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Abstract. The main objective of this paper is assessing the empirical performance of fuzzy extension to Black-Scholes option 

pricing formula (FBS). Concretely we evaluate the goodness of the FBS predictions for traded prices of options on the Span-

ish stock index IBEX35 during March 2017. We firstly propose a procedure to fit, from real data, the fuzzy parameters to 

implement FBS in stock options: price of the subjacent asset, free discount rate and stock volatility. Subsequently we evaluate 

the capability of FBS to include actual traded prices and whether this capability depends on option moneyness and expiration 

date. We find that FBS fits quite well actual traded prices. However, generally most representative market prices (closing and 

medium) are not better fitted than those more extreme (minimum and maximum). We have also check that the goodness of the 

FBS predictions often depends on the moneyness grade and the expiration date of options.  

Keywords: Fuzzy numbers, Fuzzy regression, Expected interval of a fuzzy number, Finance, Option pricing, Black-Scholes 

formula 

1. Introduction 

In economic and financial problems, an important 

piece of information is often given by means of im-

precise and/or vague data. In this case Fuzzy Set 

Theory (FST) is a suitable modeling instrument. This 

reason explains why, despite stochastic analysis is at 

the core of option pricing methods; their extension to 

the use of fuzzy parameters has become an active 

research field. Some works in this way are [7, 43] for 

real options and [3, 9, 13, 34, 38-41, 44] for financial 

options of European or American style. Likewise 

[36-37] develop fuzzy methodologies to price less 

common option styles like compounded options or 

binary options. These papers usually develop deeply 

several aspects of fuzzy extension to the model by 

Black and Scholes [1], (FBS). Likewise, other op-

tions pricing models have been extended to fuzziness 

in parameters. Whereas [28] propose a fuzzy option 

pricing method where the subjacent asset follows a 

geometric Brownian motion with Poisson jumps, [12] 

extends the model with stochastic volatility by 

Heston [16] to the case where some parameters are 

fuzzy numbers. Zhang et al. [42] extend the double 

exponential jump diffusion model to price European 

options to fuzzy environments. Papers [28-29] devel-

op a fuzzy option pricing to the case where the subja-

cent asset follows a Levy process. In any case, for a 

wide review on this matter see [27].  

This study is motivated by the scarceness of pa-

pers about the empirical performance of fuzzy option 

models. In contrast, there is a great deal of literature 

on theoretical fuzzy option pricing as we exposed 

above. Concretely, we analyze two empirical aspects 

about fuzzy extension of Black-Scholes formula. We 

firstly propose a procedure to quantify parameters 

from empirical data to implement FBS by means of 

Triangular Fuzzy Numbers. Subsequently we evalu-

ate the suitability of FBS to predict actual traded op-

tion prices. The empirical application is developed 

with a sample of closing, maximum, mean and min-

imum prices of calls and puts for IBEX35 traded in 

the Spanish Derivative Market (MEFFSA) within the 

Wednesdays of March 2017. We test the closeness of 
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FBS to actual prices from two perspectives. We ini-

tially evaluate the membership level of observed 

prices into the fuzzy estimates that come from FBS. 

Alternatively we analyze the frequency in which the 

expected interval of FBS contains actual prices. In 

both cases we also study if moneyness and maturity 

of options have influence in the performance of FBS 

to fit real data. We find that FBS fits quite well actual 

traded option prices and that there is not a substantial 

difference between call and put options on this matter. 

However, generally representative market prices 

(closing and medium) are not better fitted than mini-

mum and maximum prices. We have also checked 

that the moneyness grade and the expiration of the 

option influence the goodness of FBS predictions.  

We structure the rest of the paper as follows. In 

section 2 we describe the notation and instruments of 

FST used in our developments. We then present the 

fuzzy extension to the formula in [1] in [38-39] and 

propose a way to obtain fuzzy estimates for subjacent 

asset price, free discount rate and volatility from em-

pirical data. Whereas the fuzzy estimates of stock 

price and free discount rate comes straightforward 

from empirical data, to obtain the volatility we 

smooth options past implied volatilities using a fuzzy 

regression model, similarly to [26]. Subsequently we 

assess the goodness of FBS to fit traded prices. We 

conclude outlining the principal conclusions of our 

paper. 

2. Functions of fuzzy variables and fuzzy 

regression 

A fuzzy set 𝐴 ̃  can be defined as 𝐴 ̃ =

 {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑋} , where 𝜇𝐴  is the membership 

function and is a mapping 𝜇𝐴: 𝑋[0,1]. Alternative-

ly, a fuzzy set can be represented by its or -cuts that 

are crisp sets 𝐴 , where 𝐴 = {𝑥 ∈ 𝑋| 𝜇𝐴(𝑥) ≥
 }, ∀ ∈ (0,1].  

A Fuzzy Number (FN) is a fuzzy subset 𝐴 ̃ defined 

over the set of real numbers. It is normal, i.e. 

max 
𝑥 𝑋 

𝜇𝐴𝑥) = 1, and convex, that is, its -cuts are 

closed and bounded intervals. So, they can be repre-

sented as 𝐴 = [𝐴(𝛼), 𝐴(𝛼)], where 𝐴(𝛼) (𝐴(𝛼)) are 

continuously increasing (decreasing) functions of the 

membership level (ML) 𝜖[0,1] . Triangular Fuzzy 

Numbers (TFNs) are used intensively in practical 

applications of FST. A TFN can be denoted as 𝐴 ̃ =
(𝑎, 𝑙𝑎 , 𝑢𝑎) where the value 𝑎 is the core whereas 𝑙𝑎    

and 𝑢𝑎  are the lower and upper spread of that FN. 

The -cut representation of a TFN is: 

𝐴 = [𝑎 − 𝑙𝑎(1 − 𝛼), 𝑎 + 𝑟𝑎(1 − 𝛼)] (1) 

The expected interval (EI) of a FN is commonly 

used in fuzzy literature to estimate a representative 

real valued interval of a FN. It was developed, among 

others, by Heilpern in [15]. If we name the EI of 𝐴 ̃, 

𝐸𝐼(𝐴 ̃) , analytically:  

𝐸𝐼(𝐴 ̃) = [∫ 𝐴(𝛼)𝑑𝛼
1

0
, ∫ 𝐴(𝛼)𝑑𝛼

1

0
] (2) 

Let 𝑓(·) be a continuous real valued function of 𝑛-

real variables 𝑥𝑗 , 𝑗 = 1,2, … , 𝑛, and let �̃�1, �̃�2, … , �̃�𝑛 

be 𝑛 FNs that quantify these variables. Although it is 

usually impossible to obtain the membership function 

of �̃�= 𝑓(�̃�1, �̃�2, … , �̃�𝑛), it is often possible to obtain 

a closed expression for its -cuts, 𝐵 . If 𝑓(·) is in-

creasing with respect to the first 𝑚 variables, 𝑚 ≤ 𝑛, 

and decreases in the last 𝑛 − 𝑚 variables, [4] demon-

strate that: 

𝐵𝛼 = [𝐵(𝛼), 𝐵(𝛼)] = 

[𝑓 (𝐴1(𝛼), 𝐴2(𝛼), … , 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), … 𝐴𝑛(𝛼)) 

𝑓 (𝐴1(𝛼), 𝐴2(𝛼), … 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), … , 𝐴𝑛(𝛼))] 

 (3) 

The fuzzy regression (FR) model used in this pa-

per is developed in [17]. This method mixes least 

squares (LS) regression and the FR method in [35] 

but also allow a non-symmetrical structure for the 

coefficients. In our concrete option pricing context, 

[26] evaluate how several FR methods (including 

[17]) fit the volatility smile of options.  

