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Consistencies and inconsistencies between model selection and link prediction in networks
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A principled approach to understand network structures is to formulate generative models. Given a collection
of models, however, an outstanding key task is to determine which one provides a more accurate description of
the network at hand, discounting statistical fluctuations. This problem can be approached using two principled
criteria that at first may seem equivalent: selecting the most plausible model in terms of its posterior probability;
or selecting the model with the highest predictive performance in terms of identifying missing links. Here we
show that while these two approaches yield consistent results in most cases, there are also notable instances where
they do not, that is, where the most plausible model is not the most predictive. We show that in the latter case
the improvement of predictive performance can in fact lead to overfitting both in artificial and empirical settings.
Furthermore, we show that, in general, the predictive performance is higher when we average over collections of
models that are individually less plausible than when we consider only the single most plausible model.
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I. INTRODUCTION

Real-world complex systems display nontrivial interaction
structures. A principled approach to understand these network
structures (and the processes that give rise to them) is to
formulate generative models and infer their parameters from
data. Unfortunately, for any single empirical network, an
unlimited number of models can in principle be formulated.
Therefore, we need robust and well-founded approaches to
compare models and choose the most appropriate one. Specif-
ically, we need approaches that can identify parsimonious
models that avoid both overfitting—when purely stochastic
fluctuations are mistakenly incorporated into the structure
of overly complicated models—and underfitting—when we
mistake statistically significant properties of a network for
noise, and wrongly select a model that is too simplistic.

Despite the importance and intricacies of model selection
for network data, the problem has not been studied sys-
tematically. For years, network models have been compared
based on their ability to reproduce certain topological features,
such as the clustering coefficient, the degree distribution, or
the community structure. However, such approaches are not
rigorous and are prone to overfitting, since one can always
design complicated enough models that reproduce any of these
properties with arbitrary precision, but that fail to generalize.

Because of this limitation, it is now becoming common
to rely on model-selection approaches that are better suited
to strike a balance between over- and underfitting. These
approaches can be either supervised or unsupervised [1]. In
supervised model selection, we prefer the model with the
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best capacity to generalize from the data and predict missing
observations [2–4]. In unsupervised model selection, we prefer
the model with the highest probability given the data, which
can also be interpreted as the model that most compresses the
network [5–8].

Both approaches aim to find the most parsimonious model,
which captures all the structure in the data without incorpo-
rating any of the noise. Because of this, one would intuitively
expect these two criteria to agree, especially for asymptotically
large networks. Indeed, for much simpler types of (non-
network) models, the consistency of both approaches has
been rigorously shown in specific asymptotic limits [9–11].
However, their implementations are quite different and, in
practice, it is not yet understood in what regimes discrepancies
should be expected.

Here, we discuss the probabilistic foundations of supervised
and unsupervised model selection, and make a systematic
comparison between both approaches using variations of the
stochastic block model [12]. We show that the two criteria
tend to agree, that is, that the most predictive model tends to
be the one that most compresses the data. Crucially, however,
we show that it is possible to construct networks where both
approaches differ, even in the infinite size limit, and the super-
vised approach leads to overfitting. In fact, this nonintuitive
discrepancy is also observed in some real networks, albeit for
a minority of cases.

Moreover, we find that, although in practice the most
predictive model is often the one that most compresses the data,
the reverse is not true—the most accurate link predictions are
not given by the most compressive model but by an average
over less compressive ones. Remarkably, for all the networks
and models we study, this improvement in predictive power is
larger than the improvement obtained using more sophisticated
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models; or, in other words, averaging over samples of even the
simplest models is often more predictive than the single most
sophisticated model.

II. PROBABILISTIC FRAMEWORK AND STOCHASTIC
BLOCK MODEL CLASSES

A. Probabilistic framework

Probabilistically, the model selection task consists in finding
the model M that is most likely to have generated a given
network with adjacency matrix A, that is, the model that
maximizes P (M|A). This probability is the Bayesian posterior

P (M|A) = P (A|M)P (M)

P (A)
, (1)

where P (A) does not depend on the model and thus typically
plays no role in model selection, P (A|M) is the marginal
likelihood, and P (M) is the model prior. Since the model
typically has some parameters ξ , the marginal likelihood is
obtained by marginalizing over them,1

P (A|M) =
∫

P (A|M,ξ )P (ξ |M) dξ. (2)

The priors P (M) and P (ξ |M) encode our degree of a priori
knowledge about the plausibility of the model (and its param-
eters), and should be chosen based on previous experience and
general expectations about the data.2 We discuss this issue in
more detail below.

B. Classes of stochastic block models

Given the general probabilistic framework outlined above,
we next specify the models we consider, including the priors.
Although our arguments are general, here we focus on the
family of stochastic block models (SBMs) [3,12,13], which
are analytically tractable and expressive enough to enable us
to investigate the issues we are interested in. In particular, we
consider four model classes within the SBM family that are
defined by the SBM variation and the choice of priors. We
describe these classes below. For simplicity and without loss of
generality, in what follows we assume that the networks under
consideration are multigraphs where parallel links between
nodes are allowed.

We consider two SBM variations: the traditional SBM [12]
and the degree-corrected SBM [14–16]. The traditional SBM
assumes that each node belongs to one (and only one) group,
and that the tendency of two nodes i and j to form links depends
only on their group memberships, bi and bj . In particular, the

1Note that integrating over the parameters is not a methodological
choice, but rather the probabilistically correct calculation.

2A common, but somewhat misguided, criticism of the full proba-
bilistic approach is precisely the need to specify these priors. Note,
however, that alternative maximum likelihood approaches are simply
equivalent to (i) assuming that the priors are uniform; (ii) approxi-
mating the integral over the parameters as P (A|M) ≈ P (A|M,ξ ∗

M),
where ξ ∗

M is the maximum likelihood estimator of M’s parameters,
that is, the value of the parameters that contribute the most to the
integral in Eq. (2).

rate at which i and j form links is λbibj
, which gives an overall

likelihood

P (A|λ,b) =
∏
i<j

λ
Aij

bibj
e
−λbi bj

Aij !
. (3)

Here A is the adjacency matrix of the network, b is the vector
of group memberships, and λ is the matrix of group-to-group
connectivity rates.

