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Abstract: Distributed power systems are considered to be a key element of future power grids. Their main characteristic is
the local production and consumption of energy that is accomplished using a number of power converters that
interconnect local sources and loads. In this paper, a current mode controlled dc–dc converter which feeds another
current mode controlled dc–dc converter is considered to meet the demands of the load. It shows that the existence of
the second converter at the output has destabilising effect on the overall system. Such a system may also exhibit
interactions of various types of instability that conventional modeling methods cannot predict. Slow-timescale
oscillation in standalone switching converters is usually attributed to the occurrence of a Neimark–Sacker bifurcation of
the fundamental periodic orbit of the discrete-time model of the system. But in the studied cascaded system,
the underlying mechanism is quite different. This paper fully explains the mechanisms as well as the conditions of the
occurrence of such instabilities by employing the analytical and numerical tools of the exact switched model of the
system. These results can be useful for developing design guidelines to avoid such problems. Finally, the results have
been validated experimentally.
1 Introduction

While existing electrical grids are designed for centralised power
generation, distributed power systems (DPSs), with renewable
energy sources, are changing this paradigm. In DPS, photovoltaic
arrays, wind turbines and batteries are used to feed a main (dc or ac)
bus connected to its loads, as well as the utility grid, forming the
so-called nanogrid or microgrid [1].

Owing to their modular approach, DPS have many advantages
compared with a conventional centralised power system such as
higher efficiency, better reliability, higher power density, faster
response and better standardisation. In these applications, instead
of using a single bulky power supply to provide the final voltages/
currents required by the load, the power processing tasks are
distributed among many power processing modules, i.e. several
power converters are connected together either in series, cascade
or in parallel. One of the major requirements in such power
networks is that the overall system is stable and operates with high
efficiency.

The stability analysis of cascaded switching converters can be
dated back to the input filter designs of switching regulators in
1970s when it was observed that an input filter added to a buck
converter leads to a change of the original control loop gain and
finally to performance degradation [2, 3] which can be predicted
by using the minor loop gain (MLG), i.e. the ratio of the output
impedance of the source converter to the input impedance of the
load downstream converter. However, obtaining the total loop
gains in addition to the MLG is a tedious task because both the
output impedance for the upstream first stage and the input
impedance for the downstream second stage are needed in addition
to the two separate total loop gains of the two cascaded converters
[3]. Furthermore, this type of linear analysis cannot predict many
of the non-linear phenomena that the system can exhibit.
Non-linear average modelling and analysis have been used in [4]
to study the dynamical behaviour of cascade-interconnected
converters. A bifurcation approach has been used in [5] where
Hopf bifurcation has been accurately predicted for two cascaded
buck converters under voltage mode control (VMC). Similar
behaviour has been reported in [4, 6] for a cascaded system in
which the second stage under a VMC was approximated by
constant power load and an averaged modelling approach was
used to predict the dynamical behaviour of the complete system.
Since averaged models were used in the earlier works, only
slow-scale instability phenomena have been analysed.

On the other hand, during the past couple of decades, much effort
has been devoted to the study of both fast-scale and slow-scale
non-linear behaviours in single dc–dc switching converters [5, 7–
13]. A large variety of different complex non-linear instability
phenomena such as period doubling (PD) leading to subharmonic
oscillations and chaotic behaviour characterised by an undesirable
large current ripple [7, 8], Hopf (or Neimark–Sacker) bifurcations
leading to extra low-frequency high amplitude oscillation [10] and
saddle-node (SN) bifurcation [11] due to coexistence of different
steady-state solutions have been reported in switched-mode dc–dc
converters. These studies, which are mostly based on accurate
approaches such as discrete-time mappings [7, 8] or the Floquet
theory together with Filippov’s method [13], allow a deep
understanding of the fundamental properties describing the
non-linear dynamic behaviour of these systems.