Like any regression technique, the objective of a 

FR method is to determine a functional relationship 

between a dependent variable (output) and a set of 

independent ones (inputs). Let us suppose that for the 

𝑗-th observation of the sample, 𝑗 = 0,1, … , 𝑛, the pair 

of the dependent variable (that may be a FN) and the 

independent variables (that we suppose crisp) is 

(�̃�𝑗,𝑥𝑗)𝑗=1,2,…,𝑛  where  𝑥𝑗 = (𝑥1,𝑗 , 𝑥2,𝑗, … , 𝑥𝑚,𝑗) , �̃�𝑗 =

(𝑦𝑗 , 𝑙𝑦𝑗
, 𝑟𝑦𝑗

), 𝑥𝑖,𝑗. We also consider a linear rela-

tion between dependent and independent variables 

where their coefficients are TFNs �̃�𝑖 =

(𝑎𝑖 , 𝑙𝑎𝑖
, 𝑟𝑎𝑖

), 𝑖 = 0,1, … , 𝑚. So: 

�̃�𝑗 = �̃�0 + ∑ �̃�𝑖𝑥𝑖,𝑗

𝑚

𝑖=1

 



and then: 

(𝑦𝑗 , 𝑙𝑦𝑗
, 𝑟𝑦𝑗

) = (𝑎0, 𝑙𝑎0
, 𝑟𝑎0

)

+ ∑(𝑎𝑖 , 𝑙𝑎𝑖
, 𝑟𝑎𝑖

)

𝑚

𝑖=1

𝑥𝑖,𝑗 

where: 

𝑦𝑗 = 𝑎0 + ∑ 𝑎𝑖

𝑚

𝑖=1

𝑥𝑖,𝑗 

𝑙𝑦𝑗
= 𝑙𝑎0

+ ∑ |𝑥𝑖,𝑗|𝑙𝑎𝑖

𝑚

𝑖=1
𝑥𝑖,𝑗≥0

+ ∑ |𝑥𝑖,𝑗|𝑟𝑎𝑖

𝑛

𝑖=1
𝑥𝑖,𝑗<0

 

𝑟𝑦𝑗
= 𝑟𝑎0

+ ∑ |𝑥𝑖,𝑗|𝑟𝑎𝑖

𝑚

𝑖=1
𝑥𝑖,𝑗≥0

+ ∑ |𝑥𝑖,𝑗|𝑙𝑎𝑖

𝑛

𝑖=1
𝑥𝑖,𝑗<0  

The final objective is obtaining the estimates of 

�̃�𝑖 = (𝑎𝑖 , 𝑙𝑎𝑖
, 𝑟𝑎𝑖

), 𝑖 = 0,1, … 𝑚, that will be denoted 

by �̃�𝑖
∗ = (𝑎𝑖

∗, 𝑙𝑎𝑖
∗ , 𝑟𝑎𝑖

∗). Following [17], we implement 

the next steps: 

Step 1. Taking the centres or modes of the depend-

ent variable, 𝑦𝑗 , 𝑗 = 0,1, … , 𝑛, we fit the centres of 

the fuzzy coefficients �̃�𝑖
∗, 𝑎𝑖

∗, 𝑖 = 0,1, … 𝑚, by using 

LS on the expression 𝑦𝑗 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖,𝑗
𝑚
𝑖=1 . In such a 

way, we obtain the estimates (𝑎0
∗ , 𝑎1,…,

∗ 𝑎𝑚
∗ ). 

Step 2. Using the minimum fuzziness criterion in 

[35], we fit the parameter spreads in such a way that 

they must minimize the uncertainty of the estimated 

dependent variables and simultaneously they have to 

contain the observed outputs with a ML of at least 𝛼. 

If we symbolize the estimates on the spreads of the 

coefficients �̃�𝑖  as 𝑙𝑎𝑖
∗  and 𝑟𝑎𝑖

∗  𝑖 = 0,1, … 𝑚 , the esti-

mates that we will obtain for �̃�𝑗 will be �̃�𝑗
∗ =

(𝑦𝑗,
∗, 𝑙𝑦𝑗

∗ , 𝑟𝑦𝑗
∗ ), where: 

𝑦𝑗
∗ = 𝑎0

∗ + ∑ 𝑎𝑖
∗𝑥𝑖,𝑗

𝑚

𝑖=1

 

Considering, as in [35], that �̃�𝑗  �̃�𝑗
∗𝑦𝑗𝑦𝑗

∗ , 

the spreads 𝑙𝑎𝑖
∗ and 𝑟𝑎𝑖

∗ , 𝑖 = 0,1, … 𝑚, can be obtained 

by solving, for a given level 𝛼, the next linear pro-

gramming problem: 

min ∑ 𝑙𝑦𝑗

𝑛

𝑗=1

+ ∑ 𝑟𝑦𝑗

𝑛

𝑗=1

= min
𝑙𝑎𝑖

,𝑟𝑎𝑖
,𝑖=0,1,…,𝑚

𝑛𝑙
𝑎0

+ 𝑛𝑟
𝑎0

+ ∑ ∑|𝑥𝑖,𝑗|𝑙𝑎𝑖

𝑚

𝑖=1

𝑛

𝑗=1

+ ∑ ∑|𝑥𝑖,𝑗|𝑟𝑎𝑖

𝑚

𝑖=1

𝑛

𝑗=1

 

subject to:  

𝑎0
∗ + ∑ 𝑎𝑖

∗𝑥𝑖,𝑗
𝑚
𝑖=1 +[𝑟𝑎0

+ ∑ |𝑥𝑖,𝑗|𝑟𝑎𝑖

𝑚
𝑖=1

𝑥𝑖,𝑗≥0
+ ∑ |𝑥𝑖,𝑗|𝑙𝑎𝑖

𝑛
𝑖=1

𝑥𝑖,𝑗<0
] (1 −

)𝑦𝑗 + 𝑟𝑦𝑗
(1 − ) 

𝑎0
∗ + ∑ 𝑎𝑖

∗𝑥𝑖,𝑗
𝑚
𝑖=1 -[𝑙𝑎0

+ ∑ |𝑥𝑖,𝑗|𝑙𝑎𝑖

𝑚
𝑖=1

𝑥𝑖,𝑗≥0
+ ∑ |𝑥𝑖,𝑗|𝑟𝑎𝑖

𝑛
𝑖=1

𝑥𝑖,𝑗<0
] (1 −

)𝑦𝑗 − 𝑙𝑦𝑗
(1 − ) 

𝑙𝑎𝑖
, 𝑟𝑎𝑖

0, 𝑗 = 1,2, … , 𝑛, 𝑖 = 0,1, … , 𝑚  (4a) 

In [8] it is proposed an useful rule to choose 𝛼. 

Low values of 𝛼 allows obtaining lower values for 

the spreads 𝑙𝑎𝑖
∗  and 𝑟𝑎𝑖

∗  and, consequently, the esti-

mates of the dependent variable have a low grade of 

uncertainty. However, the capability of the model to 

contain the real observations may be not great. So, 𝛼 

must allow contain the observed outputs within esti-

mated values of the dependent variables, �̃�𝑗
∗, reason-

ably well but, likewise �̃�𝑗
∗ must be narrow enough to 

be useful predictions. 

If we name as �̃�𝑗
∗ = (𝑦𝑗

∗, 𝑙𝑦𝑗
∗, 𝑟𝑦𝑗

∗) to the estimate 

for the jth observation of the dependent variable for a 

given level , we can define the credibility level 𝑐𝑗
𝛼 

as: 

𝑐𝑗
𝛼 =

𝜇�̃�𝑗
∗𝑦𝑗)

𝑙𝑦𝑗
∗+𝑟𝑦𝑗

∗   

So, the credibility for the entire sample 𝑐𝛼  is: 

𝑐𝛼 = ∑
𝜇�̃�𝑗

∗𝑦𝑗)

𝑙𝑦𝑗
∗+𝑟𝑦𝑗

∗
𝑛
𝑗=0   

In [8] it is showed that maximizing 𝑐𝛼  is equiva-

lent to solve the following quadratic linear program-

ming problem: 

max 𝑐𝛼 = −𝑝0𝛼2 + (𝑝0 − 𝑐0)𝛼, 𝛼[0,1] 

where: 

𝑝0 = ∑
1−𝜇

�̃�𝑗
∗0𝑦𝑗)

𝑙𝑦𝑗
∗0 +𝑟𝑦𝑗

∗0
𝑛
𝑗=0   (4b) 

𝑐0 = ∑
𝜇

�̃�𝑗
∗0𝑦𝑗)

𝑙𝑦𝑗
∗0 +𝑟𝑦𝑗

∗0
𝑛
𝑗=0   (4c) 



The solution of this problem is: 

 = {
 =

1

2
(1 −

𝑐0

𝑝0) 𝑐0 < 𝑝0

0 otherwise
  (4d) 

3. Pricing European options with fuzzy empirical 

data 

3.1. Pricing European options by evaluating Black 

and Scholes model with fuzzy parameters 

The option pricing formula by Black-Scholes [1] is 

very popular not only in theoretical studies but also 

among practitioners. Since its publication, option 

pricing has rising as a prominent field in Financial 

Economics. Papers in this matter growth exponential-

ly and comprise the sophistication of the stochastic 

processes that governs the behavior of the subjacent 

price, investigation of its applications to other fields 

like business valuation, real options or insurance 

pricing, e.g. A complete survey on this matter can be 

consulted in [24]. 

