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The multiplex network of human diseases
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Untangling the complex interplay between phenotype and genotype is crucial to the effective characterization and subtyping of
diseases. Here we build and analyze the multiplex network of 779 human diseases, which consists of a genotype-based layer and a
phenotype-based layer. We show that diseases with common genetic constituents tend to share symptoms, and uncover how
phenotype information helps boost genotype information. Moreover, we offer a flexible classification of diseases that considers
their molecular underpinnings alongside their clinical manifestations. We detect cohesive groups of diseases that have high intra-
group similarity at both the molecular and the phenotypic level. Inspecting these disease communities, we demonstrate the
underlying pathways that connect diseases mechanistically. We observe monogenic disorders grouped together with complex
diseases for which they increase the risk factor. We propose potentially new disease associations that arise as a unique feature of

the information flow within and across the two layers.
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INTRODUCTION

The advent of next-generation sequencing (NGS) and genome-
wide association studies (GWAS) has led to the accumulation of a
vast amount of disease-gene associations.' In addition, high-
throughput experimental studies and proteomic technologies
have resulted in extensive protein interactions maps. Connecting
disease-related phenotypes to their underlying molecular
mechanisms and genetic constituents is crucial for a better
understanding of complex human diseases. The emerging field of
network medicine offers the tools of network science for distilling
relevant insight from the growing sets of molecular disease omics
data.? One of the earliest attempts at exploring the higher-level
implications of disease-gene associations from the network
perspective was the construction of genotype-based disease
networks, useful to show the global organization of diseases
around functional modules® and to infer comorbidity relations
between diseases.* On the same basis, phenotypic-based disease
networks were constructed by text-mining large-scale Medicare
data, systematically classifying diseases based on phenotype
similarity,> and facilitating the identification of patterns of disease
progression.® Since these pioneering works, many studies have
focused on adding to the growing compendium of disease-
disease associations. For example, Suratanee et al. identified
disease-disease associations using a scoring method based on
random walk prioritization in the protein-protein interaction
network and identified novel disease-disease interactions.” Yang
et al. measured disease similarity based on differential coexpres-
sion analysis to elucidate dysfunctional regulatory mechanisms
and arrived at novel interactions between diseases, whose shared
molecular mechanisms have recently been uncovered.® Menche
et al. identified common mechanistic pathways between diseases
by the overlap of disease modules.’

Despite these large-scale efforts, the characterization of human
disease is incomplete if a single source of information, whether

molecular or clinical, is considered in isolation owing to the deeply
entangled and causal nature of these different types of data. To
address this aspect, researchers have started exploring disease
associations using multiple data sources. In a recent study, Zitnik
et al. applied a matrix factorization based data fusion approach on
different molecular and ontological data that resulted in a multi-
level hierarchy of disease classification and predicted previously
unknown disease-disease associations.'® In a similar vein, Moni
et al. developed a multiplex network model, which combines
patient-specific diagnostics, integrative omics, and clinical data to
generate comorbidity profiles of diseases to help stratify patients
and potentially derive personalized medicine solutions in the
future.'’ More recently, Klimek et al. used different molecular
mechanisms, genetic and environmental, to define the layers of
multiplex comorbidity networks.'> Cheng et al. presented a
method that simultaneously uses functional and semantic
associations to calculate the similarity between pairs of diseases
and predict new associations.'® Sun et al. developed a combined
similarity score using annotation-based, function-based, and
topology-based disease similarity measures; compared their
predictions against genome-wide association studies; and pre-
dicted novel disease associations.'

The idea of incorporating multiple sources of information finds
its direct counterpart in the literature of multiplex and multi-
layered networks'®> where the structure and dynamics of various
social, technological and biological networks'®?* have been
shown to be better understood in terms of multiple intercon-
nected layers of networks.>*' Inspired by this prior work, we
hypothesize that we should be able to uncover novel information
about disease-disease relationships by incorporating genotypic
and phenotypic information simultaneously. To this end, we build
a multiplex disease network consisting of a genotype-based layer
and a phenotype-based layer. We then find multiplex commu-
nities of diseases on this multiplex network using a community
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detection method recently developed by us, multiplex Infomap,3?
to uncover associations between seemingly disparate diseases
that have common molecular mechanisms.