Part of previous studies has focused on the mechanisms by which
bifurcations can lead to the appearance of quasi-periodic or
mode-locked periodic dynamics as a pair of complex conjugate
Floquet multipliers (eigenvalues for the discrete-time mapping) of
a stable periodic orbit crosses the unit circle in the complex plane.
Such a process represents a Neimark–Sacker bifurcation of the
discrete-time model of the switching converter. This is the case,
for instance, of the cascaded buck converter considered in [5], the
current mode controlled cascaded boost converter in [14], the cage
induction motor drive system [15], the multilevel buck converter
[10] and the dc power networks for transportation systems [16].
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Interaction of the torus with PD instability has also been reported
recently in [17–20] where different interaction mechanisms have
been identified.

On the one hand, there have been many research efforts devoted to
stand-alone and paralleled dc–dc converters [21] using non-linear
techniques. Many researchers have investigated cascaded
converters using conventional linear techniques [22–25]. The
objective of the present paper is to apply the recently developed
non-linear analysis techniques to cascaded converters.

Some initial study by the authors was presented in [26]. In the
present paper, we thoroughly study and expand the previous
analysis and fully explain the originally reported phenomena
which are different from that of a stand-alone buck converter
loaded by a constant resistance. First, it will be shown that the
system may present some complex phenomena due to the
interaction of the two stages. In particular, it will be shown that
when a buck converter under a peak current mode control
(PCMC) is loaded by a boost converter under a type-II average
current mode control (ACMC), the well-known subharmonic
oscillation that occurs in stand-alone converters, does not occur.
Instead, a coexistence of fast-scale and slow-scale instabilities
takes place. Such interactions between bifurcations have also been
reported in other publications (see [17, 18]). We show that in this
system the mechanism of the interaction between fast- and
slow-scale dynamics is completely different.

The rest of this paper is organised as follows: Section 2 deals with
the description of the system under study. The bifurcation
phenomena exhibited by the system are shown in Section 3 and
then explained in Section 4 in terms of Floquet multipliers,
corresponding to different kinds of T-periodic and 2T-periodic
orbits. Design-oriented stability boundaries are plotted in the same
section. The bifurcation scenario responsible for the interaction is
also explained. In Section 5, we use a laboratory prototype of
cascaded buck–boost converter to experimentally show the
occurrence of interaction of different types of instabilities. Finally,
some concluding remarks are presented in the last section.
2 Current mode controlled interconnected buck
and boost converters

2.1 System description

In this paper, a two-stage dc–dc power converter is considered
(Fig. 1) which consists of a cascade connection of a buck
converter acting as a line conditioner and a boost converter acting
as a point of load converter under an ACMC for supplying a load
requiring a regulated current instead of a regulated voltage. In
modelling the system, the switches and diodes are considered ideal
Fig. 1 Buck converter loaded by boost converter both under CMC
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and the equivalent series resistances (ESRs) of inductors and
capacitors are included. By applying Kirchoff’s current and
voltage laws to the circuit depicted in Fig. 1, the system can be
described by the following set of equations

dvC1
dt

= iL1 − iL2
C1

(1a)

diL1
dt

= vg
L1

u1 −
vC1
L1

− rL1iL1
L1

− rC1(iL1 − iL2)

L1
(1b)

dvC2
dt

= k2iL2
C2

(1− u2)−
vC2

C2(R+ rC2)
(1c)

diL2
dt

= vC1
L2

+ rC1(iL1 − iL2)

L2
− (1− u2)k2

vC2
L2

+ rC2iL2
L2

( )

− rL2iL2
L2

(1d)

where vC1, iL1, vC2 and iL2 are the state variables of the power stage
that stand for the capacitor voltages and the inductor currents in the
first and the second stages, respectively. The variables u1 and u2 are
the binary command signals used to drive the switches S1 and S2,
respectively, R is the load resistance of the second stage and vg is
the input voltage of the first stage. L1, L2, C1 and C2 are the
inductances and the capacitances of the first and the second stages,
rL1, rL2, rC1 and rC2 being their ESRs and k2 = R/(R + rC2).

