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Abstract

Medical processes combine medical actions which are performed by health care profes-
sionals while they observe signs and symptoms, and decide about interventions, prescrip-
tions, tests, etc. in order to deal with the health problem that affects a particular patient.
The capability of physicians to propose an appropriate treatment depends on their aware-
ness of similar clinical cases and their knowledge about advances in the treatment of the
involved diseases. Clinical practice guidelines (CPGs) are narrative sets of recommendations
for treating patients suffering from a particular disease. With CPGs, physicians can stay up
to date on the best evidence-based medical care and with the recommendations of experts.
However, the access to (and the application of) the contents in the CPGs is difficult during
the actual care process.

Our research was centred in the knowledge representation for the purposes of decision
making in medical processes. The objective was to represent knowledge for medical processes
of chronic diseases. In order to achieve this objective, we have followed three steps: (1) We
made an analysis and comparison of formal languages for procedural knowledge representa-
tion from a decision making perspective. This was driven by 15 basic questions of medical
practice. (2) We proposed an intuitive, ease, and efficient mechanism of medical knowledge
formalization. And, (3) we defined a methodology to model medical procedures from stored
data about individual, multi-level, medical processes. Proposed mechanism is called the ex-
tended Timed Transition Diagram (eTTD) and it can represent three basic levels of decision
making in a long term treatment: therapy strategy, dosage, and intolerances.

We have validated eTTDs with CPGs of three chronic cardiovascular diseases: arterial
hypertension, heart failure, and stable ischemic heart disease. For the sake of containment,
only the results for arterial hypertension are presented. The obtained models can be used
as a baseline framework for medical procedural decision support systems development.
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1. Introduction

Medical processes use to be based on the encounters between health care professionals
and patients in a short or long term basis. When these processes are therapeutic, the objec-
tives can be diverse; e.g., to heal the patient (curative treatment), to contain the progression
of a disease (chronic treatment), to reduce a patients suffering (palliative treatment), to re-
lieve observed signs and symptoms (symptomatic treatment), or to impede a disease to occur
(preventive treatment). Medical processes and their health care actions combine to allow
clinicians to provide daily medical practice [57]. In this task, clinicians’ skills to propose ap-
propriate treatments depend on their awareness of similar clinical cases and their knowledge
about the advances in the treatment of the diseases involved. These therapeutic advances
can be found in clinical practice guidelines (CPGs). CPGs are documents that describe
medical procedures as a narrative set of recommendations for the management of patients
who have a particular disease. They are designed to support the decision making process
in health care, covering health maintenance, prevention, diagnosis, treatment, patient self-
care, and education. Using CPGs, physicians can stay up to date on the best evidence-based
medical care and, in the cases where evidence is not available, with the recommendations of
experts [37]. The aim of CPGs is to improve the quality of care by bringing new research
findings into practice. They are meant to limit undesirable practice variations and reduce
health care costs by optimizing health care delivery [16, 70]. However, the access and appli-
cation of their content is difficult during the care process. Medical decision support systems
(MDSSs) emerged to improve the application of CPGs in medical practice, but developing
these MDSSs requires the formalization of computer-interpretable guidelines (CIGs), repre-
senting the knowledge contained in the CPGs [11, 12, 23, 41, 47, 49, 52]. CIG-based MDSSs
combine guideline knowledge with patient clinical data to provide patient specific advice
during the actual care process. These systems increase the chance to impact physician’s
behaviour in contrast to the usage of traditional (narrative) CPGs. CIGs are designed to
be used through computer tools and not directly applied by health care professionals. The
approach is knowledge engineering and it consists of a knowledge conveyance from human
experts to machine structures. Access and exploitation of the conveyed knowledge is of-
fered with computer tools. Consequently CIGs are computer structures rather than medical
structures that clinicians cannot easily understand [36, 48].

But knowledge about medical processes is also contained in the data stored in health
care databases and electronic health records [3, 37, 38, 39, 40, 63, 68]. This knowledge is
not necessarily based on medical evidence but on the experience of medical practice and
it can be recognized and transferred from computers to health care professionals with the
help of computer data-analysis techniques and tools [3, 38, 39, 40, 54, 58, 68]. Part of the
data stored in these clinical information systems refer to clinical treatments, such as those
related to chronic cardiovascular diseases (CVDs); e.g., arterial hypertension (AH), heart
failure (HF), or stable ischemic heart disease (SIHD).
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According to the World Health Organisation (WHO) [71], CVDs are the number one
cause of death in the world. Of the 56 million global deaths in 2012, 38 million (68%)
were due to noncommunicable diseases (NCDs) and the greatest share of these deaths with
17.5 million (31%) were due to CVD. A WHO latest report [27] is projecting that deaths
caused by NCDs will increase to 52 million by 2030. Four major NCDs (i.e., cardiovascular
diseases, cancer, chronic respiratory diseases, and diabetes) are responsible for 82% of NCD
deaths. In [25], the WHO calculated that 3 out of 17 million of the CVD deaths in 2008
occurred before the age of 60 and could have been prevented. Addressing risk factors such as
tobacco use, unhealthy diet, obesity, insufficient physical activity, salt/sodium intake, and/or
high blood pressure is crucial to CVD prevention. Hipertension: According to the WHO
report [26], 16.5% of all deaths can be attributed to high blood pressure. In 2008, worldwide,
approximately 40% of adults aged ≥25 had been diagnosed with AH. The number of people
with the condition rose from 600 million in 1980 to 1 billion in 2008. The global prevalence
of raised blood pressure (defined as systolic and/or diastolic blood pressure ≥140/90 mmHg)
among persons aged ≥18 years was around 22% in 2014 [27]. Heart failure: With regard to
HF [45], approximately 1-2% of the adult population in developed countries has this disease,
with the prevalence rising to ≥10% among persons ≥70 years. Ischemic heart disease: The
chart book of the National Institutes of Health 2012 [44] reports that the prevalence of IHD
in population-based studies increases with age in both sexes, from 5-7% in women aged
45-64 years to 10-12% in women aged 65-84, and from 4-7% in men aged 45-64 years to
12-14% in men aged 65-84. It is not surprising that all the gathered knowledge about how
to manage these three important CVDs leaded to the development of CPGs for AH [21, 22],
HF [17, 18], and IHD [19, 20].

In order to model medical practice, in [57] we identified 15 clinical questions that are
recurrent in the management of chronic CVD patients (see table 1). These questions have
to do with the medical processes of diagnosis, treatment, patient evolution, follow-up, and
clinical management in general. But it remained unclear whether a single representation
formalism could describe the knowledge for a MDSS to be able to help clinicians to answer
these questions in a long-term management of CVD patients. An interesting attempt was
carried out to represent all these sorts of knowledge with decision tables [55], however it
remained unclear whether these structures could be efficiently and automatically derived
from health care databases, or able to represent knowledge at different levels of detail.

Beyond this attempt, here we propose an adequate representation mechanism to answer
the clinical questions identified in [57]. This mechanism is founded on the timed transition
systems (TTSs) [29, 33] that, after our extension, they are able to capture three basic lev-
els of detail for clinical decision making in long-term treatments: therapy strategy, dosage,
and intolerances. At the therapy strategy level, we can represent treatment strategies such
as recommended lifestyle changes, whether a pharmacological therapy is required or not,
changes of drugs, etc. At the dosage level, the constraints on the required drug doses and
take frequencies are described. And, at the tolerance level, possible patient intolerances to
drugs and their management can be defined. Before proposing this representation mecha-
nism, we analyzed and compared several formal languages for CIG representation from a
decision making perspective. We found that several of these formalisms were able to cover
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all clinical decision support questions identified in [57]. However, we concluded that these
CIG formalisms are complex and they require expert users with special skills in knowledge
representation for both, introducing and interpreting the medical knowledge. Besides, they
were not adequate to represent multiple levels of detail of procedural knowledge, and their
structures are very difficult to machine learn from clinical data.

On the contrary, our proposed formalism resulting from the extension of TTS is intuitive,
manageable and efficient for medical knowledge formalization, capable to deal with the three
levels of decision making wished for the treatment of chronic CVD, and easy to derive by
automatic procedures from clinical data.