The development of a molecular-based disease classification
that links genotype and phenotype layers is remarkably challen-
ging and currently remains an unresolved problem. Our approach
helps resolve this issue by offering an in-depth understanding of
cohesive multiplex disease communities. In the age of the
proliferation of high-throughput omics methods, disease classifi-
cation based only on clinical traits and pathological examination is
insufficient by itself and may be misleading.>® The inclusion of
multi-omics information in molecular-level disease-disease rela-
tions is expected to improve disease classification.** Some of the
recent disease classification efforts focused on probabilistic
clustering algorithms. Hamaneh et al. devised a cosine-similarity
approach based on information flow on disease-protein networks,
which outputs clusters of similar diseases>**> The grouping of
diseases based on their temporal progression (disease trajectory)
is another important aspect of disease classification as it presents
us with the possibility of predicting future diseases given the
patient’s history. Jensen et al. studied the progression of diseases
using large-scale health registry data and identified significant
classes of trajectories as well as teased out the key diagnoses
central to these trajectories.>® Furthermore, it has been observed
that Mendelian disorders often predispose patients to complex
disorders. In this respect, an important linkage has been identified
regarding the reconciliation of Mendelian and complex disorders,
where Blair et al. mined medical record data to infer associations
between these two types of disorders and uniquely mapped each
complex disorder to a collection of Mendelian disorders.>” In light
of such recent developments, we focus on disease classification as
a primary application of our approach. We, therefore, deploy our
information flow compression community detection technique on
the multiplex network of diseases for a proof-of-concept study on
disease classification, and analyze our disease communities for
biological relevance and novelty. Overall, our study represents a
novel addition to the body of works addressing this subject in two
ways: (1) We provide a large-scale multiplex disease network,
which has not previously been constructed consistently using
multiple aligned data sources; and (2) We apply, for the first time,
a multiplex community detection method on a global disease
network for the purposes of disease classification, in contrast to
other similar methods that have been used on multilayered
molecular networks to determine functional similarities between
biological molecules.

RESULTS

Disease-disease interactions shared by genotype and phenotype
layers

We used two different data sources concerning genotypic and
phenotypic information about diseases (see Methods for details).
Gene-disease relationships are used to build the genotype-based
disease-disease interaction network layer, where two diseases are
linked if they share a common disease gene. Symptom-disease
relationships are used to build the phenotype-based disease-
disease network, where two diseases are linked if they share a
common symptom. In Fig. 1 we show a sketch of this procedure
applied on a sub-sample of the combined dataset. The multilayer
structure is obtained by considering the two networks as layers of
a multiplex system in which a disease has at least one connection
in at least one layer. The same set of diseases are represented in
both layers and diseases with no connections in one layer are
represented as isolated nodes in that layer. The final multiplex
network thus consists of 779 non-isolated diseases with 1115
genotypic and 5005 phenotypic relationships (see Methods for
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further details and for the analysis of gene similarity of disease
pairs).