Traditional SBMs generate groups whose nodes have a sim-
ilar number of links, which is potentially an unrealistic assump-
tion given that node degrees are often broadly distributed in
networks. To account for this observation, Karrer and Newman
proposed the degree-corrected SBM [14]. Specifically, they
added to the model a propensity θi of each node i to establish
links, so that the likelihood reads

P (A|θ ,λ,b) =
∏
i<j

(
θiθjλbibj

)Aij
e
−θi θj λbi bj

Aij !
. (4)

Within this formulation, θi is proportional to i’s expected de-
gree and can be different for nodes in the same group, allowing
this model to accommodate arbitrary degree sequences within
groups.

Given either one of these model likelihoods, the marginal
in Eq. (2) is obtained by integrating over their parameters, with
the exception of the partition b, which we leave as part of the
model specification M. For the degree-corrected model we
have

P (A|b) =
∫

P (A|θ ,λ,b)P (θ |b)P (λ|b) dλ dθ , (5)

and analogously for the traditional variant. In order to compute
the marginal likelihood and the final posterior of Eq. (1),
we need to specify the priors P (θ |b), P (λ|b), and P (b) for
the parameters θ , λ, and the partitions b of the nodes into
groups, respectively. In the absence of previous experience,
we typically rely on the so-called noninformative priors, which
ascribe the same probability to all allowed parameter values.
However, for SBMs this assumption imposes a “resolution
limit” to the maximum number of groups that can be inferred to
scale as

√
N , where N is the number of nodes [6]. A solution to

this issue is to replace the noninformative prior by a sequence
of nested priors that represent the structure of the network
at different scales via a nested sequence of SBMs [17]. This
nested SBM reduces the resolution limit to N/ log N without
introducing any bias towards a specific mixing pattern. Since
the noninformative version of the model is a special case of the
nested one, the latter is expected in general to produce better
fits, since it alleviates one source of underfitting.

In this work, we consider the four model classes obtained
from combining the two SBM variations (traditional and
degree corrected) with the two choices for model priors
(noninformative and nested). We refer to a model M = (b,C)
as the combination of model class C and a node partition
b.3 Therefore, in what follows, by model selection we mean

3We note that this definition differs from choices made in part of
the literature (e.g., Refs. [18,19]), where the model is considered
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selection of both the model class and the optimal partition
within that model class. We use the parametrization and priors
presented in Ref. [8], as well as the inference algorithm
described there.

III. SUPERVISED AND UNSUPERVISED
MODEL SELECTION

As we mentioned earlier, we are interested in contrasting
two approaches for model selection on network data: (i) the
unsupervised approach, where models are chosen according to
their plausibility given the data; (ii) the supervised approach,
where models are chosen according to their capacity to predict
missing links in the network. In what follows we describe both
approaches in more depth.

A. Unsupervised model selection using the posterior probability
and minimum description length

The probabilistic framework previously outlined provides
a natural criterion to select the best model for any particular
network. Indeed, if we wish to compare two specific models
(b1,C1) and (b2,C2), this can be done by computing the ratio
� between their respective posterior probabilities in the joint
model space comprising all models (b,C1) and (b,C2),

� = P (b1,C1|A)

P (b2,C2|A)
= P (A|b1,C1)P (b1|C1)P (C1)

P (A|b2,C2)P (b2|C2)P (C2)
, (6)

and when we are a priori agnostic about model classes [that
is, P (C1) = P (C2) = 1/2]

� = P (A|b1,C1)P (b1|C1)

P (A|b2,C2)P (b2|C2)
. (7)

Here, the marginal likelihoods P (A|bi ,Ci) are computed ac-
cording to Eq. (2) and the priors are set for each model class
as described in the previous section. Then, � > 1 means that
the evidence in the data favors (b1,C1) over (b2,C2) (and vice
versa), and the magnitude of � gives the degree of confidence
in the decision [21].

as M = (λ∗,θ∗,C), where λ∗ and θ∗ are maximum-likelihood point
estimates of the parameters, and one sums over all possible partitions
b. Although such decisions on what to call a “model” are largely
arbitrary, the one used here yields regularized approaches, where
the dimension of the model (e.g., number of groups and hierarchy
depth) are determined from the data a posteriori. The definition used
in Refs. [18,19] presumes not only that the model size is known a
priori, but also that it is sufficiently small compared to the data, i.e.,
the average group size tends to infinity—something that cannot be
guaranteed, and is unlikely to be true in most empirical networks.
Furthermore, making point estimates of λ are in general problematic,
as they require initial guesses that are sufficiently close to the optimum
value [20]. The definition used here, therefore, allows for a more
consistent comparison between the supervised and unsupervised
approaches, that does not rely on such assumptions and is free of
some technical limitations. Note also that the meaning of the word
“model” used here refers to the underlying data generating process,
not to the posterior probability of partition labels. In the parametric
case, the latter can be mapped to a generalized Potts model [18], but
this is not the terminology we use.