The European stock option pricing model by Black 

and Scholes [1] supposes that the price of the subja-

cent asset follows a geometric Brownian motion: 
𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧𝑡, where St is the price of the subja-

cent asset at time t, 𝜇 is the expected rate of growth, 

𝜎 is the standard deviation and 𝑑𝑧𝑡  is a standard 

Wiener process. Using an arbitrage argument [1] 

demonstrates that the price of an European call op-

tion is a function of the price of the asset, St, the 

strike price (K), the time to maturity , the standard 

deviation 𝜎 and the free risk rate, r: 

𝛱𝑐𝑎𝑙𝑙(𝑆𝑡 , 𝐾, , 𝜎, 𝑟) = 𝑆𝑡Φ(𝑑1) − 𝐾𝑒−𝑟Φ(𝑑2) (6a) 

Where Φ(·) stands for the distribution function of 

a standard normal random variable, and: 

𝑑1 =
ln(

𝑆𝑡
𝐾

)+(𝑟+
𝜎2

2
)

𝜎√
 (6b) 

𝑑2 = 𝑑1 −  𝜎√ (6c) 

To price a put option it is enough to use the call-

put parity for call and put options with the same 

strike price where, 

 𝛱𝑐𝑎𝑙𝑙 − 𝛱𝑝𝑢𝑡 = 𝑆𝑡 − 𝐾𝑒−𝑟  (7a) 

and so: 

𝛱𝑝𝑢𝑡 = 𝛱𝑐𝑎𝑙𝑙 − 𝑆𝑡 + 𝐾𝑒−𝑟 (7b) 

And then: 

𝛱𝑝𝑢𝑡(𝑆𝑡, 𝐾, , 𝜎, 𝑟) = 𝐾𝑒−𝑟Φ(−𝑑1) − 𝑆𝑡Φ(−𝑑2)  (7c) 

Practitioners use commonly the partial derivatives 

of the option price to measure the sensitivity of these 

assets to variations of initial values of parameters. 

They are colloquially known as “the Greeks” and 

their analytical expression is in Table 1. 
Table 1. First derivative of European call and put prices respect to 

the stock price, volatility, maturity and free-risk rate (the Greeks). 

Greek Call Put 

 𝑑𝛱𝑐𝑎𝑙𝑙

𝑑𝑆𝑡

= Φ(𝑑1) > 0 
𝑑𝛱𝑝𝑢𝑡

𝑑𝑆𝑡

= −Φ(−𝑑1) < 0 

 𝑑𝛱𝑐𝑎𝑙𝑙

𝑑𝜎
=

𝑑𝛱𝑝𝑢𝑡

𝑑𝜎
= 𝑆𝑡ϕ(𝑑1)√ > 0 

 𝑑𝛱𝑐𝑎𝑙𝑙

𝑑

=
𝑆𝑡ϕ(𝑑1)𝜎

2√
+ 𝑟𝐾𝑒−𝑟(𝑇−𝑡) Φ(𝑑2) > 0 

𝑑𝛱𝑝𝑢𝑡

𝑑
= −𝑟𝐾𝑒−𝑟(𝑇−𝑡) Φ(−𝑑2)

+
𝑆𝑡ϕ(𝑑1)𝜎

2√𝑇 − 𝑡
≷ 0 

 𝑑𝛱𝑐𝑎𝑙𝑙

𝑑𝑟
=  𝐾𝑒−𝑟Φ(𝑑2) > 0 

𝑑𝛱𝑝𝑢𝑡

𝑑𝑟
=  −𝐾𝑒−𝑟Φ(𝑑2) < 0 

Note: (·) stands for the density function of a normal distribution 

function with mean 0 and variance 1. 

From early 2000s option pricing with fuzzy pa-

rameters has become an active research area (see [27] 

for a wide survey). In options over financial assets, K 

and  are crisp parameters that are fixed beforehand 

in the contracts. Of course, this does not follow in the 

case of real options, as it is shown in [7, 43], where K 

and  usually are uncertain. In any case, the price of 

the subjacent asset and the free risk rate traded in 

financial markets often are not precise numbers. In a 

concrete session, the agreed prices for two trades on 

the same asset are probably different. Likewise, in 

market practice is usual to indicate bid/asked prices 

with imprecise sentences as “my bid (asked) price is 

about $3”. So, it is reasonable modeling the price of a 

subjacent asset as a TFN �̃�𝑡 = (𝑆𝑡 , 𝑙𝑆𝑡
, 𝑢𝑆𝑡

), where: 

𝑆𝑡𝛼
= [𝑆𝑡(𝛼), 𝑆𝑡(𝛼)] = [𝑆𝑡 − 𝑙𝑆𝑡

(1 − 𝛼), 𝑆𝑡 + 𝑢𝑆𝑡
(1 − 𝛼)] 

 (8a) 

The same arguments can be extended to justify the 

use fuzzy estimates for free-risk rate. Then, we sup-

pose that this interest rate is given by a TFN �̃� =
(𝑟, 𝑙𝑟 , 𝑢𝑟) whose -cuts are: 

𝑟𝛼 = [𝑟(𝛼), 𝑟(𝛼)] = [𝑟 − 𝑙𝑟(1 − 𝛼), 𝑟 + 𝑢𝑟(1 − 𝛼)]  (8b) 

Theoretically, the volatility is the standard devia-

tion of subjacent asset price fluctuations. However, 

other volatility predictors are used in the literature, 

e.g. those that come from GARCH family. An alter-

native approach, very extended among practitioners, 



is the use of implied volatilities of past transactions 

with options that have similar strike prices and ma-

turities. We can do similar reflection as above on the 

traded prices on options contracts and so, their im-

plied volatilities: they are rarely unique in two differ-

ent transactions. These reasons motivate to several 

authors using fuzzy estimates for the volatility, that 

we will consider triangular, ̃ = (𝜎, 𝑙𝜎 , 𝑢𝜎), being: 

 

𝜎𝛼 = [𝜎(𝛼), 𝜎(𝛼)] = [𝜎 − 𝑙𝜎(1 − 𝛼)𝜎 + 𝑢𝜎(1 − 𝛼)] (8c) 

 

Under these hypotheses we find the price of a call 

option as a FN 𝛱𝑐𝑎𝑙𝑙  that come from evaluating (6a)-

(6c) with FNs: 𝛱𝑐𝑎𝑙𝑙 = 𝛱𝑐𝑎𝑙𝑙(�̃�𝑡 , 𝐾, 𝜏, �̃�, �̃�). Follow-

ing [4] we can obtain the -cuts of 𝛱𝑐𝑎𝑙𝑙 , 𝛱𝛼
𝑐𝑎𝑙𝑙taking 

into account that, as Table 1 shows, (6a) is an in-

creasing function of 𝑆𝑡 , 𝜎 and r and considering (3), 

(8a)-(8c): 

𝛱𝛼
𝑐𝑎𝑙𝑙 = [𝛱𝑐𝑎𝑙𝑙(𝛼), 𝛱𝑐𝑎𝑙𝑙(𝛼)] = [𝛱𝑐𝑎𝑙𝑙 (𝑆𝑡(𝛼), 𝐾, 𝜏, 𝜎(𝛼), 𝑟(𝛼)) , 

𝛱𝑐𝑎𝑙𝑙 (𝑆𝑡(𝛼), 𝐾, 𝜏, 𝜎(𝛼), 𝑟(𝛼))] (9) 

Analogously, the price of a put contract with fuzzy 

parameters 𝛱𝑝𝑢𝑡  is obtained by evaluating  𝛱𝑝𝑢𝑡 =

𝛱𝑝𝑢𝑡(�̃�𝑡 , 𝐾, 𝜏, �̃�, �̃�). We can calculate the alpha cuts 

of 𝛱𝑝𝑢𝑡, 𝛱𝛼
𝑝𝑢𝑡

 by using the solution of crisp equation 

(7a), (7b) as it is proposed in [5]. Taking into account, 

as it is shown in Table 1, that (7c) is a decreasing 

function of 𝑆𝑡 , and r but an increasing function of 𝜎: 

𝛱𝛼
𝑝𝑢𝑡

= [𝛱𝑝𝑢𝑡(𝛼), 𝛱𝑝𝑢𝑡(𝛼)] = [𝛱𝑝𝑢𝑡 (𝑆𝑡(𝛼), 𝐾, 𝜏, 𝜎(𝛼), 𝑟(𝛼)) , 

𝛱𝑝𝑢𝑡 (𝑆𝑡(𝛼), 𝐾, 𝜏, 𝜎(𝛼), 𝑟(𝛼))] (10) 

Table 2 shows the -cut representation with a 

scale of eleven grades of truth for the fuzzy prices of 

a call and a put on IBEX35. Following [18] this scale 

“provides enough discernment without being exces-

sive to represent the shape a FN because we are us-

ing imprecise data, and so it is not necessary an ex-

treme precision in a FN representation”. These op-

tions were traded in the Spanish financial derivatives 

market (MEFFSA) at t=3/1/2017. In both cases 

K=9700 and =23/365. The fuzzy parameters are 

given by �̃�𝑡 = (9696.8, 80.2, 59.7), ̃ = (15.34%, 

0.99%, 2.39%) and1 �̃�=(-0.52%, 0.03%, 0.07%).  