To obtain initial insights about the common genetic and
phenotypic mechanisms underlying our disease networks, we
considered the shared edges between the genotype and
phenotype layer simply when the two network layers are overlaid,
i.e., disease pairs that have at least one gene and one symptom in
common. We found a highly significant enrichment of coinciding
disease-disease interactions across layers with 139 overlapping
edges (see Methods, SI Section 1 and Figs. ST and S2), which
reveals that diseases that have common genes also tend to share
symptoms. Indeed, a closer look at these overlapping edges
reveals that they connect disorders that are variable expressions
of the same mutation such as MASA syndrome and X-linked
hydrocephalus, diseases related to the same gene with important
overlapping clinical features, such as cerebreal amyloid angio-
pathy and Alzheimer disease; similar but milder disorders caused
by the same gene, such as Roberts Syndrome and SC Phocomelia
Syndrome; subtypes of a disease, such as Gilbert's Syndrome and
Crigler-Najjar Syndrome; as well as subtler associations, such as
scapuloperoneal myopathy and hypertrophic cardiomyopathy,
bronchiectasis and cystic fibrosis, type 2 diabetes mellitus and
maturity-onset diabetes of the young, and Noonan syndrome and
juvenile myelomonocytic leukemia. It is also interesting to note
that on the network-topological level, the different levels of
granularity and the distinct local clustering of the two networks
(Figs. S3 and S4) result in the heterogeneous distribution of
overlap links around what may be called “overlap hubs” (Fig. S5).
We find that these hubs are either diseases defined as groups of
diseases or multi-system diseases that affect a number of organs
and have wide ranging symptoms as well as common genetic
factors with other diseases (see SI Section 2).

Single-layer disease communities

After building the disease multiplex and probing its structural
characteristics, we focus on its higher-level organization. While the
simultaneous representation of diseases in the genotype and
phenotype space is a very informative abstraction by itself, it is
difficult to investigate the interactions between all 779 diseases at
once. We, therefore, attempt to decode it further into biologically
cohesive disease communities. First, we studied the community
partition in each layer separately, i.e., without exploiting the
available multiplex information. We identified the communities by
using Infomap, a well-known algorithm based on the compression
of information flow.>®3° We selected this method among a
number of other community detection methods since it has a
direct generalization for multiplex networks (see Fig. S6 and SI
Section 3 for a discussion on the choice of community detection
technique). As the community detection algorithm does not label
communities in any particular way, i.e., it is blind to the underlying
biology, we check for the disease overlap between all possible
pairs of communities in the genotype and phenotype layers,
separately. The overlap is quantified by calculating the average
Jaccard index for the disease overlap between all pairs of
communities. To check the statistical significance of the index
obtained, we compare it to a randomized background where the
topological aspects of the two networks are conserved. To ensure
that topologies are comparable, we randomize the network in
each layer by keeping the degree distribution constant, using
degree-preserving randomization (SI Section 4). Remarkably, we
find that the communities into which the algorithm puts the
diseases are layer specific, meaning that there is little correspon-
dence between the disease communities in the two layers. The
average Jaccard index for the disease overlap between layers is
(J) =0.00286, which is indistinguishable (z-score =0.882) from
that of the degree-preserving randomized layers where the mean
of the average Jaccard distribution of the randomized ensemble is
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The multiplex disease network. a Tripartite network of symptoms (green nodes on the left), diseases (pink nodes in the middle) and

genes (blue nodes on the right). Symptoms and genes that are shared between diseases are shown in darker text. b Phenotype- and
genotype-based disease-disease networks where diseases are connected in the genotype layer (blue) if they share at least one gene and
connected in the phenotype layer (green) if they share at least one symptom. The thickness of the edge is proportional to the number of
common genes or symptoms. ¢ The two networks are considered as layers of a multiplex system, where nodes are the diseases and colored
links encode their interactions. Disease-disease interactions that are present in both layers are denoted “overlapping links.”

(J) =0.00261 + 0.000289 (Fig. S7). This indicates that the Infomap
algorithm, when applied to genotype and phenotype layers
separately, results in distinct disease groupings specific to the
underlying network, owing to the different kinds of information
encoded in each layer. However, we argue that disease commu-
nities in each layer are meaningful from two different aspects, no
matter how distinct they are. In the genotype layer, diseases in the
same community represent diseases with common molecular
roots, whereas the diseases in the same community in the
phenotype layer have similar clinical manifestations. Rather than
conflicting pieces of information, we regard these as two
complementary sources of information that have to be reconciled
using multiplex networks.