This criterion is entirely equivalent to the so-called min-
imum description length (MDL) approach [22]. This is eas-
ily seen by noting that the description length �(A,b; C) is
defined as4

P (A|b,C)P (b|C) = 2−�(A,b;C), (8)

where

�(A,b; C) = − log2 P (A|b,C) − log2 P (b|C) (9)

is the asymptotic amount of bits necessary to encode the data
(e.g., using Huffmann’s prefix algorithm) in two stages, by first
encoding the partitions b, and then the data A, constrained by
the knowledge of b. From this we have

log2 � = �(A,b2; C2) − �(A,b1; C1). (10)

Therefore, choosing the model that is most plausible given the
data is equivalent to choosing the model with the minimum
description length (which can be calculated exactly for the four
model classes described in the previous section [8]), that is,
the model that most compresses the data.5 This interpretation
also gives an intuitive explanation to why this criterion avoids
under- and overfitting—either if noise is incorporated into the
model or if it misses any regularity in the data it will result in
an increase of the description length.6

B. Supervised model selection using link or nonlink prediction

As discussed above, the quality of a model can also be
evaluated based on its predictive power and, in particular, its
performance at identifying which of the observed nonlinks in
a network are most likely to actually correspond to links that
have been mistakenly left out of the observation (or conversely,
which links are in fact nonlinks that were spuriously intro-
duced).7 This task is known as link (or nonlink) prediction.

4It is also common to define an “energy” H(b,C) such that
P (A|b,C)P (b|C) = exp [−H(b,C)] [3]. This energy only differs from
the description length by a multiplicative factor. Note also that, for the
model classes we consider here, the prior over partition is independent
of the model class, and thus P (b|C) = P (b).

5Note that � is defined in Eq. (6) in terms of the model posteriors in
the space comprising both model classes C1 and C2, and that the ratio
is different if one uses, incorrectly, the model posteriors calculated
in the model spaces containing a single model class. By contrast, the
description length is the same in the joint and separate spaces, except
for an irrelevant additive constant log2 P (Ci) = 1 that affects all C1

and C2 models equally. This makes the description length particularly
attractive for model selection, and is a consequence of the fact that the
number of bits needed to describe the network is a physical property—
when two model spaces C1 and C2 are joined, the network is described
exactly as in the separate spaces except for an extra bit necessary to
specify whether we are dealing with the C1 or the C2 subspace.

6Note that if we are interested in making a statement about an
entire model class (as we define here, see footnote 3), rather than
a specific partition, we need to compute the probability summed over
all partitions, i.e., P (A|C) = ∑

b P (A|b,C)P (b|C). See Ref. [8] for
more details and Ref. [23] for an example.

7Since a single sample of our model comprises an entire network A,
one could argue that the more canonical formulation of the supervised
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To give the problem of link prediction a probabilistic
treatment [2,3] consistent with the notation above, we need
some extra definitions. We denote as AO the adjacency matrix
of the observed network (with some entries missing), and the
set of missing entries as an additional matrix δ A, such that the
complete matrix is AO ∪ δ A. Crucially, within this formalism
AO can either represent a complete matrix, e.g., with the
missing edges representing evidence of absence (and therefore
being equivalent to nonedges), or an incomplete matrix where
the missing edges are unobserved, i.e., represent the absence of
evidence and are therefore different from nonedges. The only
requirement is that the complete matrix AO ∪ δ A is indeed
complete, i.e., it represents a definite statement on every edge
and nonedge, which holds for the two scenarios above.

The central assumptions we make are that the complete
network AO ∪ δ A has been generated using some class C of
the SBM, and that the set of missing entries δ A has been
chosen from some uniform distribution among all possibilities.
Based only on these two assumptions, and independently of the
internal structure of the model used, the probability of missing
entries given the observed network and model class can be
computed exactly as (see Appendix A)

P (δ A|AO,C) ∝
∑

b

P (AO ∪ δ A|b,C)

P (AO |b,C)
P (b|AO,C), (11)

up to a unimportant normalization constant. In the expression
above, P (AO ∪ δ A|b,C) and P (AO |b,C) are the marginal like-
lihoods of the complete and observed networks, respectively,
and P (b|AO,C) is the probability of a partition given the
observed network AO and the model class C. Thus, Eq. (11)
can be computed in practice by sampling partitions from
this distribution using Markov chain Monte Carlo (MCMC),
and averaging the ratio of marginal likelihoods. We note
that for P (AO |b,C) and P (b|AO,C) we may consider the
missing edges (nonedges) either as nonedges (edges) or un-
observed, without any change at all to resulting distribution
P (δ A|AO,C), as the different choices only change the auxiliary
weights in the importance sampling. We return to this weighted
average in Sec. IV C, but for the purpose of model selection
we can use the single-point approximation

P (δ A|AO,C) ≈ P (AO ∪ δ A|b∗,C)

P (AO |b∗,C)
P (b∗|AO,C),

= 2−��(b∗,C)P (b∗|AO,C) (12)

with ��(b,C) = �(AO ∪ δ A,b; C) − �(AO,b; C) being the
difference in description length between the network with the
missing entries added and the network without them, and where

b∗ = argmax
b

P (b|AO,C) (13)

scenario would be to consider a set of different networks, with the
same number of nodes and presumed to be sampled from the same
model, which are then divided into training and validation sets, that are
used to fit the model and evaluate its predictive power, respectively.
However this situation is rarely encountered in practice, as we have
typically access to only a single instance of a network.

is the partition that most contributes to the posterior distribu-
tion, that is, the most plausible partition given the observed
network or, equivalently, the partition that most compresses
the observation. Note that although Eq. (11) is true in general,
Eq. (12) can only be expected to be a good approximation if
the number of entries in δ A is much smaller than in AO .

Based on this, the predictive power of a model can be
quantified by analyzing its ability to identify missing links
or nonlinks. Indeed, for an observed network for which we
know that some true links (or nonlinks) have been removed,
we consider each of these false negatives as an instance of
δ A and compute their P (δ A|AO,C). Then, we compare these
values with the same quantity obtained for true negative links
(nonlinks) that do not exist in the original network. We measure
the AUC (“area under the curve”), that is defined as the
frequency with which a false negative (a removed link or
nonlink) has a predictive probability higher than a true negative
(a nonexistent link or nonlink); the most predictive model is
the one that yields the highest AUC.

