is
presented in Fig. 2a and that incorporating the proposed control
methods is given in Fig. 5c. The circuit implementation with
discrete components for the controller of the first stage is shown in
Fig. 6. Relatively higher values of the output capacitors
(C1 = 100 μF, C2 = 80 μF) were chosen to keep the voltage ripples
(±0.1 V) within the limit in presence of ESR (rC1 = 0.2 Ω,
rC2 = 0.15 Ω). The metal–oxide–semiconductor field-effect
transistor (MOSFET) switches S1 and S2 are realised using IRF640
(RDS ON = 0.15 Ω) which are driven by driver IC IR2110. Two E-
type Ferrite core inductors with values 0.7 mH (rL1 = 0.12 Ω) and

Table 2b System design
(b) Parameter values for power-stage and controllers
Parameters Values
inductors L1 = 0.70 mH, L2 = 1.5 mH
capacitors C1 = 50 μF, C2 = 50 μF
output resistor RL = 5 Ω
voltage references Vref1 = 12 V, Vref2 = 5 V
threshold of the ramps VU1 = VU2 = 2.5 V, VL1 = VL2 = − 2.5 V
proportional gains Kp1 = Kp2 = 2
integral gains Ki1 = Ki2 = 1000 s−1

 

Table 3 Eigenvalues for different values of Vin corresponding to Fig. 3a
Vin, V Orbit Subsystem sequence Eigenvalues
20.00 unstable period-1 M3 − M1 − M0 0.1860 ± 0.9879j (≃ 1.0053), 0.5590 ± 0.6395j, 0.9561, 0.9617
23.32 unstable period-1 M3 − M1 − M0 0.1012 ± 1.0028j (≃ 1.0078), 0.5566 ± 0.6391j, 0.9553, 0.9618
23.33 stable period-1 M3 − M1 − M0 − M4 0.9572 ± 0.0048j (≃ 0.9572), 0.5553 ± 0.6119j, 0.1407, 0
24.00 stable period-1 M3 − M1 − M0 − M4 0.9571 ± 0.0045j (≃ 0.9571), 0.5556 ± 0.6127j, 0.1121, 0
26.90 stable period-1 M3 − M2 − M0 − M4 −0.9995, 0.5709 ± 0.6074j (;0.8336), 0.9555, 0.9541, 0
26.91 unstable period-1 M3 − M2 − M0 − M4 −1.0002, 0.5708 ± 0.6074j (≃ 0.8335), 0.9555, 0.9541, 0
26.91 stable period-2 M3 − M2 − M0 − M4 − M3 − M1 − M0 − M4 −0.0430 ± 0.6801j (≃ 0.6815), 0.9133, 0.9096, 0.0159, 0
30.00 stable period-2 M3 − M2 − M0 − M4 − M3 − M1 − M0 −0.2451, −0.0643 ± 0.7075j (≃ 0.7104), 0.9161, 0.9106, 0
35.00 stable period-2 M3 − M2 − M7 − M4 − M3 − M2 − M0 −0.2705, −0.0614 ± 0.6967j (≃ 0.6994), 0.9111, 0.9128, 0

 

Fig. 4  Bifurcation diagrams with Vin as varying parameter
(a) With sinusoidal injection (a = 0.2, θ = 0), (b) With ramp thresholds
VU1 = VU2 = 5 V and VL1 = VL2 = − 5 V, (c) With current feedback
KiL1 = KiL1 = 0.5, (d) Applying all the methods together

 

IET Power Electron., 2017, Vol. 10 Iss. 13, pp. 1778-1787
© The Institution of Engineering and Technology 2017

1783



1.5 μH (rL2 = 0.22 Ω) were fabricated with maximum current
rating of 3 A. The diodes D1 and D2 are realised by Schottky diode
SR240 with forward voltage drop of 0.5 V. In the controller stage,
IC ICL8038 is used to get synchronised clock, ramp and sinusoidal
signals. The rising slope, falling slope and frequency of the ramp
are controlled by RA, RB and C f , respectively. For the realisation of
the error amplifier, the compensators, addition, subtraction and so
on, the operational amplifier TL084 is used. The gains of the PI
compensators are obtained from the values of capacitors and
variable resistors around the op-amps. The current through
inductors are measured using LEM HY 5-P (bandwidth 50 kHz).
The comparator IC LM311 compares the control voltage with the
ramp voltage. For realisation of S-R flip-flop, IC CD4013 is used.
At the start of the clock period, the output (pin 2) is set high with
the rising transition of the clock (CLK) when data input (pin 5) is
grounded. Resetting of the output (pin 2) is accomplished by the
high level of the comparator to the pin 6. 

By setting Kp = 4 and Ki = 1000 s−1, the waveforms of the
system show period-1 behaviour for both the stages at Vin = 24 V
as shown in Fig. 7a. Now starting with this nominal voltage
Vin = 24 V, the second stage buck converter has output ripple
voltage within 0.1 V (Fig. 7b). With the decrease of the input
voltage, at Vin = 16 V a slow-scale oscillation is introduced in the
output voltage (Fig. 7c). The output voltage ripple now increases to
0.36 V. On the other hand if the input voltage increases, a fast-
timescale subharmonic oscillation sets in (current waveform in
Fig. 7d) at Vin = 32 V. 

After applying three control mechanisms: current feedback,
sinusoidal injection and increasing the ramp amplitude, the system
is stable for the large input voltage range as shown in Figs. 8a and
b. Qualitatively, the simulation and experimental results without
the proposed control mechanisms and with control mechanisms are
in good agreement. 