The inductor current in the first stage is being controlled by a
typical peak current mode controller (PCMC) with an artificial
T-periodic ramp compensator ia1(t) with slope ma1. Since boost
converters are non-minimum phase systems when output variables
are fed back, direct output control is problematic, and therefore in
this paper we control the inductor current using a tight ACMC in
order to compensate for any load or input changes. In this case,
the inductor current iL2 is sensed and the error iref2− iL2 is
processed by a current compensator whose transfer function Gc(s)
contains a pole at the origin to remove the steady-state error, a real
pole − ωp at one half switching frequency to remove switching
noise and a real zero − ωz (ωz≪ ωp) to increase the phase margin
at the cross-over frequency. The control signal vcon2 is generated at
the output of this compensator and then is compared with an
external T-periodic sawtooth ramp modulator vr2 = ma2(t mod T )
with a slope ma2. The compensator can be described in the
Laplace s-domain by

Gc(s) =
W (s+ vz)

s(s+ vp)
(2)
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Table 1 Parameter values used in the first and second stages

L1, rL1 C1, rC1 ma1
37.5 μH, 10 mΩ 420 μF, rC1 = 50 mΩ 10 kA/s
L2, rL2 C2, rC2 R W, ωz, ωp ma2
200 μH, 10 mΩ 200 μF, 20 mΩ 10 Ω 78.5, 10,

157 krad/s
2500 kV/s
where W is a suitable constant gain. Transforming this s-domain
model to the state-space time-domain, the current controller can be
described by the following set of differential equations

dvp
dt

= vz,
dvz
dt

= iref2 − iL2 − vpvz (3)

where vp and vz are the state variables of the compensator. The
control signal vcon2 for the second stage can be expressed in terms
of these two additional variables as

vcon2 = W (vzvp + vz) (4)

In continuous conduction mode (CCM), four different configurations
C1, C2, C3 and C4 are possible, corresponding, respectively, to the pair
states (ON, ON), (OFF, ON), (ON, OFF) or (OFF, OFF) of the switches S1 and
S2. However, during a switching period, the system can switch
among only three of them as the configuration C2: = (OFF, ON) or C3: =
(ON, OFF) is skipped depending on whether D1 <D2 or D2 <D1,
where D1 and D2 are the duty cycles of the first stage and the
second stage, respectively. In the first stage, the switching
instances are decided by comparing the inductor current iL1 to the
signal iref1−ma1(t mod T ) and in the second stage by comparing
the control voltage vcon2 with the T-periodic ramp modulator
vr2 = ma2(t mod T ). Therefore, the switch S1 in the first stage is
closed at the beginning of each clock period and is turned OFF

whenever the switching function

s1(x, t) := iref1 − ma1(tmodT )− iL1 (5)

is equal to zero. In the second stage the switching condition is
given by

s2(x, t) := Wvzvp +Wvz − ma2(t mod T ) = 0 (6)

The controllers in both stages are synchronised by sharing the same
clock signal between their respective modulators. This signal is
generated from a comparator whose inputs are the ramp modulator
in the second stage and a small constant voltage marked as
CONST in Fig. 1.

For each state of the switch pair (S1, S2), the system can be
described by a set of linear differential equations that can be
written as ẋ = Aijx+ Bij, (i, j)∈ {0, 1}2. Obtaining Aij and Bij
from (1a)–(1d) and (3) is straightforward.

Different types of T-periodic cycles are possible for the system
depending on the parameters of the first and the second stages.
These different T-periodic orbits define different operating modes
for the system depending on the relationship between the duty
cycles of the driving signals, the switching frequency, values of
the inductors and the load resistance. However, if both the stages
operate in CCM, it can be shown that there are basically two
operating modes that can be summarised as follows:

† Mode 1: if D1 <D2, the switching sequence during one complete
switching period is

C1 � C2 � C3 � C1 � C2 � C3 � · · · (7)
For this mode, configuration C4 is skipped.

† Mode 2: if D1 >D2, the switching sequence becomes

C1 � C4 � C3 � C1 � C4 � C3 � · · · (8)
For this mode, configuration C2 is skipped.
3 Possible instabilities in the system

In this section, we investigate the possible mechanisms of instability
and the resulting dynamical behaviours.