IV. COMPARISON OF UNSUPERVISED AND SUPERVISED
MODEL SELECTION

Having defined our unsupervised and supervised model
selection approaches, we next demonstrate that, perhaps coun-
terintuitively, both approaches do not necessarily yield the
same results. In other words, we demonstrate that the most
predictive model is not necessarily the most plausible one or,
equivalently, the one that most compresses the data, even for
infinitely large networks. We illustrate this fact with a set of
synthetic networks and then we discuss the results we find for
real networks.

A. Inconsistency for some simple synthetic networks

Here, we describe a case in which unsupervised model se-
lection and supervised model selection based on link prediction
are not consistent. We focus on the removal of links, instead of
nonlinks, but our arguments are also valid in that case, and also
when both links and nonlinks are removed simultaneously. A
more precise discussion of this case, with explicit calculations,
is given in Appendix B.

Consider an ensemble of networks with B groups, such that
the number of links within each group is exactly ein and the
number of links between any pair of distinct groups is exactly
eout < ein. Other than this, the degrees of individual nodes are
not fixed, so networks are drawn from the traditional SBM.

If one removes one intergroup link (between, say, groups g1

and g2), point-estimate link prediction assuming a traditional
SBM will assign a probability proportional to eout to all pairs
of nodes between groups (gi,gj ) �= (g1,g2), and a probability
proportional to (eout − 1) to all pairs between groups (g1,g2),
including the one we actually removed (see Fig. 1). Therefore,
the AUC for this link will be very low (in fact, lower than
0.5) because most nonlinks in the network will have a higher
probability of existing than the removed link. As a matter of
fact, one can show that for a large enough number of groups
B, the AUC obtained for the complete set of leave-one-out
experiments (i.e., removing one link at a time) will be lower
than 0.5 for a broad range of ein and eout [see Eq. (B13)].
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FIG. 1. (a) Number of edges between groups in a synthetic
network, before the removal of edges, with ein edges in the diagonal
and eout in the of diagonal, represented as squares. (b) The same as in
(a), but after a single edge has been removed, in the position shown
in red (grey). The modified entry has eout − 1 edges, which will cause
the predictive likelihood in this position to be lower than for all the
other entries.

On the other hand, single point-estimate link prediction
using Eq. (12) with the degree-corrected SBM will “absorb”
the missing link into the parameters and assign all nonob-
served intergroup links the same approximate probability,
thus providing higher AUCs (see Figs. 5 and 6). Still, the
most parsimonious model in this case is the traditional SBM
and, consistently, the description length is shorter for that
model (because the extra parameters introduced to model node
degrees in the degree-corrected models overfit the data).

Note that the reason why link prediction fails to select the
model with lowest description length in this case is not the lack
of statistical evidence, but rather that the model itself—and not
the data—is sensitive to perturbations: A minimal change to
one of the λrs values downgrades the likelihood of the removed
edges with respect to all other edges of the same type that
would otherwise have the exact same probability. Hence, this
example illustrates how in some cases predictive performance
(at least when measured by the AUC) can to some extent reflect
inherent properties of a model, rather than its ability to fit the
data.

We emphasize that this scenario is robust with respect to
variations of the types of perturbation done to the network. In
particular, if we remove a nonlink instead of a link, we have
a symmetric version the same problem—the nonlink removed
will have a lower probability for precisely the same reason as
a removed link. If we consider the removed link or nonlink
as an unobserved “blank” in the adjacency matrix, as opposed
to its opposite value, this also yields the exact same result,
since our final probabilities only depend on the completed
network.

The only situation where one could expect an asymptotic
consistency to be observed is when instead of a single entry of
A we remove a finite fraction of them at random—involving
links and nonlinks indiscriminately. In this situation, we could
expect entries between all pairs of groups to be equally affected
on average. However, any particular set of perturbations would
invariably include fluctuations among group pairs that would
yield a similar effect to the one described here, since the most
likely completed network would almost never be the fully
symmetric one in Fig. 1(a).

TABLE I. Empirical networks used in this work, with their
number of nodes N and average degree 〈k〉 = 2E/N .

Dataset N 〈k〉
American college football [26] 115 10.7
Florida food web (dry) [27] 128 33.4
Residence hall friendships [28] 217 24.6
C. elegans neural network [29] 297 15.9
Scientific coauthorships [30] 379 4.8
Email [31] 1,133 9.6
Political blogs [32] 1,222 31.2
Crimes in St. Louis [24] 1,380 2.13
Protein interactions (I) [33] 1,706 7.3
Bible name co-occurrences [24] 1,773 10.3
Hamsterster friendships [24] 1,858 13.5
Movielens ratings [24] 2,625 75.2
Adolescent friendships [34] 2,539 10.2
Global airport network [17] 3,286 41.6
Protein interactions (II) [35] 6,327 46.6
Internet AS [36] 6,474 4.3
Advogato user trust [37] 6,541 15.6
Cora citations [38] 23,166 7.9
DBLP citations [39] 12,591 7.9
Google+ social network [40] 23,628 3.3
arXiv hep-th citations [36] 27,770 25.4
Digg online conversations [41] 30,398 5.77
Linux source dependency [24] 30,837 13.9
PGP web of trust [42] 39,796 15.2
Facebook wall posts [43] 46,952 37.4

B. Typical consistency in real networks

Given that supervised and unsupervised model selection are
not necessarily consistent, the question is then whether they
are consistent in practice, that is, in real networks. To answer
this question, we have performed a systematic analysis of the
predictive performance of the four SBM classes on empirical
networks (Table I), and analyzed it vis-á-vis their description
lengths.

We observe that, often, supervised and unsupervised model
selections are consistent, meaning the most plausible and most
compressive model is also the most predictive. This is the case,
for example, for the air transportation network [Fig. 2(a)], for
which the best model overall is the nested degree-corrected
SBM, with all the others displaying both a higher description
length (that is, lower plausibility) and lower AUC values (that
is, lower predictability). However, we also observe a few
situations where the most compressive and most plausible
model has an inferior predictive performance than some of
the alternatives. For example, in Fig. 2(b) we show the results
for the Movielens network of user-film ratings [24,25]. For
this network, the nested degree-corrected SBM is the most
compressive model, but the nested traditional SBM provides
more accurate predictions of missing links.