Multiplex disease communities

We further analyzed the human disease multiplex network to shed
light on the functional organization of diseases when genotypic
and phenotypic information are considered simultaneously (see
Methods). Using the Multiplex Infomap algorithm, we identified
multiplex disease communities with the aim of grouping together
diseases based on their similarity at both the molecular and
symptomatic levels. To assess the cohesiveness of the multiplex
disease communities, we look for similarities between disease
pairs within communities. Our hypothesis is that if two diseases in
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a community share clinical characteristics, then they should have
common biological pathways and genes. To test this hypothesis,
we calculated biological process similarity, comorbidity, gene
overlap, and phenotype semantic similarity for each disease pair in
each multiplex community. Given that our multiplex consists of a
genotype and phenotype layer, we selected these four criteria
such that both molecular/genotypic and clinical/phenotypic
factors are accounted for. Our goal is to show that multiplex
communities are able to capture known disease-disease relation-
ships successfully, as well as offer new insights into unknown
disease relationships. The direct quantitative comparison of the
contents of communities is a well-known challenge,*® which is
compounded in the case of single and multilayer networks. Our
approach, by comparison, provides us with a platform where the
general biological cohesiveness of communities determined
within single layers can be compared quantitatively and
consistently to the communities determined in the multiplex
network through these four measures.

Our corpus of 779 OMIM diseases, consisting of complex as well
as monogenic disorders, is divided into 128 multiplex commu-
nities, with sizes ranging between 2 and 91 diseases (see
Supplementary Table 1 for the size of each community). The
number of unique diseases classified into groups saturates quickly
as we proceed cumulatively from the largest group to the smallest
group (see Sl Section 5, Fig. S8). Here, for statistical evaluation, we
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concentrate on those communities consisting of at least 10
diseases.

It is worth noting two unique properties of our multiplex
community detection method: namely, a disease can be assigned
(i) to the same community twice, i.e., it belongs to the same
community across the two layers; and (ii) to two different
communities. In the first case, the community structure can be
distinguished between the two layers such that one can state that
a disease belongs to the same disease community in both the
genotype and the phenotype layers. The second case is especially
important for our purposes because it defies the current clinical
observation-based disease classification and allows for a more
organic classification with more flexible boundaries that respect
the molecular underpinnings of diseases. In our dataset, 215
diseases act as bridges between genetic and phenotypic
communities resulting from the overlapping of multiplex com-
munities (see S| Section 6, Figs. S9 and S10). Overall, these
communities represent multiplex structures across layers that
bring together pathobiological elements that are not identifiable
from the analysis of each layer separately (Fig. 2). For example, the
multiplex community shown in Fig. 2 has no common links
between the two layers; however, the two layers are brought
together by two diseases, age-related macular degeneration and
acute lymphocytic leukemia, owing to the fact that acute leukemia
is associated with ocular comorbidity.*' Furthermore, this
connection brings together the two disconnected parts of the
genotype layer and offers an insight into the molecular ties
between these disconnected diseases, such as that in which

Sensenbrenner
syndrome
Age related

macular
\ degeneration

Focal segmental ¢
glomerulosclerosis \

Gallbladder
disease

AN

/

' Systemic lupus
erythematosus

Acute
lymphocytic
leukemia

Z

Orofacial cleft

Complement 4
component 2
deficiency

Complement
factor |
deficiency

Complement
component 3

Hemolytic np
i defidiency

uremic
syndrome,

Retinal
drusen

Cutis laxa Nijmegen
breakage
syndrome

Age related
macular
degeneration

Acute
lymphocytic

Supravalvular aortic leukemia
is

stenos

Chronic myeloid
leukemia

Fig.2 Multiplex communities. An emblematic example of multiplex
community bridging genotypic and phenotypic information to
discover new disease-disease interactions that, otherwise, would not
be identified from standard analysis. In this case (Multiplex
Community 15) there are no edges in common across the two
layers (i.e., there is no phenotype interaction with a genetic
explanation) and only two diseases are shared by the communities
in the two layers, i.e. Age-related macular degeneration and acute
lymphocytic leukemia, due to acute leukemia being associated with
ocular comorbidity
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complement component 3 (C3) has been suggested as a
biomarker for Nijmegen Breakage Syndrome (NBS).*