Taking into account the WHO reports on CVD [25, 26, 27], we have limited our appli-
cation to three highly prevalent chronic diseases: arterial hypertension, heart failure, and
stable ischemic heart disease. As the WHO emphasizes clinical actions at the primary health
care [71], we have focused our work on this primary level, leaving out the secondary and
tertiary health care levels.

The rest of the paper is organized as follows. Section 2 is dedicated to the analysis and
comparison of formal languages for CIG representation from a decision making perspective.
Section 3 deals with our proposal for medical procedures modelling. It begins with a defini-
tion of a new representation mechanism to describe medical procedures as extended timed
transition diagrams (eTTDs), and continues with a methodological practical application of
our structural model to represent the medical procedures of arterial hypertension at three
basic levels of detail for long-term treatments. Finally, conclusions and discussion on further
research are presented in Section 4.

2. Knowledge Representation for Decision Making in Medical Procedures

There are different studies defending that the quality of health care is directly related
to the experience of the physicians involved [8, 34, 37, 43]. The argued rationale is that
physicians with experience reason better than physicians with less experience or inexpe-
rienced. It means that experienced physicians have a greater ability to combine different
sorts of knowledge acquired from several sources and from their own professional education,
training, and experience. Consequentially this allows them to make wiser decisions.

Considering knowledge management principles [24, 35] we can differentiate between three
levels of knowledge: know-what, know-how, and know-why. Know-what is the lowest knowl-
edge level also known as declarative knowledge. It gathers objects, facts and principles of
a specific domain, where facts and principles establish the relationships and restrictions in
the objects and among the objects of a domain. They specify which action has to be taken
to confront a specific situation. In the medical domain, know-what knowledge refers to
diseases, signs and symptoms, interventions, etc.

Know-how is a higher knowledge level, also known as procedural knowledge. It gathers
the knowledge on how to decide an appropriate action which has to be taken to confront a
specific situation. This knowledge is required when relationships between objects in a specific
domain (being the essence of know-what knowledge) are deficient to express a procedure. In
the medical domain, know-how knowledge refers to the clinical processes such as diagnosing
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or providing a treatment. This knowledge permits a physician to determine the best course
of action possible.

Know-why is the highest knowledge level that we consider. It implies a profound un-
derstanding of causal relationships, interactive effects and uncertainties which are gathered
for a specific domain. In medicine, this knowledge involves physician’s understanding of the
underlying theory, evidences and experience in the interaction effects, the exceptions, the
limitations and the peculiarities of a medical domain. Notice that CPG evidences determine
the know-why knowledge of evidence-based medicine.

2.1. Decision Making in Medical Practice

In medical practice, most of the decisions can be classified into decisions about diagnos-
tics, treatments, prognosis, and clinical activities [2, 37, 43, 50]. In [57], we proposed the
Medical Practice Model (MPM). It is a general-purpose knowledge-based functional model
of clinical practice which combines differential diagnosis, the prescription and integration
of treatments, and prognosis, each one organized as a workflow of tasks. It is able to help
clinicians answer the 15 decision support questions shown in table 1. These are typical ques-
tions that clinicians are faced with in their daily medical practice. For the sake of simplicity,
along the paper we will consider these questions grouped into questions about diagnosis (q1-
q3), questions about treatment (q4-q9), patient and disease evolution questions (q10-q11),
follow-up questions (q12-q13), and clinical management questions (q14-q15).

Using the configuration of tasks in the MPM, we can identify a holistic composition
of these 15 questions in the general medical practice plan depicted in figure 1. This plan
shows the questions as circles, and it describes the clinical information required for each
question to get answered. Answers generate new information that can be required by other
questions. For example, differential diagnosis is started with question “which are the diag-
nostic hypotheses that may explain the patient’s condition?” (see q2 in table 1), based on
the triggering condition that a diagnosis is required and the information about the health
condition of the patient (PC). As a result of the question, a set of diagnostic hypotheses
and respective certainty levels is obtained (DH, certainty). All these information elements
(PC, DH, certainty) are required by question q3 to be answered. In figure 1, the logical
sequence of clinical questions is indicated with dashed arrows, and each question requires
specific sorts of clinical knowledge (and input information) to be answered.

2.2. Formal Languages for Know-how Knowledge Representation

In health care, knowledge modelling and computerization is narrowly related to CIG
languages. In a span of 15 years, several reviews of CIG modeling languages have been
published. These reviews show complementary perspectives. So, [46] presents a control-flow
perspective while examining the expressive power of CIG modeling languages and defining
the differences between process languages offered by workflow management systems and
modeling languages used to design clinical guidelines. In [48], the primary concern was the
usage perspective of these languages. There, the entire life-cycle of CIG development was
compared, including CIG modeling languages, acquisition and specification methodologies,
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Diagnosis q1 Given a patient condition, is a diagnosis required?
q2 Given a patient condition, which are the diagnostic hypotheses

that may explain that condition?
q3 Given a patient condition and a set of diagnostic hypotheses,

which are the diagnostic tests that further reduce the number
of hypotheses?

Treatment q4 Given a patient condition, is a symptomatic treatment re-
quired?

q5 Given a patient condition, which are the alternative symp-
tomatic treatments?

q6 Given a patient condition and the prognoses of a set of al-
ternative treatments, is it possible to identify an acceptable
treatment?

q7 Given a patient condition and a previous prognosis based on
a past patient condition, do we have to discharge the patient,
continue with the treatment, or reconsider it?

q8 Given a diagnosis, which are the alternative curative treat-
ments?

q9 Given two treatments, which is the treatment resulting from
their combination?

Evolution q10 Given a patient condition and a diagnosis, what is the expected
evolution of the patient condition?

q11 Given a patient condition, the diagnosis, and a treatment, what
is the expected evolution of the patient condition?

Follow-up q12 Given a patient condition and a prognosis for a diagnosis, is it
better to wait or to treat?

q13 Given a patient condition and a set of diagnostic hypotheses,
does one have to study, refine or treat?

Clinical
management

q14 Given a set of diagnostic tests, what is their order of applica-
tion?

q15 Given a prognosis and a treatment, when will the next en-
counter be?

Table 1: MPM decision support questions
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Figure 1: Decision support questions incorporated into general medical practice plan
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their integration with electronic health records and organizational workflow, validation and
verification, execution engines and supportive tools, exception handling, maintenance and
sharing. Also temporal trends in CIG-related researches were examined. In [51], CIG lan-
guages are compared from the structural perspective, using eight dimensions of comparison:
organization of guideline plans, goals, model of guideline actions, decision model, expression
language, data interpretation/abstractions, medical concept model and patient information
model.

None of these perspectives to compare CIG languages are decisive to identify the best
alternatives to represent the know-how knowledge required to answer clinical questions such
as ones shown in table 1. For this reason, we analyzed some of the most frequently used
CIG languages from a clinical decision making perspective. The representation languages
compared are: Arden Syntax [30], Asbru [41], clinical algorithm (CA) [28], Gaston [12], GLIF
[4], GUIDE [53], EON [47], knowledge-experience decision tables (k-e DT) [55], PRODIGY
[52], PROFORMA [23], SDA [56] and timed transition diagrams (TTD) [33].

In Appendix A, we provide an overview of each one of these representation formalisms.
In the following sections we analyze whether these languages can integrate the know-how
knowledge needed to address the decision making requirements to answer the questions
in table 1. We organize the discussion according to the five types of questions identified:
diagnosis, treatment, patient evolution, follow-up, and clinical management. Conclusions
are summarized in table 2.

2.2.1. Diagnosis

Diagnosis questions are mainly based on the management of the clinical concepts patient
condition, diagnostic hypotheses, and diagnostic tests. In table 1, these are questions q1-q3.
The capacity of each CIG language to answer these questions is indicated in the respective
columns q1-q3 of table 2.