To quantify how frequent such discrepancies are, we sys-
tematically compare the compressiveness and the predictive
power of all model classes on all networks (Fig. 3). For each
network and each model class, we generate a noisy observation
AO by removing a fraction f = 0.05 of the links and obtain
the optimal partition b = b∗ as in Eq. (13). We use this optimal
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FIG. 2. Consistency and discrepancy between model selection approaches in empirical networks. Comparison between AUC values and
the description length �, after the removal of a fraction of f = 0.05 of the edges for two empirical networks: (a) global airports; (b) Movielens
movie ratings. We show results obtained by comparing the degree-corrected nested SBM with the three remaining variants, as shown in the
legend: traditional SBM with noninformative priors, degree-corrected with noninformative priors, and traditional with nested priors. Each point
corresponds to a single instance of the removed edges, and the difference �AUC in AUC and �� in description length are with respect to the
degree-corrected nested SBM. Points in the grey region represent inconsistent results in which the model with the smallest description length
(in both cases, the degree-corrected nested model) has smaller AUCs (lower predictive power).

partition to compute the description length �(b∗,C) and the
AUC for the prediction of the missing links. We repeat this
operation 30 to 150 times for each real network, and for each
set of missing edges and each pair of models we compute the
difference in description length and AUC, �� and �AUC. For
each model pair, we have a population of such values, which
we use to compute the t statistic for a null model with zero
mean, e.g., for �� we have

t�� = 〈��〉
σ��/

√
n
, (14)

where 〈��〉, σ�� , and n are the mean, standard deviation, and
size of the population, and analogously for t�AUC. With a value
of t��/�AUC and the sample size, we can obtain the associated
p value, from which the null hypothesis can be rejected if it is
sufficiently small.

Figure 3 shows the results from model class comparisons
for all datasets in Table I. Note that while the majority of
comparisons (81%) are consistent, we observe a non-negligible
fraction of significantly inconsistent comparisons (19%). Tak-
ing into account the synthetic example from the previous
section, the observed fraction of inconsistent comparisons
should not come as a surprise. Nevertheless, we do not claim
that the reason for the discrepancies observed in the empirical
data is precisely the same as the one in the planted partition
example.

C. Ensembles of simple models are more predictive
than the single most compressive model

We have shown that the model that best performs at link
prediction is often the most likely one or, equivalently, the one
that best compresses the data. Importantly, even for the cases

in which both model selection approaches are consistent, the
single most compressive does not necessarily provide optimal
link predictions.

Indeed, according to Eq. (11), the best approximation to
the probability of a link is given by the average over all
partitions in a model class [44]. Although this average cannot
be calculated exactly because of the combinatorially large
number of partitions, one can use Markov chain Monte Carlo
(MCMC) to sample over the partitions with the appropriate
posterior distribution P (b|AO,C) [3]. Then, the average over
all partitions is approximated by the average over the sampled
partitions, which asymptotically coincides with the exact
value.

Note that if the posterior is dominated by a single partition
(that is, if the model is a perfect fit to the data) the single-point
estimate Eq. (12) will be an excellent approximation to the
average and these two approaches will coincide. However,
when the model is not a perfect fit, either due to lack of
statistical evidence, or more realistically, due to an imperfect
description of the true underlying generative mechanism, they
will not.

For some of the networks in Table I, we have compared the
predictive power of single-point estimates with the four model
classes, and compared them to the predictive power of averages
obtained using MCMC sampling on the model classes with
noninformative priors.8 Figure 4 shows that averaging over
many partitions improves the capacity of predicting missing
edges, indicating that the data are not perfectly described by
the best partition. Interestingly, the difference in AUC scores is

8MCMC sampling with the nested model classes is possible but too
computationally demanding for some of the networks considered.
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FIG. 3. Significance of the discrepancy between model selection
approaches. For each pair of model classes and for all of the empirical
networks in Table I, we show the t statistic [Eq. (14)] for the difference
in AUC and the description length �. Results correspond to 30–150
edge removal experiments of a fraction f = 0.05 of the edges (we
observe similar results for different fractions of removed edges). The
number of repetitions for each network is different because for larger
networks it takes a longer time to get the results but, at the same time,
the fluctuations between results are smaller. In general, we use as
many repetitions as necessary to get reasonable error bars in all our
estimates. Colors (gray tones) show the associated p value. Points
in the top half of the figure indicate a consistency between both
model selection criteria: The model with the smallest description
length also yields the largest AUC. For points in the bottom half
(grey), the comparisons are inconsistent. On the right axis, we show a
histogram of the t�AUC values, showing that a majority of comparisons
are consistent.

often larger between the best partition and the model average
than it is across model classes. This indicates that in-class
variability is often more expressive of the data (at least with
respect to predictive performance) than the single best fit of the
most compressive model class. Nevertheless, we still observe

that the most compressive model class also tends to yield higher
predictive performance when averaged over partitions.9

V. CONCLUSION

We have compared two approaches to model selection,
one based on maximum posterior likelihood (or maximum
compression), and another based on maximum performance at
missing link prediction. We have found that while these criteria
tend to agree in practice, they fail to give consistent results in
some cases. In particular, we have seen that link prediction can
lead to overfitting because, perhaps counterintuitively, overly
complex models sometimes give better predictions.