Once the fuzzy price of an option has been calcu-

lated, it can be of interest obtaining the grade of truth 

that a given bid/asked crisp price attains in the fuzzy 

price. If we symbolize indistinctly the fuzzy estimate 

of a call or a put price as 𝛱 and the price to be as-

sessed as Π, these membership levels (MLs) may be 

                                                           
1 Notice that since 2016, in Eurozone, the interest rates due to 

the monetary policy of European Central Bank are negative in all 

short term monetary markets. 

obtained by evaluating 𝜇�̃�(𝛱). Unfortunately, despite 

we found an analytical solution for 𝛱𝛼  in (9) and (10) 

it is not possible for 𝜇�̃�(𝛱) and so, 𝜇�̃�(𝛱) must be 

inferred from 𝛱𝛼  by solving: 

𝜇�̃�(𝛱) = argmax
𝛼∈[0,1]

{𝛼|𝛱(𝛼) ≤ 𝛱 ≤ 𝛱(𝛼)} (11) 

Table 2. -cuts of the FBS value of calls and puts on IBEX35 at 

trading date t=3/1/2017 where K=9700 and expiration date 
3/24/2017  

 𝛱𝑐𝑎𝑙𝑙(𝛼) 𝛱𝑐𝑎𝑙𝑙(𝛼) 𝛱𝑝𝑢𝑡(𝛼) 𝛱𝑝𝑢𝑡(𝛼) 

1 155.63 155.95 151.84 151.73 

0.9 151.09 160.11 148.08 158.31 

0.8 146.55 164.27 144.32 164.89 

0.7 142.01 168.42 140.56 171.47 

0.6 137.46 172.58 136.80 178.05 

0.5 132.92 176.74 133.03 184.63 

0.4 128.38 180.90 129.27 191.21 

0.3 123.84 185.06 125.51 197.79 

0.2 119.29 189.22 121.75 204.37 

0.1 114.75 193.37 117.99 210.95 

0 110.21 197.53 114.22 217.53 

 

To find 𝜇�̃�(𝛱) we can use the approximating pro-

cedure proposed in [39] which is based on bisection 

search algorithm. To implement this algorithm we 

propose fixing the initial value to iterate, 0, from the 

-cut representation for eleven grades of truth of 𝛱, 

like in Table 2. So for =0, 0.1,…,1: 

Case 1. If 𝛱 ≤ 𝛱(0) or 𝛱(0) ≤ 𝛱, then 0=0 and 

finally 𝜇�̃�(𝛱) = 0 

Case 2. If 𝛱(1) ≤ 𝛱 ≤ 𝛱(1) then 0 =1 and final-

ly 𝜇�̃�(𝛱) = 1 

Case 3. If 𝛱 (
𝑗

10
) ≤ 𝛱 < 𝛱 (

𝑗+1

10
), j=0,1,…,9 then 

(11) becomes 𝜇�̃�(𝛱) = argmax
𝛼∈[0,1]

{𝛼|𝛱(𝛼) ≤ 𝛱} and, 

given that 𝛱(𝛼)  is an increasing function of 𝛼,  we 

simply must to obtain the root of 𝛱(𝛼) = 𝛱 , 𝛼 ∈
[0,1] .This root can be approximated by using bisec-

tion algorithm that we start from the tentative solu-

tion 𝛼0 =
1

10
[𝑗 +

𝛱−𝛱(
𝑗

10
)

𝛱(
𝑗+1

10
)−𝛱(

𝑗

10
)
]. 

Case 4. If 𝛱 (
𝑗

10
) > 𝛱 ≥ 𝛱 (

𝑗+1

10
), j=0,1,…,9 then 

the problem (11) is equivalent to 𝜇�̃�(𝛱) =

argmax
𝛼∈[0,1]

{𝛼|𝛱 ≤ 𝛱(𝛼)}. Given that 𝛱(𝛼) is a decreas-

ing function of 𝛼, the problem is reduced to obtaining 



the root of 𝛱(𝛼) = 𝛱, 𝛼 ∈ [0,1]. To solve this equa-

tion with bisection algorithm we start with a tentative 

solution 𝛼0 =
1

10
[𝑗 + 1 −

𝛱−𝛱(
𝑗+1

10
)

𝛱(
𝑗

10
)−𝛱(

𝑗+1

10
)
] 

3.2. Estimating the parameters to use in FBS from 

empirical data 

The price traded on markets for any asset in a giv-

en day oscillates between a maximum and minimum 

value  [𝑆𝑡
𝑚𝑖𝑛, 𝑆𝑡

𝑚𝑎𝑥] . E.g. the value of IBEX35 at 

3/1/2017 was within [9616.6, 9756.5]. Likewise, Fi-

nancial markets usually publish an average price (a 

weighted mean of negotiated prices), 𝑆𝑡
𝑤𝑚 that in our 

example was 9696.8. In this paper, on the contrary to 

[9], that considers the price of the subjacent asset as a 

symmetrical TFN, that price is a TFN not necessarily 

symmetrical, �̃�𝑡 = (𝑆𝑡 , 𝑙𝑆𝑡
, 𝑢𝑆𝑡

)  where 𝑆𝑡 = 𝑆𝑡
𝑤𝑚 , 

𝑙𝑆𝑡
= 𝑆𝑡

𝑤𝑚 − 𝑆𝑡
𝑚𝑖𝑛  and 𝑢𝑆𝑡

= 𝑆𝑡
𝑚𝑎𝑥 − 𝑆𝑡

𝑤𝑚.  So, 

�̃�3/1/2017 =(9696.8, 80.2, 59.7). 

We quantify free-risk discount rate also as a TFN. 

To estimate fuzzy interest rate we will consider those 

registered in the Spanish repo market for agreements 

with maturity less than 3 months and proceed exactly 

as in the case of subjacent asset price. At 3/1/2017, in 

Spanish repo market the interest rates oscillated with-

in the interval [-0.55%, -0.45%] whereas weighted 

mean for those rates was -0.52%. So, the fuzzy inter-

est rate that we will use to implement FBS is �̃� =
(𝑟, 𝑙𝑟 , 𝑢𝑟)=(-0.52%, 0.03%, 0.07%) 

Theoretically, volatility is the standard deviation 

of the subjacent asset price fluctuation. In this way, 

[9], following the approach by Buckley [2] to induce 

fuzzy values to statistical parameters and refined in 

[34], proposes using a fuzzy historical standard devi-

ation that they derivate from conventional statistical 

confidence intervals. In [6] it is estimated a fuzzy 

volatility by applying a possibility-probability trans-

formation to historical prices of the subjacent asset.   

However, it is more extended among practitioners 

the use of the implied volatilities. Since the study 

[21], numerous papers report that implied volatilities 

of options are closely linked with the strike price and 

many times are too far from historical volatilities of 

subjacent asset. The relation between implied volatil-

ity and strike price is known as “volatility sunrise” 

due to it usually can be represented by means of a 

convex quadratic function of strike price. Likewise it 

is also usual the existence of a link between implied 

volatility and date of expiration which is named 

“temporal structure of volatility” whose causes are 

exposed in [25]. These phenomena motivated the use 

of stochastic volatilities to model option prices, as 

[16]. However, these models exhibit usually poorer 

results than Black and Scholes formula with simple 

volatility adjustments, as [13] points for the case of 

IBEX35 options. So [11] shows that the predictions 

given by BS formula where the volatility comes from 

the implied volatility of an option that was traded 

recently with the same strike price and expiration 

date are better than those obtained by more sophisti-

cated methods. That is why in practical applications 

it is often used BS formula with a deterministic vola-

tility that depends on the strike price and expiration 

date of the option. Several alternatives on this way 

are discussed in [11]. 