All the languages, except TTD, can represent the knowledge to answer all the diagnosis
decision support questions. This knowledge must be able to relate patients conditions with
diagnostic hypotheses, and these two with useful diagnostic tests. To accomplish this, the
Arden Syntax includes units called Medical Logic Modules (MLMs) that make a single
medical decision as a production rule that relates a set of input conditions (e.g., patient
condition) to a particular set of actions (e.g., suspect of some possible diseases or suggest
some diagnostic tests). EON and PRODIGY include the concept of scenario, while GLIF,
Gaston, and SDA the concept of state. Both concepts define a particular management
context for patients, thus allowing the incorporation of patient conditions in the clinical
plan. Asbru, PROforma, and GUIDE use expressions that refer to patient states in decision
criteria or preconditions that affect guideline control flow. Clinical algorithm (CA) is able to
answer all three diagnosis questions as it offers constructs that represent patient condition,
diagnostic hypothesis, and diagnostic tests. SDA is the representation format that is based
on the concept of CA [10, 28] but also includes representation primitives such as patient
states, decisions, actions [51, 69] which are crucial for representing diagnosis questions. In
K-e DT, question q1 is answered with a single loop (i.e., only one of the entries in the
decision table is used to provide an answer to the medical question), while questions q2
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and q3 are answered with a multiple loop (i.e., all of the entries that are applicable provide
their respective conclusions, and these conclusions define a list of alternatives that is the
answer to the medical question [55]). TTD is a simple representation formalism which offers
knowledge representation to answer q1, but not q2 or q3, because it is able to represent
a patient conditions and/or a patient current treatments as states, but it is not meant to
describe diagnostic procedures.

2.2.2. Treatment

In the MPM, the treatment questions are q4-q9 (see tables 1 and 2). They are related
to medical concepts such as patient condition, diagnosis, treatment (either symptomatic or
curative), and prognosis. All the languages are able to represent the medical knowledge to
answer all these questions, except the Arden Syntax, CA, and TTD.

The Arden Syntax is providing representation for q4 and q7, but it is not considered for
long-term treatments representation and it lacks of ability to include more decision questions,
especially for treatments, patients and diseases evolutions, and medical reconsiderations. On
the contrary, EON, Gaston, GLIF, PRODIGY, and GUIDE can include branch steps, while
EON, Gaston, GLIF, and GUIDE also include synchronization steps. Asbru and PROforma
implicitly support parallel and sequential execution. Asbru, EON, Gaston, GLIF, GUIDE,
and PROforma have explicit constructs to support cyclical and iterative plan execution.
Asbru, EON, and GLIF define also fuzzy iteration frequency (e.g., take drug every 5-6
hours). PRODIGY, Gaston, and GLIF specify goals as text strings. EON, GUIDE, and
PROforma represent goals formally, while Asbru represents intention as context dependent
temporal patterns. Asbru, PROforma, and PRODIGY are not using explicit constructs to
represent switching [51], while EON, Gaston, GLIF, and GUIDE have switch constructs
that are used for branching. All these are useful components for modeling parallel paths
in a guideline plan. Guideline plans are the basic structures to represent the knowledge to
answer the questions q4-q8. SDA also includes sequences, concurrences, alternatives, and
loops [51, 69], which are crucial for representing decision making process for treatments
and prognosis. K-e DT use a single loop to answer questions q4, q7 and q9, while q5
and q6 are answered with a multiple loop. CA is a representation format that may offer
representation for q4 and q7 decision support questions as it’s constructs are able to capture
patient condition and treatment. It is not meant for representation of alternative treatments
(q5/q8). Existing CA structure makes possible to apply this feature, but in general CAs are
not used for representation of alternative treatments. They normally form part of CPGs,
giving the instructions on how to act in certain moment, how to solve a problem for which
the diagnosis is already set. The most acceptable treatment is represented in CA but not
the alternatives (q6). It does not offer representation of an integrated treatment resulting
from the combination of two treatments (q9). TTD offers representation for q7 as current
and past patient conditions are represented as states, but it is not convenient to represent
therapeutic procedures.
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2.2.3. Evolution

Evolution questions are related to a concepts of patient condition, treatment, and prog-
nosis. In table 1, these are questions q10 and q11. All the languages, except the Arden
Syntax, can represent the knowledge to answer these evolution decision support questions.

The Arden Syntax is not providing representation for patient and disease evolution. It is
not supporting long-term treatments representations, which are crucial to answer q11. MLM
constructs make a single medical decision which can relate a patient condition to possible
diseases or diagnostic tests, but are not sufficient to represent patient or disease evolutions to
answer q10 or q11. Asbru, CA, EON, Gaston, GLIF, GUIDE, Prodigy, PROforma, and SDA
provide constructs (presented in section 2.2.2) to represent patient conditions, treatments,
and prognoses and therefore they are able to formalize the knowledge required to answer q10
and q11. In K-e DT, evolution questions are answered with a single loop. TTD is able to
represent q10 and q11 because it can describe patient conditions and treatments as states,
and prognostics as states plus a time delay function which is attached to transitions.

2.2.4. Follow-up

Follow-up is about the control and medical reconsideration of the patient condition or
treatment. In the MPM [57], medical reconsideration is represented by questions q12 and
q13 (see tables 1 and 2). They are related to a concept of a patient condition, diagnosis or
diagnostic hypothesis, and prognosis. All the languages, except the Arden Syntax and TTD,
can represent the knowledge to answer both these questions.

The Arden Syntax is not providing representation for medical reconsiderations as MLMs
are not able to capture prognosis. Asbru, CA, EON, Gaston, GLIF, GUIDE, PROforma,
and SDA have explicit constructs to support cyclical and iterative plan execution, while
Prodigy is implicitly supporting these components. They offer representation for the two
follow-up decision support questions. Again, K-e DT supports a representation of q12 with
a single loop, while q13 is answered with a multiple loop. TTD supports representation for
q12 using constructs of states and a time delay function assigned to transitions. Question
q13 is not supported, as TTD is not able to represent diagnostic procedures.

2.2.5. Clinical management

Clinical management questions are related to the concepts of diagnostic tests, treatment,
and prognosis. In table 1, these questions are q14 and q15.

Asbru, EON, Gaston, GLIF, GUIDE, PRODIGY, PROforma, and SDA support the
representation of knowledge to answer both clinical management questions. They include
constructs presented in section 2.2.1 and 2.2.2 to describe diagnostic tests and their order
of application (q14), but also the time constraints needed to determine the next encounter
(q15). The Arden Syntax is providing representation for q14 because MLMs are able to
represent diagnostic tests, but it fails to represent the sort of knowledge required by q15
since it does not have constructs to indicate when the next encounter will be. K-e DT is
able to answer q15 with a single loop, but not q14. CA offers a representation of knowledge
for q14 with assigned activities, whereas determining the next encounter in q15 is impossible
with this representation format. TTD can answer q15 by representing current conditions
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Diagnosis Treatment Evolu-
tion

Follow-
up

Clinical
manag.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15

ARDEN SYNTAX + + + + − − + − − − − − − + −
ASBRU + + + + + + + + + + + + + + +
CA + + + + − − + − − + + + + + −
EON + + + + + + + + + + + + + + +
GASTON + + + + + + + + + + + + + + +
GLIF + + + + + + + + + + + + + + +
GUIDE + + + + + + + + + + + + + + +
k-e DT + + + + + + + + + + + + + − +
PRODIGY + + + + + + + + + + + + + + +
PROFORMA + + + + + + + + + + + + + + +
SDA + + + + + + + + + + + + + + +
TTD + − − − − − + − − + + + − − +

Table 2: Decision support questions included by formalisms for medical procedural knowledge representation

and treatments as states where the next encounter is determined with a time delay function
assigned to the TTD transitions. Question q14 is not supported because TTD lacks the
ability to represent diagnostic tests.

3. Modelling Multi-level Medical Procedures

In this section we define a representation mechanism to formalize medical knowledge
as extended timed transition diagrams (eTTDs). They are explained with an example on
heart failure. We also show how eTTDs extend TTDs to model the sort of knowledge
required to answer all the clinical questions in table 1. Some of these questions require
know-what knowledge exclusively (i.e., q1-q4, q7, q9, q10, q12, and q14), but the rest (i.e.,
q5, q6, q8, q9, q11, q14, and q15) also require know-how knowledge modeling of medical
procedures. eTTDs allow this modelling of medical procedures at three levels of detail:
treatment strategy, dosage, and tolerance. We used eTTD to represent medical practice
for three chronic CVDs at these three levels of detail. However, here we only provide the
formalization of medical practice for arterial hypertension and leave the interested reader to
confer eTTD of heart failure and stable ischemic heart disease in [32]. Complete modelling
of arterial hypertension procedures are contained in Appendix B and Appendix C.