As a general survey of all the communities, we first map the
pairwise similarities of the diseases in all communities in a
heatmap where we order the communities in order of decreasing
size (see Sl Section 7, Figs. S11-514). For each community, we
assess the significance of the intra-community similarity according
to the four metrics previously introduced by comparing the
distributions of the community values against the background of
all disease pairs in all communities (see Fig. S15 for details). For the
29 largest communities with size greater than or equal to 10, we
find that the majority of the communities have significantly high
similarity. In particular, the number of communities that have
significantly high similarity is 26/29 for comorbidity measured in
terms of relative risk (RR), 23/29 for gene overlap measured by
Jaccard index, 20/29 for GO: Biological Process similarity, and 27/
29 for semantic similarity measured by MimMiner. Furthermore,
14/29 clusters have significantly high similarity with respect to all
of the four similarity measures, and 29/29 clusters have
significantly high similarity by at least two of the four similarity
measures (Fig. 3). Taken together, this analysis shows that owing
to the fusion of information on both layers of the disease
multiplex, our multiplex disease communities are biologically
cohesive at both genetic and phenotypic levels.

Using an external validation dataset of disease-disease interac-
tions,*”> we measured our disease communities’ potential to host
novel disease-disease interactions (S| Section 8). In terms of the
number of potentially novel edges evidenced by Disease-Connect,
multiplex disease communities outperformed genotype and
phenotype communities (Fig. S16). This result demonstrates the
ability of multiplex communities to uncover novel or under-
appreciated molecular disease associations, owing to the ability of
multiplex communities to bridge different communities that are
separately represented in single-layers.

As a further validation of the multiplex disease communities, we
verify that they are distinct from randomized communities in that
they have significantly higher similarity than random according to
the four similarity measures (SI Section 9). More importantly, to
test the non-additive cooperative effect of multiplexity and to give
a meaningful background against which the cohesiveness of
multiplex disease communities can be compared, we carried out
the same molecular and phenotypic similarity assessment on
genotype- and phenotype-layer-specific disease communities (SI
Section 10). We found that, simply in terms of performing
dichotomously as “better or worse than,” (i) multiplex commu-
nities perform better than the genotype-layer communities in
terms of phenotypic similarity measures, and (i) multiplex
communities perform better than the phenotype-layer commu-
nities in terms of the molecular similarity measures while
performing comparably with or better than the phenotype layer
communities in terms of the phenotype similarity measures (Fig.
S17). We note that, given the lack of overlap of single-layer
communities, it is not surprising for phenotype-based layers to do
worse in terms of genetic similarity measures, and vice versa.
Nevertheless, with multiplex communities scoring slightly better
than single-layer communities overall, this finding may suggest
that the multiplex disease network is, indeed, “greater than the
sum of its parts,” compensating for the lacking features of each
single layer and reflecting an all-around cohesive picture rather
than a more limited view of one of the two aspects.

Confirming established disease associations and finding new ones

We next proceeded to the disease-level and investigate disease
relationships in multiplex communities for new biological insight.
Our aim is two-fold: first, verify known disease relationships,
showing that the communities are reliable; and second, uncover
novel disease-disease relationships. To this end, we first select
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measure

disease pairs that are expected from known literature associations.
We calculated the co-occurrence of diseases in the entire PubMed
database using the PubAtlas query tool (see Methods) and built a
“publication co-occurrence network” of diseases in the multiplex
community. This construct helps us to identify the disease pairs
with high co-occurrence, which we would expect to see in the
same disease community based on prior research, as opposed to
possibly novel disease pairs with few literature co-occurences.
For example, well-established connections are found in Multi-
plex Community 23 consisting mainly of rare, inherited skeletal
abnormalities (Fig. S18). Such connections are (Fig. S18e) the
Hunter-Thompson and Grebe types of acromesomelic dysplasia,
both of which are caused by a mutation in the GDF5 gene.