6 Design of a single controller chip
We propose to implement all the above ideas in a single voltage
mode controller chip (Fig. 8c) with which converters of very large
operating ranges can be designed. A controller chip for current
mode control can be produced in a similar manner.

Design guidelines for the controller chip are as follows:

• In the available chips [14, 15], the frequency can be set using
the external resistor and capacitor. There is no facility of
controlling the amplitude of the ramp signal.

In the proposed chip, as shown in Fig. 8c, the generation of a
ramp with amplitude control facility (pin 13) is needed using a
resistor Rr in addition to the control of the frequency. Suitable
components resistors (RA, RB) and capacitor (C f ) are connected
externally to determine the frequency of the ramp. To set the
value of the frequency, capacitor C f  is connected to pin 8 and to
control the slope of rising edge (pin 6), falling edge (pin 7) of
the ramp independently, tuning of variable resistors RA and RB is
needed.

• Generation of a sinusoidal voltage (pin 9) at the same frequency
of the ramp. To control the phase (pin 10) of the sinusoid, one
can use the traditional constant-amplitude phase shifter in which
the phase shift is changed manually by tuning a variable resistor
(Rs) [29].

• To prevent multiple switchings an S-R flip-flop along with the
clock is needed. In between pins 4 and 5 different compensators
such as type II, type III can be added externally using op-amps,
resistors and capacitors. In this paper, we use PI compensator as
shown in Fig. 6.

• To generate a fixed and stable reference voltage (Vref) inside the
chip, a regulator is used which uses supply voltage at pin 1. At
pin 2 (FB1), output voltage (vo) is fed through a voltage divider,
i.e. a tunable resistor (Rfv) to compare with the reference
voltage. The maximum gain of the feedback gain-setting circuit

Fig. 5  Waveforms of the modified circuit and its stability
(a) Waveforms at Vin = 15 V, period-1, (b) Waveforms at Vin = 60 V, period-1, corresponding to Fig. 4d. Other parameters are given in Table 2b, (c) Closed-loop circuit of voltage
mode controlled cascaded buck–buck converters with sinusoidal injection, current feedback and increment of ramp amplitude (brown colour), (d) Stable regions in the parameter
space Vin − RL

 
Table 4 Eigenvalues with variation of Vin corresponding to Fig. 4d
Vin, V Orbit Subsystem sequence Eigenvalues
15 stable period-1 M3 − M1 − M0 0.9654 ± 0.0007j (≃ 0.9654), 0.4847 ± 0.8305j, 0.6772 ± 0.4768j
24 stable period-1 M3 − M1 − M0 − M4 0.9630 ± 0.0076j (≃ 0.9630), 0.6538 ± 0.4614j, 0.5033, 0
40 stable period-1 M3 − M1 − M0 − M4 −0.1766, 0.6802 ± 0.4612j (≃ 0.8218), 0.9604, 0.9575, 0
50 stable period-1 M3 − M2 − M0 − M4 −0.4521, 0.6809 ± 0.4652j (≃ 0.8246), 0.9623, 0.9553, 0
60 stable period-1 M3 − M2 − M0 − M4 −0.6907, 0.6810 ± 0.4676j (≃ 0.8261), 0.9629, 0.9545, 0
75 stable period-1 M3 − M2 − M0 − M4 −0.9968, 0.6809 ± 0.4699j (≃ 0.8273), 0.9634, 0.9539, 0
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is 1. The designer can choose reference voltage from wide range
of values by selecting minimum gain within practical limits.
Similarly, the current is fed back at pin 3 (FB2) through a tunable
resistor Rfi.

• The output signal of the compensator, current feedback signal
and sinusoidal signal are added to generate control signal which
is compared with the ramp. The output of the S-R flip-flop is
available at pin 12 which drives the gate of the MOSFET. The

GND and negative supply −VCC of the chip are available at pin
14 and pin 11, respectively.

7 Conclusion
In this paper, we have proposed the design guidelines of a
controller chip that can drastically increase the operational
parameter ranges of power electronic systems, especially the
complex converters like cascaded converters, resonant converters

Fig. 6  Implementation of the proposed control mechanisms for the first stage of the voltage mode controlled cascaded buck converter using different IC chips
for different functions

 

Fig. 7  Experimental waveforms with conventional PI compensator for
(a) Both the stages when the first converter is in DCM and the second converter is in CCM. The control voltages (magenta), ramps (yellow), gate signal to the MOSFETs (violet) and
currents (green),
(b) The second stage buck converter at Vin = 24 V, period-1,
(c)Vin = 16 V, slow-timescale (quasi-periodic) oscillation,
(d) Vin = 32 V, period-2. Clock signal (yellow), gate signal of the MOSFET (violet), inductor current (green), output voltage (magenta) (colour online)
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and microgrids. The three techniques by which one can manipulate
the terms that appear in the saltation matrices can be integrated in a
single chip. These have been done in such a way that specific
implementations will only need one to choose the external
resistances appropriately. This approach can control both fast-scale
as well as slow-scale instabilities, without changing the intended
transient and steady-state performances. The idea has been
experimentally validated using a system of cascaded buck
converters, by implementing the controller with discrete
components. The basic purpose of this paper was to present a
proof-of-concept on the basis of which a chip development effort
could be undertaken. The function of the proposed controller chip
is the cumulative effect of the functions of all the discrete
components. The experimental results using discrete components
show that the idea is feasible. The fabrication and testing of such a
chip are left for future work.
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