3.1. The extended TTD

Timed Transition System (TTS) was defined in 1992 [29] as quintuples 〈V,Σ, T, l, u〉
where V={v1,v2, ..., vm} is a finite set of variables, Σ={σ1, σ2, ..., σn} is a finite set of states
with every state σi∈Σ a subset of variables (i.e., Σ⊆2V ), T is a finite set of transitions where
every transition t∈T is a binary relation on Σ (i.e., T ⊆ Σ2), l : T→IN is the minimal delay
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function, and u : T→IN∪{∞} is the maximal delay function such that for any t∈T , l(t) ≤
u(t).

TTS can be naturally represented as timed transition diagrams (TTDs) [29, 33], with
Σ the set of vertexes, T the edges that connect these vertexes, and [l(t), u(t)] the label
of the edge t ∈ T . TTD is a simple representation formalism which offers an intuitive
and understandable representation of the medical knowledge required to answer clinical
questions of the sort q1, q7, q10-q12 and q15, as we showed in section 2.2. Notice that TTD
states capture the notions of patient condition when Σ is a set of signs and symptoms, and
the notion of treatment when Σ is a set of clinical actions. However, TTDs are not good
representing diagnostic and therapeutic procedures where different medical concepts such
as patient conditions, treatments, and patient tolerances are combined.

An Extended Timed Transition System (eTTS) is a nonuple 〈VΣ, VC , VA,Σ, T, d, f, l, u〉
where VΣ is a finite set of state variables, VC is a finite set of condition variables, VA is
a finite set of activity variables, Σ={σ1, σ2,...,σm} is a set of states with every state σi a
different subset of state variables (i.e., Σ⊆2VΣ), T is a finite set of transitions where every
transition t∈T belongs to Σ2×2VC ×2VA , d : VA×T → IN and f : VA×T → IN are the dose
and the frequency partial functions defined on the set of activity variables and transitions,
l : T→IN and u : T→IN∪{∞} are the lower and upper delay functions such that for any
t∈T , l(t) ≤ u(t).

eTTS are represented as extended timed transition diagrams (eTTDs) where eTTS states
in Σ are vertexes of the eTTD and transitions in T are eTTD edges connecting pairs of
vertexes. An eTTD can contain recursive transitions to describe clinical situations in which
a patient remains in the same state after a clinical activity. All the edges are labeled with:

1. A set of conditions in 2VC describing the patients crossing transition t.

2. A set of activities in 2VA indicating the treatment of the patients crossing t.

3. A time interval [l(t), u(t)] describing the delay of crossing transition t.

Each activity a in a transition t can have a dose d(a, t) and an intake frequency f(a, t)
attached, if the activity corresponds to a pharmacological prescription. The allowed values
for a pharmacological prescription dose d(a, t) are expressions of the sort quantity of mil-
ligrams (mg) (e.g. 50mg, 20mg) of drug a in transition t. Frequency f(a, t) is defined as the
frequency of occurrence of variable a in transition t. The allowed values a frequency can take
are expressions of the sort quantity of hours, such as 4h, 8h, 24h, representing every 4 hours
(6 times a day), every 8 hours (3 times a day), every 24 hours (once a day), respectively.
These two constructs (dose d and frequency f) in eTTD are represented together as [D]
where D represents a dosage (i.e., a dose and a take frequency, together). In the eTTD,
the allowed values of D are expressions of the form initial, increment, target representing
initial dosage, dosage increment (modification) and target prescribed dosage, respectively.

For example, the eTTD in figure 2 represents part of the knowledge required for the
correct treatment of heart failure according to the CPG [18]. Only two states and the
corresponding state transitions with their temporal components are shown.
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This diagram captures the know-how knowledge of a HF patient evolving between a
2-drug and a 3-drug treatment. It describes two possible states: the CLASS II HF stage1

(i.e, slight limitation of physical activity) with the patient taking two drugs and one possible
diuretic to relieve the signs and symptoms of congestion, and a CLASS III-IV HF stage (i.e.,
less than ordinary physical activity limited by dyspnea because it could not be controlled
with lifestyle modifications and pharmacological therapy with two drugs) with the patient
taking three drugs and an optional diuretic. Patients in the first state must complement
a healthy lifestyle with a pharmacological therapy (e.g., ACE-inhibitor or beta blocker),
starting with an [initial] dosage. Diuretic is optional, also at an [initial] dosage. Then, after
2 to 4 weeks if the patient is not controlled in the CLASS II HF stage, the dosage must be
incremented (see transitions with dosage values [increment]). The process can be repeated
every 2-4 weeks till the [target] dosage is reached (i.e., the appropriate dosage to keep the
patient stable and controlled). At this time, if the patient remains in CLASS II HF stage,
he must continue taking drugs at the target dosage and follow-up is fixed to be between 3 to
6 months. But, if the patient evolves to CLASS III-IV HF stage, then the treatment must
be complemented with additional drug (e.g., MRA), starting with an [initial] dosage. Then,
after 2 to 4 weeks if the patient is not controlled in CLASS III-IV HF stage, the dosage is
incremented. The process can be repeated every 2-4 weeks till the [target] dosage is reached.
At that time, if the patient remains in CLASS III-IV HF stage, he continues taking drugs at
the target dosage and follow-up is fixed to be between 3 to 6 months. The patient can also
evolve from CLASS III-IV HF to CLASS II HF stage, this representing an improvement in
patient condition, with a reconsideration of the prescribed drugs.

1The NYHA (New York Heart Association) Classification of HF stages.
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Figure 2: Partial eTTD for Heart Failure treatment

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15

TTD + − − − − − + − − + + + − − +
eTTD + + + + + + + + + + + + + + +

Table 3: TTD and eTTD comparison considering covered decision support questions
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With respect to the descriptive capacity of the eTTDs, these allow formalizing the type
of knowledge required to answer all the clinical questions listed in table 1. Specifically, as
extensions of TTDs, eTTDs can help answer all the questions that TTDs are able to answer
(see table 3). In addition, eTTS include a set of conditions and a set of activities that allow
eTTDs to relate patients conditions with possible diseases (q2) and useful diagnostic tests
(q3). With an eTTD we can also represent the knowledge needed to answer the treatment
questions q4-q9. In particular, the set of conditions 2VC and set of activities 2VA allow
representing symptomatic (q4, q5) or curative (q8) treatments, while transitions in T can
be used to represent alternative treatments (q5). A time delay [l(t), u(t)] of transition t
offers a prognosis of evolution that allows the identification of acceptable treatments (q6).
With the given eTTD structure it is also possible to represent the combination of two given
treatments (q9). Moreover, eTTDs are also able to cover medical assessments (q12, q13)
since TTD already supported q12, and q13 is supported by eTTD if patient conditions are
related with the possible diagnostic hypotheses using a set of conditions in 2VC . eTTDs also
support the clinical management question q14 using a set of activities in 2VA .

In table 3, we summarize the capability of eTTD to represent all sorts of knowledge
required to answer the medical questions in table 1, in comparison with the limited capability
of the TTD model. For questions involving medical procedures (i.e., q5-q9, q11, q14, and
q15) eTTDs are also able to provide answers at three levels of detail.

3.2. Three-level Therapy Modelling for Chronic Diseases

Medical treatment process can be detailed at three different levels: treatment strategy,
dosage, and tolerance. At the treatment strategy level therapy plans are represented. Ther-
apies can be pharmacological or non pharmacological. Pharmacological therapies involve
the use of drugs. Contrarily, non pharmacological therapies do not include medications but
clinical activities such as analyses, radiographies, and lifestyle changes (e.g., diet actions,
control of smoking and drinking alcohol, exercise, etc.). Chronic diseases combine pharma-
cological and non pharmacological therapies to provide a long-term treatment and therefore,
their treatment defines an order in which pharmacological and non pharmacological actions
should take place. Moreover, treatment is also defined at the level of the number of drugs
to be taken at each particular moment of the treatment. All these indications define the
strategy level of a treatment.