The fact that data prediction (in particular leave-one-out
cross validation) does not yield a consistent estimator of the
underlying generative process is well understood for linear
models [9], which is the same problem we have observed
for the SBM when only one link is removed. However, it
was also shown in Ref. [9] that cross validation for linear
models is consistent if one performs leave-k-out, with k scaling
proportionally with the number of data points in the training
set. However, doing so when the total amount of data is fixed
means we must leave a large amount of data out of the inference
procedure, incurring a substantial loss of precision. We are
thus left with two competing goals: increase the training set to
maximize inference precision, and increase the validation set
to guarantee consistency. Both can be achieved simultaneously
only when the data are plentiful, and when the model is well
specified—conditions that cannot be always guaranteed in
practice. For networks, even under the SBM assumption, there
are currently no good recipes to reach the proper balance, or
an assurance that such a balance even exists. This problem
is particularly exacerbated by the fact that most networks are
sparse, and hence there might be insufficient data to confidently
identify the correct model even when they are infinitely large.

9In order to properly extend our consistency analysis in this
case, instead of using single-point estimates, the unsupervised ap-
proach would need to be based on the model evidence P (A|C) =∑

b P (A|b,C)P (b), which then could be used to compute the posterior
odds ratio, as detailed in Ref. [8]. Unfortunately, this quantity cannot
be computed in an asymptotically exact manner, even using MCMC.
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FIG. 4. Comparison between single-point and average link prediction for four real networks and the four model classes. Single-point
predictions are obtained using Eq. (12) whereas average predictions are obtained using MCMC sampling to approximate Eq. (11). In all cases,
we removed a fraction f = 0.05 of the true links of the network, and computed the AUC to measure predictive power (see text). Sampling with
the simplest model class (the traditional noninformative SBM) always gives more accurate predictions than the single-point prediction with the
best model.
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In fact, a removal of a fraction of edges will always make the
network sparser, potentially crossing a threshold that makes
the latent structure completely undetectable [18].

An important ramification of our results is that the potential
overfitting that can arise out of seeking the best predictions
does not mean that one should avoid doing it altogether. On the
contrary, overfitting becomes a nonissue if the main objective
is to generalize from previous observations and guess possible
errors and omissions in the data, or predict future observations,
with the highest precision. In this situation we have shown that
the best approach is, in fact, to average over models, rather
than use a single model. In any case, one should always be
careful not to conclude that the preferred model or models
in this situation are closer to the actual underlying generative
process.
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APPENDIX A: POSTERIOR PROBABILITY OF MISSING
LINKS AND NONLINKS

Our goal is to obtain an expression for the posterior
likelihood of missing entries P (δ A|AO), conditioned on the
observed network AO . We will make use of only two sim-
ple assumptions about the data-generating process. First, we
assume that the complete network G = AO ∪ δ A is sampled
from some version of the SBM with a marginal likelihood

PG(G|b) = P (G|b,C).

Second, given a generated network G, we then select a portion
of the entries δ A from some distribution,

PδA(δ A|G), (A1)

which models our source of errors. The observed network
is obtained from the above construction by removing δ A
from G,

AO = G \ δ A, (A2)

where the notation above means that the edges and nonedges
present in δ A and G are left indeterminate in AO (although,
e.g., considering edges as nonedges in AO , i.e., AO = G −
δ A, would yield an identical outcome, as we show below).
Given the above model, we want to write down the joint
likelihood P (AO,δ A|b), so that we can obtain the conditional
likelihood P (δ A|AO,b). We begin by using Eq. (A2) to write

P (AO |δ A,G)=δ[AO−(G \ δ A)], =δ[G−(AO ∪ δ A)],

since there is only one possibility which is consistent, where
δ(B − C) = 1 if B = C or 0 otherwise. Thus, if we know the
complete graph G, we can write the joint likelihood as

P (AO,δ A|G) = P (AO |δ A,G)PδA(δ A|G),

= δ[G − (AO ∪ δ A)]PδA(δ A|G).

Finally, for the joint distribution conditioned on the partition,
we sum the above over all possible graphs G, sampled from
our original model,

P (AO,δ A|b) =
∑

G

P (AO,δ A|G)PG(G|b)

= PδA(δ A|AO ∪ δ A)PG(AO ∪ δ A|b).

From this, we can write directly our desired posterior of
missing entries by averaging over all possible partitions,

P (δ A|AO) =
∑

b P (AO,δ A|b)P (b)

P (AO)
(A3)

= PδA(δ A|AO ∪ δ A)
∑

b PG(AO ∪ δ A|b)P (b)

P (AO)
,

(A4)

with P (AO) being a normalization constant, independent of
δ A. Note that the equation above does not depend on whether
AO includes the missing entries as edges or nonedges, or if they
are left indeterminate as we have done, as the only relevant
quantity in the numerator is the complete graph AO ∪ δ A.
Therefore, even though these representations amount to very
different interpretations of the data, they result in the same
inference outcome, since in the end all that matters is the model
we have for the complete network.

Although it is complete, Eq. (A4) cannot be used directly
to compute posterior likelihood, as it includes a sum over all
partitions. It does, however, suggest a simple algorithm: We
could compute the average of PG(AO ∪ δ A|b) by sampling
many partitions b from the prior P (b). However, even though
it is correct, this algorithm will typically take an astronomical
time to converge to the asymptotic value, since the largest val-
ues of PG(AO ∪ δ A|b) will be far away from the typical values
of b sampled from P (b). Instead, a much better algorithm is
obtained by performing importance sampling, i.e., by writing
the likelihood as

P (δ A|AO)

∝ PδA(δ A|AO ∪ δ A)
∑

b

PG(AO ∪ δ A|b)
PG(AO |b)

PG(AO |b)
P (b),

∝ PδA(δ A|AO ∪ δ A)
∑

b

PG(AO ∪ δ A|b)

PG(AO |b)
PG(b|AO).

(A5)

where we have used

PG(b|AO) = PG(AO |b)P (b)

PG(AO)
,

which is the posterior of b pretending that AO came directly
from the SBM, which we can sample efficiently using MCMC.
Naturally, if the number of entries in δ A is much smaller
than in AO , this posterior distribution will be much closer
to the region of interest, and the estimation of the likelihood
will converge significantly faster. Note, however, that in order
to compute PG(AO |b) and sample from PG(b|AO) we must
decide whether the missing edges or nonedges in AO are really
missing or if we replace them with zeros or ones. The choice,
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however, cannot change the resulting distribution P (δ A|AO),
as it is invariant with respect to the weights we use when doing
importance sampling. Hence, the choice we make should be
done purely on algorithmic grounds. In our experiments we
will consider missing edges (nonedges) as nonedges (edges),
since it allows MCMC implementations developed for this case
to be used without modification.