Table 2 shows the result of estimating with LS the 

equation 𝜎 = 𝑎0 + 𝑎1
𝐾

𝑆
+ 𝑎2 (

𝐾

𝑆
)

2

+ 𝑎3, being K the 

strike price, S the closing price and  the maturity of 

several option contracts for IBEX35 traded in 

MEFFSA at 2/28/2017. We only consider the options 

that expire the last tradable day of the third week of 

the next three months (March, April and May), given 

that they are the most liquid references. Table 2 

shows that volatility smile and term structure exhibit 

a clear statistical significance. The sign of the 

squared strike price coefficient is coherent with the 

existence of a volatility smile. 

Table 2. Results of fitting 𝜎 = 𝑎0 + 𝑎1
𝐾

𝑆
+ 𝑎2 (

𝐾

𝑆
)

2

+ 𝑎3 for the 

options on IBEX35 negotiated in MEFFSA at t=2/28/2017 

Variable Constant 𝐾

𝑆
 (

𝐾

𝑆
)

2

 
 

Value 1.403 
(3.24***) 

-2.146 
(-2.43**) 

0.874 
(1.95*) 

0.368 
(15.43***) 

Note: The t-ratio is in parenthesis and *, **,*** symbolize rejec-

tion of the hypothesis that the coefficient is not different from 0 at 
10%, 5% and 1% statistical significance level. 

Under an implied volatility framework, [6] pro-

pose estimating fuzzy implied volatilities by applying 

a probability-possibility transformation method on 

past implied volatility of options. However, as [26] 

we opt to fit implied volatility by means of the re-

gression model [17]. Concretely, we fit the fuzzy 

version of the equation fitted in Table 2. So, we 

model the volatility smile as quadratic function of the 

strike price but, in addition, to quantify term structure 

effects we include a linear term of the option maturi-

ty. Therefore, we adjust the following FR model with 

TFN coefficients: 

�̃�𝑖 = �̃�0 + �̃�1𝑥𝑖 + �̃�2𝑥𝑖
2 + �̃�3𝜏𝑖  

Where �̃�𝑖 is the implied volatility of the ith obser-

vation. The observed values of volatility come from a 



confidence interval [𝜎𝑖
𝑚𝑖𝑛, 𝜎𝑖

𝑚𝑎𝑥] that is built up, as 

[26], from the implied volatility of call and put clos-

ing prices with the same maturity and expiration date. 

The coefficients are TFNs in such a way �̃�𝑘 =

(𝑎𝑘 , 𝑙𝑎𝑘
, 𝑢𝑎𝑘

) and, k=0,1,2,3.  

The observation of the first explanatory variable 𝑥𝑖 

is the quotient of the strike price respect to the clos-

ing price of the subjacent asset in that moment, 𝑥𝑖 =
𝐾𝑖

𝑆𝑖
  and so 𝑥𝑖

2 fits the curvature of the volatility smile. 

Then, 𝜏𝑖 is the maturity of the contract in the ith ob-

servation. The sample used to adjust this FR model is 

composed by the implied volatilities of options trad-

ed previous day. Therefore, if an option is priced 

3/1/2017 we use the observations on implied volatili-

ties at 2/28/2017. 

Firstly we estimate 𝑎𝑘 k=0,1,2,3 by means of a LS 

regression. Their values are denoted as 𝑎𝑘
∗  i=0,1,2,3. 

Therefore the values of 𝑎𝑘
∗  i=0,1,2,3 at 2/28/2017 are 

exposed in Table 2. Notice that at this step, we have 

two crisp observations for �̃�𝑖  , 𝜎𝑖
𝑚𝑖𝑛 and 𝜎𝑖

𝑚𝑎𝑥, whose 

linked value of the explanatory variables is identical.  

Subsequently, to fit the radius  𝑙𝑎𝑘
, 𝑢𝑎𝑘

 k=0,1,2,3 

we have to solve the following linear programming 

model: 

Minimize ∑( 𝑙𝑎0
+ 𝑢𝑎0

) + ( 𝑙𝑎1
+ 𝑢𝑎1

) ∑ 𝑥𝑖

𝑖𝑖

+ ( 𝑙𝑎2
+ 𝑢𝑎2

) ∑ 𝑥𝑖
2

𝑖

+ ( 𝑙3 + 𝑢𝑎3
) ∑ 𝜏𝑖

𝑖

  

subject to: 
𝑎0

∗ + 𝑎1
∗𝑥𝑖 + 𝑎2

∗𝑥𝑖
2 + 𝑎3

∗𝜏𝑖 − (𝑙𝑎0
+ 𝑥𝑖𝑙𝑎1

+ 𝑥𝑖
2𝑙𝑎2

+ 𝜏𝑖𝑙𝑎2
)(1 − 𝛼)

≥ 𝜎𝑖
𝑚𝑖𝑛  ∀𝑖 

𝑎0
∗ + 𝑎1

∗𝑥𝑖 + 𝑎2
∗𝑥𝑖

2 + 𝑎3
∗𝜏𝑖

+ (𝑢𝑎0
+ 𝑥𝑖𝑢𝑎1

+ 𝑥𝑖
2𝑢𝑎2

+ 𝜏𝑖𝑢𝑎2
)(1 − 𝛼)

≤ 𝜎𝑖
𝑚𝑎𝑥  ∀𝑖 

𝑙𝑎𝑘
, 𝑢𝑎𝑘

0 𝑘 = 1,2,3,4  

So, for the options to be priced at 3/1/2017 we fit 

the volatility as ̃  = (1.403,0.000,0.024)+(-2.146, 

0.000, 0.000)
𝐾

𝑆
 +(0.874, 0.000, 0.000) (

𝐾

𝑆
)

2

+(0.368, 

0.157, 0.000). Figure 1 summarizes how we esti-

mate the parameters of FBS from empirical data. 

 
Figure 1. Estimating parameters to evaluate FBS at time t 

● Step 1. Fit subjacent asset price (discount rate) with a TFN from 

minimum, maximum and weighted mean price (rate) negotiated 

in the session t. 
●Step 2. Fit volatility by smoothing with FR implied volatility of 

options at t-1. The input variables are moneyness and maturity. 

●Step 3. Evaluate equation (9) to obtain the fuzzy price of a call 
option and (10) to calculate the fuzzy value of a put option. 

 

 

4. Assessing fuzzy Black-Scholes formula to fit 

market prices  

In this section we test the capability of FBS to fit 

actual traded prices of options. We use a sample of 

calls and puts on IBEX35 negotiated at MEFFSA all 

the Wednesdays of March and that expire the last 

tradable day of the third week of the next three 

months. These are the most liquid references of 

Spanish option market. Table 3 shows trading dates 

and expiration dates of the contracts in our sample 

that comprises 256 call prices and 334 put prices.  

 
Table 3. Trading dates and expiration of the calls and puts in our 

sample 

Trading dates Expiration dates 

3/1/2017 3/17/2017; 4/19/2017; 

5/19/2017 

3/8/2017 3/17/2017; 4/19/2017; 

5/19/2017 

3/15/2017 3/17/2017; 4/19/2017; 

5/19/2017 

3/22/2017 4/19/2017; 5/19/2017; 

6/16/2017 

3/29/2017 4/19/2017; 5/19/2017; 

6/16/2017 

 
We consider four possible crisp actual prices for 

an option during one day: closing price (Πclos), max-

imum price (Πmax), mean price (Πmean) and minimum 

price (Πmin). We measure the capability of FBS to fit 

these prices in two ways. The first method consists in 

evaluating the ML of an actual price of the type i, 𝛱𝑖 , 
in the FN that predicts it (𝛱). So the grade in which 

𝛱𝑖  is included into the fuzzy estimate of the option 

price is 𝜇�̃�(𝛱𝑖), that can be obtained by solving (11). 

The second way consists in testing the capability of 

expected interval (EI) of the fuzzy price, 𝐸𝐼(𝛱) to 

include the price 𝛱𝑖 . We test the following issues. 

1. The quality of the prediction that FBS makes for 

actual prices. We expect that real prices are contained 

with enough reliability in FBS estimates, especially 

closing and mean prices.  

2. It seems reasonable expecting that closing and 

mean prices are better fitted than minimum and max-

imum prices. Whereas closing and mean prices can 

be considered crisp representative values for an op-

tion, maximum and minimum prices can be under-

stood as extreme values of that value.  

3. We also check if FBS makes predictions for call 

prices as good as for put prices.  

4. We asses on the influence of the moneyness and 

the expiration date of options on the capability of 

FBS to include traded prices. 