At the more detailed dosage level, drug dosages are defined. A regular procedure for the
management of drugs is to start with a minimal dosage (or the appropriate dosage to the
current patient condition) and increase it to a limit while the treatment is not having the
expected results. Upon reaching the dosage limit, or sometimes before that, the physician
may decide to change the drug or either complement the current drug with a new one. For
chronic patients, the process is continued till the patient condition reaches a controlled stage.

The tolerance level represents a third level of detail of therapies. It describes drug
intolerances and their management. Usually, the drug that a patient is intolerant to should
be replaced with another one having the same or similar curative, palliative, or symptomatic
effect.

15



We have analyzed all these three levels of detail for three chronic CVDs and their re-
spective CPGs [32]: arterial hypertension [21, 22], heart failure [17, 18], and stable ischemic
heart disease [19, 20]. For all of them, we represented the knowledge available in these CPGs,
published by the European Society of Cardiology and the European Society of Hypertension.
The resulting models were detailed in [32] once they were validated by two senior physicians.
In this paper we show the results corresponding to the modelling for arterial hypertension.

3.2.1. Modelling Therapy Strategy (level 1) for Arterial Hypertension

In this section, we propose a methodology for the modelling of medical knowledge at
the therapy strategy level. It was validated after the application to three CVDs: arterial
hypertension, heart failure, and stable ischemic heart disease. The methodology is structured
in the following steps:

1. Identify the disease stage categories.

2. Identify the disease risk factors.

3. Cross stage categories and risk factors in a management table.

4. Model the therapy strategy I: number of drugs.

5. Identify possible combination of drugs.

6. Model the therapy strategy II: drug preferences.

The application of this methodology to the management of arterial hypertension follows.
Arterial hypertension (AH) is defined as having high values of systolic blood pressure (SBP)
and/or diastolic blood pressure (DBP). Normal values are agreed to be below 140 mmHg for
SBP, and below 90 mmHg for DBP. Deviations from these values define different categories
of AH stages [22], as table 4 shows.

Category Blood pressure (mmHg)
SBP DBP

Normal 120-129 80-84
High normal 130-139 85-89
Grade 1 HT 140-159 90-99
Grade 2 HT 160-179 100-109
Grade 3 HT ≥ 180 ≥ 110
Isolated systolic Grade 1 HT 140-159 < 90
Isolated systolic Grade 2 HT 160-179 < 90
Isolated systolic Grade 3 HT ≥ 180 < 90

Table 4: Blood Pressure Classification of AH patients [22]

The decision on when to initiate a pharmacological treatment depends not only on the
blood pressure levels but also on the patient disease history and the risk factors (RFs) asso-
ciated to that specific patient. Risk factors influencing the initiation of a pharmacological
treatment are gathered in table 5 [21].

16



Systolic and diastolic BP levels
Levels of pulse pressure (in the elderly)
Age

• Man > 55 years
• Woman > 65 years

Smoking
Dyslipidaemia

• TC > 5.0 mmol/l (190 mg/dl) or
• LDL-C > 3.0 mmol/l (115 mg/dl) or
• HDL-C: Man < 1.0 mmol/l (40 mg/dl), Woman < 1.2 mmol/l (46 mg/dl) or
• TG > 1.7 mmol/l (150 mg/dl)

Fasting plasma glucose 5.66.9 mmol/L (102125 mg/dl)
Abnormal glucose tolerance test
Abdominal obesity

• Waist circumference > 102 cm (Man)
• Waist circumference > 88 cm (Woman)

Family history of premature CV disease

• Man at age < 55 years
• Woman at age < 65 years

Table 5: Risk factors and gender differential values for AH patients [21]
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The management of hypertension should be related to the quantification of total number
of cardiovascular risks. This premise is based on the fact that the majority of hypertensive
population has not only elevated BP but also additional cardiovascular RFs [22]. Table 6
represents the importance of risk factors in combination to BP levels for the management
of hypertension [22]. For example, we can observe the combinations that require immediate
pharmacological therapy (e.g., all patients having Grade 3 hypertension should immediately
be prescribed with drugs) or the cases that begin with a non pharmacological therapy (i.e.,
lifestyle changes) and continue introducing a drug treatment if BP levels do not improve
after some time. The cells of this management table also describe alternative disease levels
of severity HT1, HT2, and HT3 (between parenthesis) as a combination of the disease stage,
the risk factors, and other comorbid diseases and conditions. This table concludes the third
step of our proposed methodology to model the therapy strategy level.

Pharmacological therapy for chronic diseases can be interpreted considering changes in
the number of prescribed drugs and also in the order in which drugs have to be applied. This
provides a double description of the treatment at the treatment strategy level. Considering
the decisions that physicians are faced with to offer an optimal treatment with regard to the
number of drugs to be applied along a long-term treatment of AH, we concluded with the
model depicted in figure 3. It identifies four treatment situations: initial which represents
the patient’s first visit, and the rest representing whether the patient is currently taking
zero, one, or two drugs. Edges represent transitions which are conditioned to the severity of
the disease identified in the management table (i.e., HT1, HT2, and HT3 values in table 6).
Edges can also contain a combination of non pharmacological therapies (e.g., lifestyle changes
or LSC) with the optional prescription of one- or two-drug treatment (i.e., 1D or 2D).
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Other risk factors,
asymptomatic
organ damage or
disease

Blood pressure (mmHg)

High normal Grade 1 HT Grade 2 HT Grade 3 HT

No other RF No BP intervention
(HT1)

Lifestyle changes for
several months then
add BP drugs target-
ing < 140/90 (HT1)

Lifestyle changes for
several weeks then add
BP drugs targeting
< 140/90 (HT1)

Lifestyle changes
Immediate BP drugs
targeting < 140/90
(HT2) (HT3)

1-2 RF Lifestyle changes
No BP intervention
(HT1)

Lifestyle changes for
several weeks then add
BP drugs targeting
< 140/90 (HT1)

Lifestyle changes for
several weeks then add
BP drugs targeting
< 140/90 (HT1)

Lifestyle changes
Immediate BP drugs
targeting < 140/90
(HT2) (HT3)

≥ 3 RF Lifestyle changes
No BP intervention
(HT1)

Lifestyle changes for
several weeks then add
BP drugs targeting
< 140/90 (HT1)

Lifestyle changes
BP drugs targeting
< 140/90 (HT2)

Lifestyle changes
Immediate BP drugs
targeting < 140/90
(HT2) (HT3)

OD
CKD stage 3
DM

Lifestyle changes
No BP intervention
(HT1)

Lifestyle changes
BP drugs targeting
< 140/90 (HT2)

Lifestyle changes
BP drugs targeting
< 140/90 (HT2)

Lifestyle changes
Immediate BP drugs
targeting < 140/90
(HT2) (HT3)

Symptomatic CVD
CKD stage ≥ 4
DM with OD/RF

Lifestyle changes
No BP intervention
(HT1)

Lifestyle changes
BP drugs targeting
< 140/90 (HT2)

Lifestyle changes
BP drugs targeting
< 140/90 (HT2)

Lifestyle changes
Immediate BP drugs
targeting < 140/90
(HT2) (HT3)

CKD: Chronic Kidney Disease, DM: Diabetes Mellitus, OD: Organ Damage, RF: Risk Factor

Table 6: Management of AH considering blood pressure levels and risk factors [22]
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Figure 3: Structural model of therapeutic strategy for AH patients

Besides the number of drugs, physicians take yet other important decisions in order to
efficiently treat a chronic CVD. When the decision to initiate a drug therapy is taken, they
have to determine which drug to prescribe. The knowledge required to make this decision
is the one captured in the fifth and sixth steps of our proposed methodology.