To complete the estimation, we need to define how the edges
and nonedges are removed from the original network. Without
loss of generality, focusing on the case of missing edges only,
a simple assumption is a uniform distribution conditioned on
the fraction of missing edges f ,

PδA(δ A|G,f ) =
∏
i<j

(
Gij

δAij

)
f δAij (1 − f )Gij −δAij

= f Eδ (1 − f )EG−Eδ , (A6)

where Eδ and EG are the total number of edges that are
removed and in the original network, respectively, and we have
assumed a simple graph in the last equation for simplicity. If
we are always considering the same number of missing edges,
Eq. (A6) is only a constant, resulting in

P (δ A|AO) ∝
∑

b

PG(AO ∪ δ A|b)

PG(AO |b)
PG(b|AO). (A7)

which is Eq. (11) in the main text. This equation is exact up to
a normalization constant that is often unnecessary to compute,
as we are mostly interested in relative probabilities of missing
edges. We stress that in deriving Eq. (A7) we have not made
any reference to the internal structure of the network model
PG(G|b), and it is equally valid not only for all model variants
used in this work, but also in a much wider class. This is in con-
trast to similar frameworks that have been derived with much
more specific models in mind [2,3]. Furthermore, we note also
that although we have assumed in the last steps that δ A is a
set of missing edges, the same argument above can be adapted
with almost no changes when it represents instead any arbitrary
combination of missing and spurious edges, and hence our
framework can be used in this more general scenario as well.

We note that the problem of selecting the most appropriate
fraction of missing edges with the objective of performing
model selection is not a trivial one. In fact, only creating
missing edges but not spurious ones is a biased way to proceed,
since a more accurate representation of the data would consider
edges and nonedges on equal footing. However, choosing the
optimal relative fraction would require not only preserving the
sparsity of the data (i.e., selecting a larger fraction of missing
edges than spurious ones) but also more information about
the heterogeneous mixture of edge populations, which would
depend on the true model parameters. We leave this open
problem for a future work, and concentrate instead on the more
typical task of missing edge prediction.

APPENDIX B: LINK PREDICTION IS NOT ALWAYS
A GOOD MODEL SELECTION CRITERION:

THE PLANTED PARTITION EXAMPLE

We consider a simple parametrization of the non-degree-
corrected SBM known as the planted-partition model (PP),

which is composed of N nodes divided into B equal-sized
groups and is generated according to Eq. (3) with

λrs = 2〈E〉
nrns

[
cδrs

B
+ (1 − c)(1 − δrs)

B(B − 1)

]
, (B1)

where nr = N/B, 〈E〉 is the average number of edges, and c ∈
[0,1] controls the degree of assortativity between groups. For
c > 1/B the placement of edges is not fully random, and for
c > 1/B + (B − 1)/(B

√〈k〉) the planted modular structure is
detectable from the data alone [18]. In the following discussion
we assume that c > 1/B and that the partition of the nodes is
always known a priori.

Specifically, we consider networks which have an observed
number of edges between groups that matches exactly the
expected value,

ers =
∑
ij

Aij δbi r δbi s = �nrnsλrs�, (B2)

where �x� rounds x to the nearest integer.
When faced with an instance of this model, we want

to evaluate the predictiveness of the model by performing
leave-one-out cross validation: We remove a single edge from
the network, and consider its likelihood according to the
observed network. Based on this we compute the AUC, i.e.,
the probability that the removed edge is ranked above the false
positives. Here we show how the result of this experiment can
be computed analytically.

We begin by considering a slightly different scenario:
Instead of computing the likelihood of the missing edge via the
posterior distribution, we use instead the true likelihood of the
original model, before we removed the edge. When doing so,
because of the symmetries in the model, there will be only two
possible values of the likelihood, depending only on whether
the removed edge lies between nodes of the same or different
groups. If the removed edge connects nodes of the same group,
the only false positives that have the same likelihood will be
those that also connect nodes of the same group (although they
do not need to be the same group of the removed edge), and
the remaining edges will have a lower likelihood. With this,
and assuming that N  1 and sufficiently sparse networks so
that ers < nrns , the computed AUC will be

AUCin = 1

N2/2

[
1

2

Bn2
r

2
+ B(B − 1)

2
n2

r

]
(B3)

= 1

2B
+ (B − 1)

B
, (B4)

which means we have AUCin > 1/2 if B > 1, indicating that
we can predict the missing edge better than pure chance. For
removed edges between different groups, we have instead

AUCout = 1

N2/2

1

2

B(B − 1)

2
n2

r (B5)

= (B − 1)

2B
, (B6)

from which we see that AUCout < 1/2, i.e., edges between
groups are predicted with a performance that is inferior to
fully random guesses. Overall, the average performance for
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FIG. 5. (a) Average AUC values obtained by removals of a single edge from a PP with nr = 100, B = 10, and 〈k〉 = 20, both for “canonical”
(i.e., unconstrained) as well as microcanonical samples, where Eq. (B2) holds. The legend indicates which model was used to compute the
AUC (i.e., the SBM or the DC-SBM). The solid line corresponds to Eq. (B13), and the vertical line the value c∗ = 1/B + (B − 1)/(B

√〈k〉)
corresponding to the detectability threshold. The inset shows the difference of the AUC values obtained with the two model classes, AUCDC-SBM −
AUCSBM, with networks sampled from the canonical model. (b) The same as (a), but with a fraction f = 0.05 of the edges removed. (c)
Description length difference between the SBM and DC-SBM, both for the canonical and microcanonical samples, for a fraction f = 0.05 of
the edges removed.

randomly chosen edges is

AUC = cAUCin + (1 − c)AUCout (B7)

= c

[
1

2B
+ (B − 1)

2B

]
+ B − 1

2B
. (B8)

For any c > 1/B we have that AUC > 1/2, meaning that the
generative model on average provides better predictions of
randomly missing edges that are better than pure chance. This
behavior is fully expected, since the process generating the
missing edges is not random, and is described precisely by our
model.