The circuit parameter values used in this section are shown in
Table 1 and they are representative of practical DPS operating in
CCM. The input voltage considered is in the range between 50
IET Power Electron., 2016, Vol. 9, Iss. 5, pp. 855–863
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and 120 V with an average input current between 40 and 56 A
which means that the power is in the range between 2 and 6.7 kW.
The allowed ripple in the inductor current in nominal stable
operation is about 20% while in the intermediate and the output
capacitor voltages is <1%. The switching frequency is fs = 50 kHz.
This parameter is selected equal for both converters to avoid
added complexities due to possible switching frequency interaction.

In such systems, it is of practical interest to examine the dynamical
behaviour of the system when the current references iref1, iref2 and the
input voltage vg vary. Fig. 2 shows the steady-state response of the
system for iref2 = 38 A, vg = 120 V and different values of iref1,
obtained using PSIM circuit simulator. For iref1 = 45 A, the system
exhibits a stable T-periodic behaviour in Mode 1. If iref1 = 48 A,
the T-periodic orbit loses its stability and we see a combination of
slow-scale and fast-scale oscillations. Note the dramatic increase
of the current ripple of iL1 that can have catastrophic consequences
in the overall system’s performance and efficiency. Similar
‘coexistence’ of slow-scale and fast-scale oscillations has been
reported earlier [17], but we shall show in the following sections
that in this case the pathway to such behaviour is completely
different.

To understand the mechanisms of the creation of this behaviour, a
bifurcation diagram for the system is plotted by considering the
demanded current iref1 (a similar pattern is obtained using iref2 or vg),
Fig. 3a. To better understand Fig. 3a and to illustrate how the
trajectory of the system is evolving, the samples iL1(2nT) at even
multiples of the switching period are plotted in dark colour while
those at odd multiples of the switching period iL1((2n + 1)T ) are
plotted in light colour.

The corresponding discrete-time state-space trajectory for iref1 =
46.1 A is shown in Fig. 3b. From the bifurcation diagram in
Fig. 3a, it can be observed that for iref1 < 46.1 A approximately,
the system exhibits a stable periodic behaviour. At iref1≃ 46.1 A,
the system periodic regime loses its stability and the attractor of the
system evolves on a two-loop attractor (Fig. 3b) manifesting itself
as a single band in the bifurcation diagram. As the bifurcation
parameter is increased, the two loops of the torus get smaller and
smaller and are disconnected at a critical value of iref1≃ 47 A. As
iref1 is increased, the loops shrink to two points at iref1≃ 54 A, and
subsequently a one-band chaotic attractor develops.
4 Stability analysis using Floquet theory and
Filippov method

In the previous section, we saw that a stable T-periodic orbit loses
stability at approximately iref1 = 46.1 A and a torus whose Poincaré
section is a two-loop curve is created. In this section using
Filippov’s method we further investigate the observed non-linear
phenomena. To do that we obtain the location of the fixed points
and the eigenvalues of the monodromy matrix [12, 13]. For iref1 <
46.1 A we see that, apart from the previously observed T-periodic
orbit, there exists one more unstable (saddle) periodic orbit. It is
also found that initially the saddle is operating in Mode 2 and then
changes to Mode 1. This event, however, has no notable effect on
the operation of the system.

Table 2 shows the Floquet multipliers of two different fixed points
corresponding to the T-periodic orbit in Mode 1 [see (7)] and Mode 2
[see (8)] as the bifurcation parameter iref1 is varied in the vicinity of
the critical value iref1≃ 46.1 A. As iref1 is increased, one eigenvalue
of the saddle (which is >1) approaches 1 from above. At the same
time, one eigenvalue of the node which was <1, approaches 1
from below. At approximately iref1 = 46.1 A, these two fixed points
857



Fig. 2 Waveforms of the inductor currents iL1 and iL2 before and after losing stability due to variation in the current reference iref1
a iref1 = 45 A: stable in Mode 1
b iref1 = 48 A: interacting fast-scale and slow-scale instabilities