CPG for the management of AH [22] states that diuretics, beta-blockers, CCB, ACEi,
and ARB are all suitable drugs for the initiation and maintenance of an antihypertensive
treatment, either to be used as monotherapy or in combination with each other. For some
specific conditions (e.g., isolated systolic hypertension, organ damage, or diabetes mellitus)
preferred drugs are ACEi and ARB. It is recommended to use statin therapy at moderate to
high CV risk [22]. Pharmacological therapy in AH can be interpreted as a drug increment
where each further stage of the disease involves including an additional drug to the existing
therapy. Table 7 summarizes the information provided in CPG [22], considering possible
combinations of classes of antihypertensive drugs and the indication if the combination is
preferred, useful, possible, or not recommended. We can observe that preferred combinations
are diuretic with ARB, CCB or ACEi; also CCB with ARB or ACEi. Not recommended
combination is ARB with ACEi. Useful combination is beta blocker with diuretic, but it has
some limitations; e.g., in many trials this combination was as effective as other ones, but it
appears to provoke more cases of new-onset diabetes in susceptible patients. Combinations
of beta blocker with ARB, CCB or ACEi are possible, but not as well-tested as the other
ones.
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Drug combination Preferred Useful
(with some
limitations)

Possible
(but less
well-tested)

Not
recommended

β-blocker + Diuretic +
β-blocker + ARB +
β-blocker + CCB +
β-blocker + ACEi +
Diuretic + ARB +
Diuretic + CCB +
Diuretic + ACEi +
ARB + CCB +
ARB + ACEi +
CCB + ACEi +

Table 7: Possible combinations of classes of antihypertensive drugs

The last step of the methodology is to provide more detail on the edges of the structural
model obtained after the forth step (see figure 3 for AH). On the one hand, the severities
of the disease contained in the edges can be made more specific with the values in the first
column of the management table (see table 6 for AH). On the other hand, we can replace
pharmacological therapies of the sort 1D, 2D, etc. in the edges by preferred, useful, and
possible drugs and drug combinations (see table 7 for AH). This will conclude with a model
of the treatment strategy level at the detail of drugs. For AH, the complete information
about this level can be found in [32], but here we describe part of this model as an example.

The possible alternatives of introducing a first drug in an AH treatment are summarized
in table 8. In figure 3, this transition is labeled HT2/LSC, 1D. The introduction of drugs
implies that this transition is replaced with the ones described in the rows of table 8. In
this table, the initial transition (column ID), the state the transition starts at (column
State OUT), and the state the transition ends at (column State IN) are fixed. Column
Option identifies the new transitions substituting the initial one. Each new transition has
a patient condition (column Condition) and a detailed therapy (column Activity). For
example, Option b3 describes a transition of a patient who has not received pharmacological
treatment so far, has BP levels in the Grade 1 HT to Grade 2 HT category of table 4 and has
two or less risk factors of table 5. Under such circumstances, a physician should recommend
lifestyle changes and prescribe ACEi. Consequently, the patient is now in state “taking one
drug”. Notice that for this same condition five alternative acceptable treatments (options
b1, b2, b3, b4 and b5 in the table) could have been prescribed. All these options in table 8
are directly represented as transitions of the eTTD in figure 4.
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ID State OUT State IN Option Condition Activity

5 Zero drugs One drug a1 IS Grade 1 HT − IS Grade 2 HT Lifestyle changes
Diuretic

a2 Lifestyle changes
CCB

b1 Grade 1 HT − Grade 2 HT
≤ 2 risk factors

Lifestyle changes
Diuretic

b2 Lifestyle changes
β-blocker

b3 Lifestyle changes
ACEi

b4 Lifestyle changes
ARB

b5 Lifestyle changes
CCB

c1 Grade 1 HT
≥ 3 risk factors

Lifestyle changes
Diuretic

c2 Lifestyle changes
β-blocker

c3 Lifestyle changes
ACEi

c4 Lifestyle changes
ARB

c5 Lifestyle changes
CCB

Table 8: Example of partial treatment of AH

22



Figure 4: Example of partial treatment of AH

3.2.2. Modelling Drug Dosage Prescription (level 2) for Arterial Hypertension

Dosage is defined as “the determination and regulation of the size, frequency and number
of doses” [42]. For each drug prescribed in a pharmacological therapy, the drug dose and
the intake frequency should be provided. Drug dose is presented in milligrams (mg), while
frequency is presented as abbreviations of the sort o.d., b.i.d., t.i.d., or q.i.d., standing for
‘once a day’, ‘twice a day’, ‘three times a day’, or ‘four times a day’, respectively.

Our proposed methodology to model drug dosage prescription is composed of two steps:

1. Model the drug titration procedure.

2. Define the initial, maximal, and incremental drug dosages.

For chronic diseases, a typical pharmacological therapy starts with a drug prescription at
an initial dosage. This dosage is usually determined by the stage of the disease, the specific
patient condition, and some facts such as the patient’s gender, age, or weight. During the
treatment, the dosage is titrated. Titration is defined as the “increment in drug dosage to a
level that provides the optimal therapeutic effect” [1]. When the optimal therapeutic effect
is achieved for a specific patient, we reach the target dosage. If we reach the maximal dosage
of the drug, then a change in the therapy should be considered (e.g., change or complement
that drug with other drugs). Figure 5 shows the structural model of drug titration for AH.

Figure 5: Structural model of drug titration for AH patients
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This information is complemented with the initial, maximal, and incremental dosages
of all the drugs involved in the treatment of the target disease. Table 9 shows the usual
initial and maximal dosages of drugs in the pharmacological therapy of AH. It was compiled
using the information provided by the CPGs [21] and [22], and consulting the data avail-
able in Drug Registry of Republic of Slovenia [15]. For AH, double dosage increments are
recommended for ACEi [64] and beta blockers [65], but not for other drugs whose dosage
increment is left to the physicians judgement.

3.2.3. Modelling Drug Intolerances (level 3) for Arterial Hypertension

Drug intolerance refers to “the state of reacting to the normal pharmacological doses
of a drug with the symptoms of overdosage” [42]. A drug D1 that a patient is intolerant
to should be replaced with another one D2 having the same or similar curative effect. A
pharmacological treatment should start considering the information provided in basic model
of the specific disease. Then, the treatment must be dynamically modified in order to
detect and solve drug intolerances. An appropriate treatment is reached when the patient
is tolerant to all the drugs involved.

We propose a methodology to capture the basic medical knowledge required to manage
intolerances in CVDs. This methodology defines three steps:

1. Model drug intolerance behaviours for 1, 2, 3, ... drug treatments.

2. Define a table of intolerant drug replacements.

3. Model the final disease treatment in case of drug intolerances.

In figure 3, the structural model of the therapeutic strategy for AH shows that pharma-
cological therapies exist for one or two drugs. Consequently, we have to provide models for
the AH treatment that contemplate considering 1-drug treatment intolerances, and 2-drug
treatment intolerances. These models are shown in figure 6, respecting the information on
drug intolerances and recommended replacements of the CPGs [21] and [22].

Figure 6: Structural model of drug intolerance for Arterial Hypertension
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Drug Initial dose (mg) Maximal dose (mg)

ACEi
Captopril 12.5 o.d. 100 t.i.d. - 150 t.i.d.
Enalapril 5 o.d. 10 - 20 o.d.
Lisinopril 10 o.d. 80 o.d.
Ramipril 2.5 o.d. 10 o.d.
Trandolapril 0.5 o.d. 4 o.d.
ARB
Candesartan 8 o.d. 32 o.d.
Valsartan 80 o.d. 160 o.d.
Telmisartan 40 o.d. 80 o.d.
Losartan 50 o.d. 100 o.d.
β-Blocker
Bisoprolol 5 o.d. 20 o.d.
Carvedilol 12.5 - 25 o.d. 50 o.d.
Metoprolol succinate 100 o.d. or 50 b.i.d. 400 o.d.
Nebivolol 2.5 o.d. 5 o.d.
Atenolol 50 o.d. 100 o.d.
CCB
Verapamil 40 t.i.d 120 t.i.d. or 240 b.i.d.
Nifedipine 20 o.d. 120 o.d.
Diltiazem 120 b.i.d or 80 t.i.d 120 t.i.d. or 180 b.i.d.
Amlodipin 5 o.d. 10 o.d.
Lerkanidipin 10 o.d. 20 o.d.
Lacidipin 2 o.d. 6 o.d.
Thiazide diuretic
Clortalidone 25 o.d. 50 o.d.
Hidroclorotiazide 12.5 o.d. 25 o.d.
Indapamide 1.5 o.d. 2.5 o.d.
Statin
Simvastatin 10 o.d. 80 o.d.
Pravastatin 10 o.d. 40 o.d.
Atorvastatin 10 o.d. 80 o.d.
Rosuvastatin 5 o.d. 40 o.d.
Fluvastatin 40 o.d. 80 o.d. or 40 b.i.d.