4.1. Assessing the membership levels of actual prices 

on FBS 

In this subsection we evaluate the quality of FBS 

predictions through the MLs of actual prices in their 

fuzzy predictions. Figure 2 summarizes the steps that 

we have follow to develop this subsection. 

Respect the levels on which FBS fits real prices, 

we state if Πclos, Πmax, Πmean and Πmin are included in 

FBS prediction with a ML of at least 0.5, which is 

commonly considered the “cut” to consider an ele-

ment nearest to be member than non-member of a 

fuzzy set. Lower mean MLs imply that traded prices 

are more false than true in FBS estimates of price and 

so, these fuzzy prices do not quantify especially well 

traded prices. To asses this issue we test whether the 

mean membership level of a concrete kind of price is 

0.5.with a Student’s t (see results are in Table 4). 
 

Figure 2. Steps to asses FBS empirically from the membership 

levels attained by actual option prices  

● Step 1. Fit the theoretical fuzzy values of options in the sample 
following the steps in Figure 1. 

● Step 2. Fit the membership level of closing, maximum, mean 
and minimum observed prices into their fuzzy theoretical value. 

For the price of kind i (𝛱𝑖) we have to calculate 𝜇�̃�(𝛱𝑖) by solv-

ing (11) with bisection algorithm. 

● Step 3. Asses the following aspects of FBS: 

● Step 3.1. Check that actual negotiated prices are more true 
than false in the FBS estimate by testing the null hypothesis 

𝜇�̃�(𝛱𝑖)=0.5 with a Student’s t test (see Table 4) 

● Step 3.2. Test that 𝛱𝑐𝑙𝑜𝑠  and 𝛱𝑚𝑒𝑎𝑛  are better fitted than 

𝛱𝑚𝑖𝑛 and 𝛱𝑚𝑎𝑥 with ANOVA (null hypothesis 𝜇�̃�(𝛱𝑐𝑙𝑜𝑠) =
𝜇�̃�(𝛱𝑚𝑒𝑎𝑛) = 𝜇�̃�(𝛱𝑚𝑖𝑛) = 𝜇�̃�(𝛱𝑚𝑎𝑥)). Also use Student’s t 

on mean differences for pair wise samples (null hypothesis 

𝜇�̃�(𝛱𝑖) − 𝜇�̃�(𝛱𝑗) = 0). See results in Tables 5a and 5b re-

spectively. 

● Step 3.3. Test whether the quality of FBS price predictions 
is the same for call and put prices. It is done by means of a 

Student’s t test for each kind of price (null hypothe-

sis𝜇�̃�𝑐𝑎𝑙𝑙(𝛱𝑖) − 𝜇�̃�𝑝𝑢𝑡(𝛱𝑖) = 0). Results are in Table 6. 

● Step 3.4. Test whether the goodness of FBS predictions de-

pends on the moneyness and maturity of options by means 

of the regression model (12). Results are in Table 7.   

 

 

Table 4. Mean values of 𝜇�̃�(𝛱𝑖) and Student’s t for the null hy-

pothesis 𝜇�̃�(𝛱𝑖)=0.5 

 𝜫𝒄𝒍𝒐𝒔 𝜫𝒎𝒂𝒙 𝜫𝒎𝒆𝒂𝒏 𝜫𝒎𝒊𝒏 
 

Calls 

0.60409 

(6.12***) 

0.63836 

(8.63***) 

0.62045 

(6.78***) 

0.53958 

(1.99**) 

 

Puts 

0.58235 

(5.22***) 

0.58208 

(5.01***) 

0.59010 

(5.71***) 

0.58048 

(5.04***) 

Note: The value of Student’s t-ratio comes in parenthesis and *, **, 

*** indicates rejection of the null hypothesis 𝜇�̃�(𝛱𝑖)=0.5 at 10%, 
5% and 1% statistical significance levels. 

 

Table 4 shows that all kind of prices are contained 

in their fuzzy predictions with MLs near 0.6. The 

exception is the minimum price of calls that are in-

cluded with a mean ML of 0.54. In any case, the null 

hypothesis 𝜇�̃�(𝛱𝑖)=0.5 is rejected with a statistical 

significance level under 5% in the case of the mini-

mum price of calls and under 1% otherwise. 

In Tables 5a, 5b and 6 we conduct several statisti-

cal tests on mean differences. We expect that the 

mean ML attained by Πclos and Πmean in FBS predic-

tion will be greater than that attained by Πmax and 

Πmin. Table 5a shows the results of ANOVA for the 

hypothesis 𝜇�̃�(𝛱𝑐𝑙𝑜𝑠) = 𝜇�̃�(𝛱𝑚𝑎𝑥) = 𝜇�̃�(𝛱𝑚𝑒𝑎𝑛) =
𝜇�̃�(𝛱𝑚𝑖𝑛) . Despite we cannot accept that all call 

prices attain the same mean ML this does not follow 

in the case of put prices.  
Table 5b shows the results of Student’s t test on 

mean differences for pair wise samples. In the case of 

put prices, the sign of the difference is as we ex-

pected (closing and mean prices have greater MLs 

than maximum and minimum prices) but in any case 

these differences have statistical significance. Sur-

prisingly in call prices 𝛱𝑚𝑎𝑥  is better fitted than other 

prices and this fact has statistical significance when 

compare 𝜇�̃�(𝛱𝑚𝑎𝑥)  with 𝜇�̃�(𝛱𝑐𝑙𝑜𝑠)  and 𝜇�̃�(𝛱𝑚𝑖𝑛) . 

Likewise, as we expected, the mean MLs of closing 

and mean prices are greater than that of minimum 

prices with a statistical significance below 1%.  

Regarding the mean difference between the MLs 

in fuzzy estimates of calls and puts, Table 6 shows 

that fuzzy estimates fit better in Πclos, Πmean and Πmax 

calls than in puts whereas Πmin achieves greater MLs 

in put options. However we can check that these dif-

ferences only have statistical significance for Πmax. 
 

Table 5a. Snedecor’s F for the null hypothesis 𝜇�̃�(𝛱𝑐𝑙𝑜𝑠) = 

𝜇�̃�(𝛱𝑚𝑎𝑥) = 𝜇�̃�(𝛱𝑚𝑒𝑎𝑛) = 𝜇�̃�(𝛱𝑚𝑖𝑛) 

 
F-statistic 

Calls 4.929*** 

Puts 0.073 

Note: The value of t-ratio comes in parenthesis and *, **, *** 

indicates rejection of the ANOVA null hypothesis at 10%, 5% and 

1% statistical significance levels. 

 

To state the influence of the degree of moneyness 

and the maturity on 𝜇�̃�(𝛱𝑖) we estimate a regression 

equation where 𝜇�̃�(𝛱𝑖) is the dependent variable and 

the ratio K/S and  are the independent variables. 

Given that 𝜇�̃�(𝛱𝑖) must be within the interval [0,1], 

we estimate the following censored logistic model: 

𝑙𝑛 (
𝜇�̃�(𝛱𝑖)

1−𝜇�̃�(𝛱𝑖)
) = 𝑎1 + 𝑎1

𝐾

𝑆
+ 𝑎3𝜏 (12) 

 



Table 5b. Mean values and Student’s t for the null hypothesis 

𝜇�̃�(𝛱𝑖) − 𝜇�̃�(𝛱𝑗)=0 

 

𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒂𝒙 𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒆𝒂𝒏 𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒊𝒏 

Call 

-0.0343 
(-3.596***) 

-0.0164 
(-1.507) 

0.0645 
(4.184***) 

Put 

0.0003 

(0.025) 

-0.0078 

(-1.019) 

0.0019 

(0.216) 

 

𝜫𝒎𝒂𝒙 vs 𝜫𝒎𝒆𝒂𝒏 𝜫𝒎𝒂𝒙 vs 𝜫𝒎𝒊𝒏 𝜫𝒎𝒆𝒂𝒏 vs 𝜫𝒎𝒊𝒏 

Call 

0.0179 

(1.451) 

0.0988 

(5.331***) 

0.0809 

(7.336***) 

Put 

-0.0080 

(-0.961) 

0.0016 

(0.108) 

0.0096 

(1.055) 

Note: The value of Student’s t-ratio comes in parenthesis and *, **, 
*** indicates rejection of the null hypothesis at 10%, 5% and 1% 

statistical significance levels. 