Fig. 3 Response of the system under parameter change that highlight the observed instabilities

a Bifurcation diagram obtained from sampling the state variables of the switched system. Dark colour represents the samples iL1[(2n + 1)T ] at odd multiples of the switching period while
light colour represents the samples iL1(2nT) at even multiples of the switching period
b Sampled state variables of the system in the plane (vC1, iL1) (stroboscopic Poincaré section) showing a two-loop trajectory resulting from the complex interaction of slow-scale and
fast-scale instabilities

Table 2 Floquet multipliers of the T-periodic orbits in the vicinity of the SN bifurcation

iref1, A Mode Floquet multipliers Stability

44.00 Mode 1 (−0.3175, 0.1563+ 0.1795j, 0.7679, 0.9943 , 0.9809) stable
Mode 2 (−3.0294, − 0.0121+ 0.2344j , 0.7885, 1.0058 , 0.9807) saddle

45.00 Mode 1 (−0.4513, 0.1161+ 0.2065j , 0.7748, 0.9958 , 0.9808) stable
Mode 2 (−2.1287, 0.0018+ 0.2349j , 0.7874, 1.0042 , 0.9807) saddle

45.50 Mode 1 (−0.5598, 0.0941+ 0.2169j, 0.7779, 0.9969 , 0.9808) stable
Mode 2 (−1.7146, 0.0121+ 0.2347j, 0.7866, 1.0031, 0.9807) saddle

45.90 Mode 1 (−0.7128, 0.0720+ 0.2247j , 0.7806, 0 .9982 , 0.9807) stable
Mode 2 (−1.3448, 0.0257+ 0.2338j , 0.7854, 1.0018 , 0.9807) saddle

46.00 Mode 1 (−0.7828, 0.0641+ 0.2270j 0.7815, 0 .9987 , 0.9807) stable
Mode 1 (−1.2243, 0.0315+ 0.2332j, 0.7848, 1.0013 , 0.9807) saddle

46.05 Mode 1 (−0.8358, 0.0588+ 0.2283j, 0.7821, 0.9991, 0.9807) stable
Mode 1 (−1.1468, 0.0358+ 0.2326j, 0.7844, 1.0009 , 0.9807) saddle

46.1 Mode 1 (−0.8027, 0.0621+ 0.2275j, 0.7817, 0.9989 , 0.9807) stable
Mode 1 (−0.9937, 0.0457+ 0.2310j, 0.7834, 1.0001, 0.9807) saddle

46.2 – no existence of T-periodic solutions –

Bold characters indicate the SN bifurcation, while the italics the PD.
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Fig. 4 Loci of the Floquet multipliers corresponding to the 2T-periodic
orbit as the parameter iref1 is varied in the range (46.1, 54) A
collide and are destroyed in an SN bifurcation. Something interesting
happens to the ‘invisible’ saddle orbit before it disappears in the SN
bifurcation. At iref1 = 44 A, the saddle has an eigenvalue at −3.0294,
and as iref1 increases this eigenvalue moves toward −1. It crosses −1
between 46.05 and 46.1 A, indicating that a PD bifurcation takes
place, creating two new branches of a 2T-periodic orbit. This PD
bifurcation is of a sub-critical nature, as the 2T-periodic orbit
exists in the side where one of the eigenvalues of the T-periodic
orbit goes inside the unit circle.

The unstable 2T-periodic orbit, that is born out of the unstable
T-periodic orbit, plays an important role in the subsequent
dynamics of the system. The eigenvalues of this 2T-periodic fixed
Fig. 5 Loci of the fixed points corresponding to the T-periodic and 2T-periodic

a iL1(T ) and iL1(2T ) against iref1
b vC1(T ) and vC1(2T ) against iref1
c Three-dimensional view of the bifurcation diagram
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point are shown in Fig. 4 and it shows that close to the bifurcation
point it has two eigenvalues close to 1. One eigenvalue is close to
1 due to the imminent SN bifurcation and the other from the PD
bifurcation. As iref1 is increased, these two eigenvalues approach
each other, merge and become complex conjugate – within a very
small parameter range.