Table 9: Drug dosages recommended in the therapies of AH patients
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If one drug D1 is prescribed and a patient is intolerant to that drug, it should be replaced
with other drug D2 from the AH drugs list having the same or similar curative effect. D3 is
used to indicate that D2 cannot be one of the drugs the patient is already taking, i.e., D2 6=
D3 = D1. This behavior is represented with the model on the left-hand side of figure 6.

In the case of a 2-drug treatment there are two possibilities: intolerance to one or intol-
erance to both prescribed drugs. In the first case, just one drug D1 should be replaced with
a drug D2 from the AH drugs list excluding the ones the patient is already taking, i.e., D3.
In the second case, both drugs D1 and D′1 should be replaced with drugs from the AH drugs
list, except the D3 drugs, i.e., D1 and D′1. The idea is presented on the right-hand side of
figure 6.

In more detail, CPGs [21] and [22] provide only one suggestion considering drug intoler-
ances that affect the ACEi group of drugs: non tolerated ACEi drugs should be replaced with
drugs from the ARB drug group, see table 9. This defines a reduced table of replacements
in the second step of the proposed methodology. Considering that suggestion, however, we
obtain a model for AH treatment in the cases of drug intolerances which is fully described
in [32]. Here, a subset of this eTTD model is presented in figure 7.

Figure 7: Reduced model for AH treatment with drug intolerances

There, 1-drug treatments with detected ACEi drug intolerance are replaced by 1-drug
treatments with ARB drug. Four cases of second drug introduction, reflecting ACEi drug
intolerance and replacement, are also included. The eTTD also reflects equivalent replace-
ments of ACEi when the patient is treated with two drugs, one of them being ACEi.
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3.2.4. Three-level Modelling to Help Decision Making in Medical Procedures

Reconsidering the MPM questions presented in section 2.1 and summarized in table 1,
the general medical practice plan incorporating these questions in figure 1, and the structural
models resulting from the application of the proposed methologies (i.e., one model for the
therapeutic strategy, one model for dosages, and one model for drug intolerances), we provide
a knowledge-based framework to help physicians to deal with patients with CVDs. In the
next lines, we discuss whether this framework offers a good representation of the knowledge
required to answer the 15 clinical questions of the MPM [57].

As shown in table 3, eTTD modelling supports representation of all sorts of knowledge
required to answer the medical decision support questions from table 1. Moreover three-level
therapy modelling (i.e., models of therapeutic strategy, drug dosages, and drug intolerances)
supports all medical questions related to treatment procedures (i.e., q5, q6, q8, q9, q11 and
q15).

The provided analysis and the obtained results suggest that we have successfully defined
a formalism, that is efficient in medical procedural knowledge formalization and that includes
three levels of detail involved in the treatment of chronic CVDs.

4. Conclusion

In medical practice, procedural knowledge permits a physician to determine the best
course of action possible. Physicians use their medical knowledge to make diagnostic and
therapeutic decisions. Decision making processes depend on whether they can find, under-
stand, and use a huge amount of medical knowledge and information [43, 50].

In the line of the MPM model [57], here we have summarized a general framework to help
medical practice which is based on its capability to answer 15 decision support questions.
From this medical utility perspective (i.e., medical questions), we have compared several of
the most relevant formal languages to represent computer-interpretable guidelines. In spite
that some of these languages are able to answer all the decision support questions identified,
we noticed that, to some extent, they are complex languages that require their users to be
not only expert practitioners, but also to have knowledge representation skills. Moreover,
they show some complications when it comes to representing relevant levels of detail of
medical therapy, such as the treatment strategy, the dosage titration, and the management
of intolerances.

Noticing this technological gap, we have proposed a new structural model based on timed-
transition systems (TTSs). This extended representation mechanism is called the extended
timed transition diagram (eTTD). In a simple and intuitive way, eTTDs are suitable to
answer all the medical questions of the MPM model [57], and they are also able to capture
three levels of detail involved in the therapies of CVDs. Here, we have also proposed a
methodology to capture in eTTDs the different sorts of procedural knowledge required to
answer clinical questions about medical treatments. The methodology and the eTTDs were
tested with three chronic CVDs: arterial hypertension (AH), heart failure (HF) and stable
ischemic heart disease (SIHD) [32].
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In this paper we have presented the results of modeling these three levels of detail for AH,
after the application of the proposed methodology. The results were a therapeutic strategy
model presented in section 3.2.1, a structural model of drug titration presented in section
3.2.2, and structural model of drug intolerances presented in section 3.2.3. A complete
description of the knowledge models for AH, HF, and SIHD is found in [32]. For the sake of
completeness about AH procedures, the models for AH are also presented in Appendix B
and Appendix C. All the models and their application have been validated by two senior
GPs and their comments and improvements incorporated in the final eTTD versions of the
knowledge presented here and in [32].

These validated eTTDs can be used as the knowledge base of new MDSSs that can be
used to transfer knowledge about the management of patients with CVDs, so helping young,
less experienced physicians in their training about decision making processes, but also as a
reminder to more experienced physicians for verification of their treatment decisions. These
eTTDs also represent a starting point of a future study in which two groups of physicians will
be involved, one group using these models to face clinical cases and compare their medical
practice results to the other control group not using them.

One of the main limitations of this model is that it lacks of a temporal level. Not consid-
ering this level implies that all the clinical decisions have to be interpreted instantaneous.
However, long-term planning in medicine requires a temporal dimension to restrict the times
when certain processes have to be applied. Patient features and measurements hold during
time points or time periods. Clinical interventions occur at one or more time points or over
periods [59]. This time dimension is not always incorporated or just partially considered in
CPGs. Some CPGs can include certain recommendations considering time (such as, time
that should pass between two consecutive encounters while dosage titration), but very of-
ten these times are unspecified and, consequently, physicians have to decide them based on
their own knowledge and experience. But physicians may have serious difficulties, or they
are reluctant, to define general time constraints for some diseases. To our knowledge, cur-
rently there is no a mechanism to help physicians obtain medical evidences about temporal
constraints in CPGs. But health care centres have medical records and information systems
that register medical processes and patients’ data, including information about times of
the encounters, prescriptions, and other clinical actions. Consequently medical records and
health care information systems are a promising source of data to calculate temporal medical
knowledge and evidences about times in medicine. Based on these data sources, computer
programs can be developed to find out time models that could offer an explicit representation
of the time dimension of past medical procedures and use these models to complement the
knowledge contained in the CPGs, and also to complement our eTTD model, thus allowing
timed MDSS development and reasoning.

Time dimension of medical practice and its incorporation to the eTTD model is left for
future research and discussion.
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Appendix A. Summary of CIG languages

The Arden Syntax is a HL7 standard for encoding medical knowledge. It encodes medical
knowledge as independent units called Medical Logic Modules (MLMs) [30]. Each guideline
is modeled as a MLM that makes a single medical decision (a production rule that relates
a set of input conditions to a particular set of actions, e.g. a single step if-then rule). Each
MLM contains slots grouped into three categories: maintenance, library and knowledge.
MLMs are executed serially as a sequence of instructions [14]. They have been used to gen-
erate clinical alerts and reminders, interpretations, diagnoses, screening for clinical research
studies, quality assurance functions, and administrative support [30]. They are intended to
execute in a data-driven manner when relevant and thus are not suitable for representing a
long-term treatment. They do not support application of guidelines over extended periods
of time; consequently they are not useful for representing chronic diseases guidelines [9].