 
Table 6. Mean values and Student’s t for the null hypothesis 

𝜇�̃�𝑐𝑎𝑙𝑙(𝛱𝑖) − 𝜇�̃�𝑝𝑢𝑡(𝛱𝑖) = 0 

Πclos Πmax Πmean Πmin 

0.02174 

(0.937) 

0.05628 

(2.455***) 

0.03035 

(1.276) 

-0.04090 

(-1.601) 

Note: The value of t-ratio comes in parenthesis and *, **, *** 

indicates rejection of the null hypothesis at 10%, 5% and 1% sta-

tistical significance levels. 

 

Table 7. Value of the coefficients for the regression model (12) 
 

 Constant K/S 

 

 

 

Calls 

Closing price 
-0.0284 

(-0.097) 

0.5190 

(1.746*) 

0.7724 

(2.708***) 

Maximum price 
0.0254 

(0.093) 

0.5907 

(2.142*) 

0.1807 

(0.686) 

Mean price 
0.1553 

(0.533) 

0.4117 

(1.397) 

0.3967 

(1.406) 

Minimum price 
-0.0483 

(-0.135) 

0.3593 

(0.989) 

1.4599 

(4.148***) 

 

 

 

 

Puts 

Closing price 
1.1217 

(5.606***) 

-0.7246 

(-3.735***) 

1.0414 

(3.837***) 

Maximum price 
0.8186 

(3.514***) 

-0.3061 

(-1.351) 

0.4886 

(1.684*) 

Mean price 

 

0.8154 
(3.883***) 

-0.4164 
(-2.040**) 

1.1970 
(4.432***) 

Minimum price 
0.8340 

(4.268***) 

-0.5835 

(-3.092***) 

1.9646 

(7.382***) 

Note: The value of Student’s t-ratio comes in parenthesis and *, **, 
*** indicates rejection of the null hypothesis at 10%, 5% and 1% 

of significance levels. 

Table 7 shows the results of fitting (12) for all 

kind of call and put prices. We can check that at-

tained MLs are positive (negative) linked with K/S in 

calls (puts). So, as options became more out of the 

money (i.e. it is less probable that will be exercised) 

FBS fits better the real prices. This relation reaches 

clear statistical significance levels in the case of clos-

ing and maximum prices of call options and in Πclos, 

Πmean and Πmin of put options.  

Table 7 also shows that in all kind of options MLs 

of real prices are positive related with maturity. This 

relation has enough statistical entity in the case of 

closing and minimum prices of call options and in all 

kind of put prices. 

4.2. Assessing the capability of the expected interval 

of FBS to fit real prices  

Now we assess the capability of EIs that come 

from FBS predictions,  𝐸𝐼(𝛱), to include actual op-

tion prices. To obtain EIs we apply Simpson’s rule 

on (2) over (9) and (10) and, likewise, we implement 

(9) and (10) with a scale of eleven grades of truth, as 

in Table 2. Figure 3 summarizes the methodology 

used in this subsection. 
Figure 3. Steps to asses FBS empirically by means of the expected 
interval predictions  

● Step 1. Adjust the theoretical prices of the option contracts in the 

sample from the steps in Figure 1. 
● Step 2. Calculate the EI of each fuzzy price. 

● Step 3. Determine for each concrete kind of price (𝛱𝑖) whether it 
is contained in the expected interval of its fuzzy prediction: 

𝜇𝐸𝐼(�̃�)(𝛱𝑖) = {
1   𝛱𝑖 ∈ 𝐸𝐼(𝛱)

0  otherwise
 

● Step 4. Asses the following aspects of FBS: 

● Step 4.1. Check that traded prices are included within 𝐸𝐼(𝛱) 

with a probability greater than 50% by testing the null hy-

pothesis 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1)=0.5 with a Student’s t test (see 

Table 8) 

● Step 4.2. Test that 𝛱𝑐𝑙𝑜𝑠  and 𝛱𝑚𝑒𝑎𝑛  are better fitted than 

𝛱𝑚𝑖𝑛 and 𝛱𝑚𝑎𝑥 with a Chi-Squared test  for the null hypoth-

esis 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑐𝑙𝑜𝑠) = 1) = 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑖𝑛) = 1) =

𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑒𝑎𝑛) = 1) = 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑎𝑥) = 1)). Also test 

𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1) − 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑗) = 1) = 0  with a Stu-

dent’s t. The results are in Tables 9a and 9b. 

● Step 4.3. Test that the goodness of FBS predictions is the 
same for calls than for puts by using a Student’s t test for 

the null hypothesis 𝜇𝐸𝐼(�̃�𝑐𝑎𝑙𝑙)(𝛱𝑖) − 𝜇𝐸𝐼(�̃�𝑝𝑢𝑡)(𝛱𝑖) = 0. The 

results are in Table 10. 

● Step 4.4. Test whether the goodness of FBS predictions de-

pends on the moneyness and maturity of options with the 
logistic regression (13). The results are in Table 11.  

 
 

We expect more frequent that any kind of real 

price is included within  𝐸𝐼(𝛱)  than not included. 

Likewise, we expect that Πclos and Πmed will be more 

frequently within 𝐸𝐼(𝛱)  than extreme prices Πmax 

and Πmin. This analysis is made from the membership 

function of the crisp confidence interval 𝐸𝐼(𝛱):  

𝜇𝐸𝐼(�̃�)(𝛱𝑖) = {
1   𝛱𝑖 ∈ 𝐸𝐼(𝛱)

0  otherwise
 (13) 



To assess the frequency in which 𝛱𝑖  is included 

within 𝐸𝐼(𝛱)  we test with an Student’s t the null 

hypothesis 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1) =0.5, being P(·) the 

probability of the evaluated result. Notice that 0.5 is 

the cut to consider an outcome to be more likely than 

not likely. Table 8 shows that except minimum trad-

ed prices of call options, any type of option price is 

included in 𝐸𝐼(𝛱) with frequencies above 60% and 

often above 65%. We reject with significance levels 

below 1% in practically all the cases that 

𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1)=0.5 and so, the empirical experi-

ence lead us to consider  that 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1)>0.5. 
 

Table 8. Observed relative frequencies of 𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1 and 

Student’s t for the null hypothesis 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1)=0.5 

 
𝜫𝒄𝒍𝒐𝒔 𝜫𝒎𝒂𝒙 𝜫𝒎𝒆𝒂𝒏 𝜫𝒎𝒊𝒏 

Calls 

0.66797 
(5.375***) 

0.70703 
(6.625***) 

0.69531 
(6.25***) 

0.56641 
(2.125**) 

Puts 

0.62575 

(4.596***) 

0.63281 

(4.854***) 

0.67578 

(6.425***) 

0.69141 

(6.996***) 

Note: The value of t-ratio comes in parenthesis and *, **, *** 
indicates rejection of the null hypothesis at 10%, 5% and 1% sta-

tistical significance levels. 

 

We expect that Πclos and Πmean should be more fre-

quently included within 𝐸𝐼(𝛱) than Πmax and Πmin. 

However, Table 9a shows that in both call and put 

options, we cannot reject that all kind of prices have 

the same probability to be included within 𝐸𝐼(𝛱).  

Table 9b shows the results of Student’s t test for 

the null hypothesis  𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1) =

𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑗) = 1). In call options, 𝛱𝑚𝑎𝑥 is again the 

price better fitted but his fact only has statistical sig-

nificance when compare 𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑎𝑥)  with 

𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑖𝑛). Table 9b also shows that 𝛱𝑚𝑖𝑛  is the 

price poorer fitted by EIs and this fact always pre-

sents significant statistical levels. In the case of put 

options, the sign of the differences between relative 

frequencies of 𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1 are not as we expected 

in several cases (e.g. closing prices have been includ-

ed less times than minimum and minimum prices). In 

any case, only has real statistical significance the 

difference between the relative frequencies attained 

by Πclos and Πmin with p-value 10%.  

Regarding the difference between the frequency in 

which call and put prices are within 𝐸𝐼(𝛱), Table 10 

shows, as Table 6 that FBS fits better Πclos, Πmean and 

Πmax in calls than in puts whereas Πmin is better pre-

dicted in put options. We also can check that these 

differences only have statistical significance in the 

case of maximum and minimum prices. 
 

Table 9a. Results of testing whether all kind of prices have the 
same probability to be contained in the EI of FBS prediction with a 

Chi-Square test 

 

2-statistic 

Call 4.769 

Put 1.677 

Note: The value of t-ratio comes in parenthesis and *, **, *** 

indicates rejection of the null hypothesis at 10%, 5% and 1% sta-

tistical significance levels. 
 