With this change, the fixed point corresponding to the 2T-periodic
orbit becomes an unstable focus. Trajectories starting close to this
fixed point would spiral out, finally converging on a closed loop –
a torus. Since there are two branches of a 2T-periodic orbit, this
would create a two-loop torus. The outward motion is arrested
since in such a system the state variables cannot assume infinite
values. Moreover, the duty ratio saturation also imposes a limit on
the state variables.

The aforementioned analysis can further be clarified by creating
the loci of the fixed point corresponding to T-periodic and
2T-periodic orbits. Fig. 5a shows the bifurcation diagram when the
inductor current iL1 is plotted and Fig. 5b shows it when the
capacitor voltage of vC1 is plotted. This brings forth a peculiarity
of this particular system. Both apparently look like PD (in two
different directions), which is misleading. These diagrams are in
fact projections of a high-dimensional state space, and the situation
becomes clear only when 3D perspective view is taken. Fig. 5c
shows this view. It shows that two different branches of the
T-periodic orbits coexist for iref1∈ (40, 46.1) A. One branch with
D1 <D2 is stable while the other one with D1 >D2 is a saddle.

At iref1≃ 46.1, both orbits collide and disappear through an SN
bifurcation. At another critical parameter value slightly below the
SN bifurcation point, the two branches of the 2T-periodic orbit are
born being a foci with unstable complex conjugate eigenvalues.
These are responsible for the creation of the two-loop torus shown
previously in Fig. 3b.

Keeping in mind that the fixed points correspond the sampled
values of the state variables at the end of the switching cycles, it
can also be observed that the inductor current waveforms for both
orbits as the parameter iref1 is varied
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Fig. 6 Complete scenario of the bifurcation patterns. Within the hysteresis interval two stable attractors coexist: a torus and a T-periodic orbit
operating modes are characterised by practically the same crest value
iL1(0) = iL1(T ) and by the same peak value iL1(D1T ) = iref1−
ma1D1T, but with two different values of the duty cycle D1.
Therefore, the SN bifurcation is more visible in the voltage
diagram (Fig. 5b) while PD is more visible in the current diagram
(Fig. 5a).

Fig. 6 schematically illustrates the complete scenario where the
change of operation mode, SN and PD instabilities are shown,
along with the torus that is born out of the 2T-periodic orbit and
the hysteresis interval which exists due to the coexistence of
different steady-state solutions for a set of parameter values. The
parameter difference between the PD and SN bifurcations has been
exaggerated to make the sequence of events clearer.

Fig. 7 shows the two-parameter stability curves in the (vg, iref1)
and (iref2, iref1) parameter planes. In this figure, the desired stable
region is explicitly shown after predicting the boundary of the
undesired behaviour. On the basis of these kinds of figures, one
can appropriately select the parameter values of the system to
avoid instabilities.

It can be observed that the boundaries are very close to each other.
Even though the stability boundaries are close, they do not coincide.
This coincidence is not a numerical artefact. For realistic parameter
values the bifurcation curves just happen to be close. Using
non-realistic values for the parameters such as larger clock period
or larger values of parasitic resistances rL1 and rC1, we have
checked that the boundaries drift further apart.
Fig. 7 Two-parameter stability curves in the parameter spaces (vg, iref1) and (ir
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5 Experimental validation

5.1 System description

In this section, we experimentally validate the interaction of the
slow-scale and fast-scale bifurcation phenomena reported and
analysed in the previous section. For that purpose, an experimental
prototype was built. A detailed schematic circuit diagram of the
implemented system is shown in Fig. 8. The implemented circuit
uses the parameter values shown in Table 3. The switching
frequency in both stages was fixed at fs = 50 kHz.