Asbru is a guideline representation formalism developed within the Asgaard project [60]
which focuses on the application and critiquing of time-oriented clinical guidelines. Asbru is
a plan representation language that implements clinical guidelines as time-oriented skeletal
plans, where prescribed actions are introduced. In order to manage these (often complex)
plans, Asbru enables definition and representation of high-level goals (intentions), temporal
patterns and time annotations, and the development of user interfaces to visualize the de-
veloped plans [41]. Asbru plans consist of a collection of subplans. Plans can be executed
sequentially or in parallel. Plans that have been started can be suspended, aborted, or
completed (based on the plans conditions). When a plan is completed, the next plan in the
sequence (if any) is executed [14]. Asbru can be used to combine diagnosis and treatment
plans. Treatment plans are modeled as a hierarchy of plans. Diagnosis can either be mod-
eled as a part of conditions under which treatment plans are taken, or it can be modeled as
separate plans [48].

EON is a component-based architecture used to build decision support systems that
reason about guideline directed care [47]. It includes reusable problem-solving components
that have specific functions (e.g., planning, classification of time-oriented clinical data) [9].
These components facilitate the acquisition and execution of clinical guidelines. EON is
a non-closed guideline model, which consists of a standard set of primitives (scenarios,
decisions, actions and goals) that can be extended with task-specific submodels. It is possible
to model additional sets of primitives related to the knowledge requirements of different
guidelines. Guidelines are represented in EON by temporally sequenced graphs (flowcharts)
of instantiated classes [14], [66], [67].

The Gaston model is a frame-based representation, which uses ontologies as an underlying
mechanism to represent guidelines in terms of Problem-Solving Methods (PSMs) and prim-
itives. Frames are used to represent knowledge related to the application domain modeling
concepts of entities, attributes and relations (domain ontologies) and to represent knowledge
related to the guidelines control structure (method ontologies). Primitives are used to de-
scribe single guideline steps and to describe the internal structure of PSMs. Action, decision,
branching, and synchronization primitives are used to describe guidelines. Action primitives
specify clinical actions, decision primitives model decision points in a guideline, branching
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primitives direct the guideline flow to multiple (parallel) paths and synchronization primi-
tives combine paths that diverged because of branching primitive. The formalism supports
the use of subguidelines in order to solve multiple tasks. Ontologies can be extended to
capture new guideline characteristics [12], [13].

The Guideline Interchange Format (GLIF) version 2 was designed to model guidelines
in the context of a flowchart that consists of structured (synchronization) steps (patient-
state determination step), action (intervention step), branch (decision step), case (multiple
branching step), and synchronization step), representing clinical actions and decisions [4],
[9], [14], [49]. GLIF3 is a version designed to support computer-based execution. It was built
upon the GLIF2 version. It enables guideline specification at three levels: the conceptual
level (a top-level graphical representation as a flowchart), the computable level (which can
be verified for logical consistency and completeness), and the implementable level (a bottom-
level representation which is customized to the local needs) [4], [49].

The GUIDE project [53] is part of a guideline modeling and execution framework, devel-
oped for modeling and applying clinical guidelines in the broader context of general medical
care. It focuses on the integration of modeled guidelines into organizational workflows, sup-
porting the usage of decision analytical models (e.g. decision trees and influence diagrams)
in addition to standard procedural models and simulation of guideline implementation in
terms of Petri nets [5]. Petri nets are used for modeling concurrent (clinical) processes and
for supporting the representation of sequential, parallel, and iterative control structures.
GUIDE has extended Petri nets to support improved modeling of time, data, and plan hier-
archies. It has adopted a multi-level representation where lower level representation includes
describing concepts expressed in the higher level. Medical processes specified in the GUIDE
method consist of a sequence of blocks, on different levels, each having a precise medical
meaning or a precise flow management function. The graphical GUIDE authoring tool en-
ables designers to interactively create a guideline flowchart as a Petri net. Computational
tools enable simulation of the resulting guideline using the Petri net semantics [6], [7], [53].

The PRODIGY Project [52] was created to model guidelines for chronic disease man-
agement. It focuses on primary-care management of major chronic diseases, such as hy-
pertension, coronary heart disease, diabetes, and asthma. It supports modeling a series
of decisions that a general practitioner may face with during different patient encounters.
A key knowledge structure in the PRODIGY framework is the scenario, which defines a
particular clinical context (current treatment and patients condition) or patient state. Sce-
narios support creation of multiple, explicit entry points into the guideline, especially when
patients might return in the future in a different state, or might enter the guidelines flow
of control at various points. Scenarios can lead to specific actions or whole sub-guidelines.
Actions might lead to additional scenarios [31].

PROforma is a knowledge composition language supported by acquisition and execution
tools with the goal of supporting guideline dissemination. It aims at the development of
reliable expert systems that assist patient care through active decision support and workflow
management [23]. PROforma represents guideline as a directed graph in which nodes are
instances of a closed set of classes, called the PROforma task ontology. It defines four
task classes (decisions, actions, enquiries, and plans), each with their own attributes. Each
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guideline in PROforma is modeled as a plan that consists of a sequence of tasks that can be
composed into networks representing plans or procedures carried out over time, representing
the high level structure of a guideline, and logical constructs (pre- and post-conditions) which
allow the details of each task and inter-relationships between tasks to be defined using the
task-specific templates. PROforma contains temporal and scheduling constraints [9], [23].

SDA model stands for State-Decision-Action model. It is based on the concept of
flowchart and extended with several elements which ease medical procedural knowledge
representation. Such elements are the concept of state as starting point (which allows the
execution of the chart from different points) or the time constraint (which allows the intro-
duction of time restrictions in medical procedures) [3], [56]. The SDA model is based on
the concept of term, which can be state, decision, or action terms. Terms that represent
the signs and symptoms of a particular patient at the moment of making an observation are
called state terms. Decision terms are building decision criteria which lead the treatment in
a specific direction considering the patient’s current signs and symptoms, while action terms
represent healthcare activities which should be performed as a result of an earlier analysis of
the healthcare context. These terms are used to construct three sorts of elements: states, de-
cisions and actions. Once these elements are connected (using connectors) they describe the
medical procedure. The model allows representation of sequences, concurrences and loops
of medical procedures. Also it is possible to represent non-determinism (e.g. representing
alternative paths or alternative evolutions).

Knowledge-experience Decision Tables (k-e DT) are decision tables [61], [62] able to store
medical knowledge and past experiences [55]. Decision table is a matrix that relates a set
of decision input variables with a set of output actions. It is divided into four areas: the
condition stub, the action stub, the condition entry, and the action entry. The condition stub
contains the decision input variables as a column. Action stub describes a list of the feasible
output single actions. Condition entry is a subset of decision input variables. Action entry
is a subset of the output actions. A decision rule or k-e DT column provides the relation
between the condition and the action entries [55].

Clinical Algorithms (CAs) are schematic models of the clinical decision pathway described
in CPGs. They use CPG’s knowledge to represent medical procedures to assist patients
suffering from one or several diseases. Decision points are represented with yes/no nodes,
and the clinical characteristics, test characteristics, or treatment options are also simplified
into their basic components. They are more reduced and simplified structures than CPGs.
CAs can be executable [10], [28].

Timed Transition System (TTS) consists of five components: a finite set of variables, a
set of states, a finite set of transitions and two categories of time constraints, lower-bound
and upper-bound requirements. Every state is defined as a subset of variables. Every transi-
tion is a binary relation on set of states. Lower-bound and upper-bound are defined for every
transition, representing the minimal delay function and the maximal delay function, respec-
tively [29]. They are useful for representing a patient condition and/or a patient current
treatment. They are not meant for representing diagnostic and therapeutic procedures.
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Appendix B. Model for AH treatment

Figure B.8: Partial model of AH treatment - part A

Figure B.9: Partial model of AH treatment - part B
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Figure B.10: Partial model of AH treatment - part C

Figure B.11: Partial model of AH treatment - part D
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Figure B.12: Partial model of AH treatment - part E
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Appendix C. Model for AH treatment with drug intolerances

Figure C.13: Model for AH treatment with intolerances

39
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