Table 9b. Mean value of 𝜇𝐸𝐼(�̃�)(𝛱𝑖) − 𝜇𝐸𝐼(�̃�)(𝛱𝑗) and Student’s t 

for the null hypothesis 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑖) = 1) = 𝑃(𝜇𝐸𝐼(�̃�)(𝛱𝑗) = 1). 

 
𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒂𝒙 𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒆𝒂𝒏 𝜫𝒄𝒍𝒐𝒔 vs 𝜫𝒎𝒊𝒏 

Call 

-0.0391 

(-0.953) 

-0.0273 

(-0.664) 

0.1016 

(2.364***) 

Put 

-0.0071 
(-0.189) 

-0.0500 
(-1.356) 

-0.0657 
(-1.789*) 

 
𝜫𝒎𝒂𝒙 vs 𝜫𝒎𝒆𝒂𝒏 𝜫𝒎𝒂𝒙 vs 𝜫𝒎𝒊𝒏 𝜫𝒎𝒆𝒂𝒏 vs 𝜫𝒎𝒊𝒏 

Call 

0.0117 

(0.290) 

0.1406 

(3.308***) 

0.1289 

(3.032***) 

Put 

-0.0430 
(-1.168) 

-0.0586 
(-1.601) 

-0.0156 
(-0.434) 

Note: The value of t-ratio comes in parenthesis and *, **, *** 

indicates rejection of the null hypothesis at 10%, 5% and 1% sta-

tistical significance levels. 
 

Table 10. Difference between the relative frequency of 

𝜇𝐸𝐼(�̃�)(𝛱𝑐𝑙𝑜𝑠) = 1,  𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑎𝑥) = 1, 𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑒𝑑) = 1  and 

𝜇𝐸𝐼(�̃�)(𝛱𝑚𝑖𝑛) = 1 of calls and puts  

Πclos Πmax Πmean Πmin 

0.0422 

(1.061) 

0.0742 

(1.893*) 

0.0195 

(0.506) 

-0.1250 

(-3.130***) 

Note: The value of t-ratio comes in parenthesis. *, **, *** indi-

cates rejection of the null hypothesis at 10%, 5% and 1% statistical 

significance levels. 

We now analyze the influence of the degree of 

moneyness and the maturity on 𝜇𝐸𝐼(�̃�)(𝛱𝑖). To make 

it we fit a logit regression model where 𝜇𝐸𝐼(�̃�)(𝛱𝑖) is 

the dependent variable, which takes values on {0, 1} 

and K/S and  are again the explanatory variables.  

𝑙𝑛 (
𝜇𝐸𝐼(�̃�)(𝛱𝑖)

1−𝜇𝐸𝐼(�̃�)(𝛱𝑖)
) = 𝑎1 + 𝑎1

𝐾

𝑆
+ 𝑎3𝜏 (14) 

Table 11 shows the results of fitting (14) for all 

type of prices and options. We can check again that 

𝜇𝐸𝐼(�̃�)(𝛱𝑖) has a positive relation with maturity. This 

relation has solid statistical significance practically 



for any kind of price and/or option. In call prices we 

also detect a positive relation between 𝜇𝐸𝐼(�̃�)(𝛱𝑖)  

and K/S with a significance level above 5% in the 

case of closing, maximum and minimum prices. On 

the other hand, in the case of put prices the sign of 

the relation between 𝜇𝐸𝐼(�̃�)(𝛱𝑖)  and K/S is not clear. 

This sign is negative for maximum and minimum 

prices whereas it is positive for closing and mean 

prices. In any case, those contradictory relations have 

not relevant statistical significance levels.   
 

Table 11. Fitted coefficients for the logistic regression model (14) 

 
 Constant K/S 

 

 

 

Calls 

Closing price 
-5.4942 

(-2.407***) 

5.7277 

(2.487***) 

3.8487 

(1.787*) 

Maximum price 
-4.6484 
(-2.014**) 

5.4831 
(2.348***) 

0.9100 
(0.412) 

Mean price 
-4.6766 

(-2.023**) 

5.1098 

(2.189**) 

3.2728 

(1.495) 

Minimum price 
-3.8037 
(-1.777*) 

3.4200 
(1.585) 

4.7777 
(2.330***) 

 

 

 

 

Puts 

Closing price 
1.0982 

(0.753) 

-1.7111 

(-1.182) 

6.9512 

(3.684***) 

Maximum price 
-0.5142 
(-0.365) 

0.5478 
(0.395) 

3.4942 
(1.884*) 

Mean price 

 

-0.5628 

(-0.380) 

0.1699 

(0.116) 

6.9848 

(3.636***) 

Minimum price 
0.9200 
(0.602) 

-2.2252 
(-1.461) 

11.2752 
(5.668***) 

Note: The value of t-ratio comes in parenthesis and *, **, *** 

indicates rejection of the null hypothesis at 10%, 5% and 1% sta-
tistical significance levels. 

5. Conclusions 

This paper exposes the fuzzyfied extension of 

Black and Scholes model [1], (FBS), developed in 

[38-40] and proposes a suitable way to fit empirically 

subjacent asset price, free interest rate and volatility 

to evaluate FBS. Whereas fuzzy stock price and dis-

count rate are obtained directly from empirical data, 

volatility is fitted by a fuzzy regression model similar 

to [26] that links implied volatility with grade of 

moneyness and maturity of the options. In our opin-

ion, it may be of interest investigating if other fuzzy 

volatility models as [6, 9, 23] allow obtaining better 

empirical results. Likewise, we think that granular 

computing (see for several perspectives [10, 19, 20, 

31-33]) is a very promising field to model financial 

time series as it is shown in [22, 23]. So, future ap-

plications of granular computing on option pricing 

field could be fruitful.  

We also assess the performance of FBS to predict 

traded prices (closing, maximum, mean and mini-

mum) in two ways. The first one is based on the 

analysis of the membership levels (MLs) of real pric-

es into fuzzy estimates. The second is developed 

from the relative frequency in which traded prices are 

included into the expected interval (EI) of FBS. We 

can synthesize the results as follows: 

* Both testing procedures reveal that FBS predicts 

reasonably well all types of market price. FBS 

contains all kind of prices with MLs greater than 

0.5 (i.e, they are more true than false) whereas the 

EI of FBS contains with probabilities greater than 

50% those prices. 

* Minimum and maximum prices can be considered 

as extreme values whereas closing and mean 

prices can be assimilated to representative prices. 

So, it is reasonable to expect that the extreme 

prices must be worst fitted than those more repre-

sentative. This hypothesis is only proved for the 

minimum price of call options. In fact, it seems 

that in call options FBS fits better maximum pric-

es than kind of prices whereas in put options we 

cannot reject that all type of prices are equally 

well fitted. 

* Our analysis indicates that FBS fits with approx-

imately equal precision in calls and puts, closing 

and mean prices. On the other hand, it seems 

clear that FBS tends to adjust better maximum 

(minimum) prices in call (put) contracts. 

* The results of fitting the regression models (12) 

and (14) reveal that option moneyness and expira-

tion date are relevant to explain the capability of 

FBS to fit actual prices. We have checked that the 

closeness of FBS estimates to actual prices in-

creases with the maturity of the option. In (12) 

that positive relation is statistically significant for 

closing and minimum prices of call options and in 

all kind of put prices. This pattern is also detected 

in the regression model (14).  

The option moneyness has been measured 

with the ratio strike price/price (K/S). We have 

checked that this ratio may be positive (negative) 

linked with the closeness of actual call (put) pric-

es and their fuzzy estimates. That is to say, FBS 

seems to work better in options that are more out 

of the money. In the case of call prices this rela-

tion is not especially clear when estimating (12). 

On the other hand, we have found a clear statisti-

cal significance when analyzing the capability of 

𝜇𝐸𝐼(�̃�)(𝛱𝑖)  to include closing, maximum and 

mean call prices. In the case of put options, the 

negative relation of K/S with the goodness of FBS 



predictions is easy to accept in (12) but it is not 

clear at all in the regression model (14).  

 

In our opinion, the main contribution of this paper is 

that test empirically the closeness of FBS developed 

in [38-40] to actual market data. As we have shown 

in the introduction, there is a wide research field that 

consists in adapting option pricing models to fuzzy 

data but also a lack of empirical studies on this topic. 

So, a natural extension of this research may extend 

the empirical evidence about FBS to option markets 

of other countries. Another future research direction 

may consist in testing with real data other fuzzy op-

tion pricing models that are supported from more 

sophisticated hypothesis on the stochastic process 

that governs subjacent asset [10, 28-30, 42] or are 

developed for less usual option styles than European 

or American [36, 37].  
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