In the first stage, the switch is implemented by the metal–oxide–
semiconductor field-effect transistor (MOSFET) IRF840A and the
diode MBR40250TG. In the second stage, the devices used are
the MOSFET IPB320N20N3 and the diode MBR20200CTG. The
control stage includes two different parts, one for each stage. The
first part consists of a set-reset (S-R) latch and a comparator
LM319 for generating the switching signal u1. The comparator
compares the inductor current iL1 with the current reference iref1.
No compensating ramp is used in the first stage. The current
controller in the second stage consists of TL082IN device
performing the current compensation with appropriate passive
components. The zero of the compensator is given by the
resistance Rz = 1 kΩ and the capacitance Cz = 100 nF. The
comparator used to decide the switching signal u2 in the second
stage is LM319N.
ef2, iref1) corresponding to different T-periodic orbits
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Table 3 Used parameter values in the experimental prototype

L1, rL1 C1, rC1 L2, rL2 C2, rC2 R W, ωz, ωp
100 μH, 20 mΩ 200 μF, rC1 = 5 mΩ 30 μH, 10 mΩ 200 μF, 18 mΩ 5 Ω 78.5, 10, 157 krad/s

Fig. 8 Schematic circuit diagram of the implemented circuit showing the two power stage circuits and their controllers
The synchronisation between the two stages is guaranteed by
generating the clock signal in the first stage from the external
ramp signal of the second stage. For that purpose, the external
ramp signal is compared using an LM319 comparator with a small
constant voltage (CONST = 100 mV). The generated pulses are
then applied to the set input of the S-R latch in the first stage. The
drivers utilised are MCP1407 for the first stage and IR2183 for
the second stage. The current sensor in both stages is LA25-NP.
The system is fed by a Multimetrix XA3033 power supply. The
bandwidth (150 kHz) of the current sensor is used as a second
pole of the compensator in the second stage.
5.2 Circuit performance

The circuit parameters are fixed as in Table 3. The current reference
in the first and second stages are iref1 = 4.2 A and iref2 = 3.75 A,
respectively. To explore the different dynamical behaviours of the
system, the input voltage vg in the first stage is varied. For
instance, for vg = 20 V, the system exhibits a stable T-periodic
regime. If vg is decreased to ∼18 V, the system loses its stability.
The time-domain waveforms before and after the loss of stability,
obtained from numerical simulations and experimental
measurements, are shown in Fig. 9. It can be clearly observed that
there is an interaction of fast-scale and slow-scale instabilities in
Figs. 9c and d similar to the one obtained in Section 3 (Fig. 2)
by only numerical simulations using a different set of parameter
values.
IET Power Electron., 2016, Vol. 9, Iss. 5, pp. 855–863
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6 Conclusions

Over the past couple of decades, cascade-interconnected converter
systems have become common in DPSs in a broad range of
applications, because the desired output voltage/current can be
obtained with higher efficiency than in single-stage systems and a
specified variation in output voltage can be realised faster and
more precisely. However, the added complexity and higher
state-space dimension may induce newer types of instabilities,
which need to be understood in order to produce proper design
guidelines. In this paper, we have investigated the cascade
connection of a buck and a boost converter under current mode
control, and have identified such instabilities. We show that, as a
parameter is varied, such a system may abruptly transit from a
stable T-periodic behaviour to a two-loop torus, exhibiting a new
type of interaction between fast-scale and slow-scale dynamics.
We show that dynamics of this system is governed by a complex
interplay between an SN bifurcation and a sub-critical
period-doubling bifurcation occurring on an unstable periodic
orbit. The torus is created when the unstable 2T-periodic orbit is
born unstable with two complex conjugate eigenvalues.
Subsequently, as the bifurcation parameter is varied, the two loops
become disconnected forming two separated loops in the state
space. The phenomena reported in this paper can take place for all
cascade-interconnected converter systems in which the first stage
is a buck or an equivalent converter and the second stage is a
power conversion system with a tightly regulated input current.
Our future work will deal with the non-linear analysis of other
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Fig. 9 Waveforms of the cascaded system showing the interaction between fast- and slow time-scale oscillations before and after losing stability

a, b Before: (vg≃ 20 V)
c, d After: (vg≃ 17.2 V)
Left: numerical simulation; right: experimental validation; and current references: iref1 = 4.2 A, iref2 = 3.75 A
more complex interconnected converter topologies for DPSs
applications.
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