However, in the scenario of an actual missing link, we need
to infer the model from the observed data, in the absence of
the removed edge. If the removed edge connects groups r

and s, the new edge counts between these two groups will be
(ers − 1 − δrs), and hence the posterior likelihood of observing
a missing link there will be slightly smaller than in the true
model. Since in the original model all other edges of the same
kind (inter- or intragroup) had exactly the same likelihood, this
small difference in the likelihood will be sufficient to make the
actual missing edge less likely than all the other ones with the
same likelihood originally. Because of this, in this situation we
have

AUCin = 1

N2/2

[
1

2

n2
r

2
+ B(B − 1)

2
n2

r

]
(B9)

= 1

2B2
+ (B − 1)

B
, (B10)

and

AUCout = 1

N2/2

1

2
n2

r (B11)

= 1

2B2
, (B12)

and thus

AUC = cAUCin + (1 − c)AUCout (B13)

= 1

2B2
+ c

B − 1

B
. (B14)

Differently from the case where the true model is known, now
if 1/B < c < (B2 − 1)/[2B(B − 1)] we have a nonrandom
inferred model that yields AUC < 1/2, and thus an inferior
predictive performance than pure chance, despite the fact that
the model differs from the true one only minimally. The reason
for this is that the removal of any single edge decreases
its probability—according to the model inferred from the
remaining network—below a vast number of false positives
(i.e., edges of the same kind), which in fact have the exact
same likelihood under the original model.

As mentioned in the main text, if we infer using the wrong
model class, for example the DC-SBM, we systematically
observe larger AUC values, as can be seen in Fig. 5(a). This
is because the extra parameters of this model—the degree
propensities θi—incorporate a large amount of noise from the
data and destroy the homogeneity present in the simpler model.
Without the homogeneity, the single edge count lost between
groups r and s makes little difference overall. As can also be
seen in Fig. 5(b), this phenomenon persists even if we remove
a finite fraction of the edges, instead of a single one.

Despite the improved predictive performance, the DC-SBM
is not the most appropriate model for this network. Not only
did we generate the data explicitly from the simpler SBM, but
also its posterior likelihood is smaller, as reflected by its larger
description length [see Fig. 5(c)]. Hence, the unsupervised
model selection approach is impervious to details of the model
such as the fact that the edge probabilities are similar, and
correctly identifies the true generative process. We emphasize
that even if one would stubbornly prefer the most predictive
model in this case, one would have to accept a fully random
network over the simpler SBM, when the latter yields AUC
values smaller than 1/2.

The reason why link prediction fails to select the true
underlying model in this case is not the lack of statistical
evidence, but rather that the model itself—and not the data—is
sensitive to perturbations: A minimal change to one of the λrs

values downgrades or upgrades the likelihood of the respective
edges with respect to all others of different types that would
otherwise have the exact same probability. Hence, this example
illustrates how in some cases predictive performance (at least
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FIG. 6. (a) AUC values obtained by removing a fraction f = 0.05
of the edges of a PP with nr = 100, B = 10, 〈k〉 = 20, and c = 0.8,
for microcanonical samples fulfilling Eq. (B2), and forcing B = B ′

during inference. (b) The same as (a), but with the description length
�, instead. The MDL criterion pinpoints the correct planted value of
B ′ = 10, whereas AUC overfits.

when measured by the AUC) can be to some extent an inherent
property of a model, regardless of its quality of fit to the data.

One could argue that although the networks that obey
Eq. (B2) have the largest probability, they are nevertheless not
representative of the whole ensemble: Since the edge counts
ers are sums of Poisson variables, they are also distributed
according to a Poisson, and therefore their probabilities
of matching exactly the expected values will decrease as
P (ers = nrnsλrs) ≈ 1/

√
nrnsλrs , for large arguments. For

large and sparse networks, this value will decrease as 1/
√

N ,
and hence, despite being the most likely type of network, its
absolute probability will be very small asymptotically, and
therefore most networks sampled from this model will not
possess such an extreme level of homogeneity. Because of
this, one could say that this is an “out-of-class” example, and
that would perhaps explain the inconsistency. Although this
is technically true, it is easy to see that this argument is a
red herring: We can easily view the above case as a typical
instance of an equivalent microcanonical model [8], where the
homogeneity of Eq. (B2) is strictly imposed for all sampled
networks, and the rest of the analysis would still remain valid.
Nevertheless, we can also show that the same problem occurs
for typical samples from the original ensemble, which do not
necessarily conform to Eq. (B2), albeit less prominently. As
seen in the inset of Fig. 5(b), for a range of the parameter c—in
particular when the structure of the model is strongest—we still
observe higher AUC values for the DC-SBM, at least when the
fraction of removed edges is sufficiently large. The explanation
we offer is the same: the fluctuations are not always sufficient
to mask the homogeneity in the true model, which thwarts the
predictability of missing edges.

The above phenomenon also interferes with the selection
of the number of groups. Link prediction has been proposed
before as a means of selecting the number of groups [45],
as well as other dimensional aspects [46], but as we show in
Fig. 6 it also fails for precisely the same reason: increasing
the number of groups incorporates more noise in the model
and breaks its homogeneity. This leads to a clear overfitting,
where spurious groups are identified. As before, unsupervised
model selection is not susceptible to this, and reliably selects
the correct number of groups. Because of this possibility, we
admonish against using the supervised approach in favor of the
unsupervised for this purpose.
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