Published in partnership with the Systems Biology Institute

Similarly, tarsal-carpal coalition syndrome and proximal sympha-
langism, which are both caused by a heterozygous mutation in
the NOG gene, have high co-occurrence in the literature. The close
relationship of these expected pairs of diseases are further
evidenced by their high comorbidity, high biological process
similarity, and high phenotype semantic similarity. Multiple
synostoses syndrome also has high publication co-occurrence
with tarsal-carpal coalition syndrome and proximal symphalan-
gism, with which it shares one of its three related genes. It also has
high biological process similarity and moderate phenotype
semantic similarity with those two diseases. In addition to these
already established relationships, our multiplex disease commu-
nities also bring together many diseases with subtler connections.
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For example, fibular hypoplasia and complex brachydactyly are
also closely associated with acromesomelic dysplasia types, and
arise from a mutation in the same gene, GDF5, even though these
diseases do not appear together in the literature and have low
comorbidity. Furthermore, they have high biological process
similarity and moderate semantic similarity with acromesomelic
dysplasia types. Likewise, even though synpolydactyly and
acrocapitofemoral dysplasia do not have any shared genes, they
are grouped together owing to their high comorbidity and similar
Gene Ontology (GO) biological process terms. Given that
acrocapitofemoral dysplasia is a recently delineated skeletal
dysplasia characterized by brachydactyly, synpolydactyly, which
is another digit dysplasia, might have common underlying
molecular mechanisms with this rare disease. These new
connections show that our multiplex disease communities are
able to capture the molecular basis of connections between
diseases even if they have not been associated with each other
simply by their clinical manifestations.

Among the many interesting multiplex disease communities
(see Supplementary Table 1 for a full list), Multiplex Community 8
groups together rare skeletal abnormalities with rare congenital
heart defects, which usually have related clinical manifestations
as well as shared genetic causes (Fig. 4). DiGeorge syndrome and
velocardiofacial syndrome have traditionally been studied
together in the literature, and both are caused by a hemizygous
deletion of chromosome 22q11.2 and are also believed to be
caused by point mutations on the TBX1 gene. Tetralogy of Fallot,
by contrast, is clinically associated with four types of atrial and
ventricular defects: atrial septal defect, ventricular septal defect,
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double outlet right ventricle, and atrioventricular canal defect,
classified with the same ICD9 code (745). These diseases also
share many genetic elements resulting in their being clustered
together in terms of gene overlap (Fig. 4c). Overall, we see that
DiGeorge syndrome/velocardiofacial syndrome and the cardiac
defects related to Tetralogy of Fallot all have very high GO
Biological Process similarity despite not sharing many genetic
factors (Fig. 4a). When we look closer at two of the diseases in this
group, namely DiGeorge syndrome and ventricular septal defect,
at the molecular level, we see that biological processes related to
cardiac development such as outflow tract morphogenesis (GO:
0003151), heart morphogenesis (GO: 0003007), heart develop-
ment(GO: 0007507), as well as processes related to endocrine
development, such as thyroid gland development (GO: 0030878),
are shared between the genes of these two diseases, under-
pinning the biological similarity of the shared symptoms of these
diseases. From a developmental biology perspective, these
disorders, in part, reflect dysmorphogenesis at the branchial cleft
level, which suggests that developmental defects may be driven
by otherwise “Mendelian” mutations in a unique (temporal)
developmental biology context. To assess the significance of the
biological similarity between these disease genes and the related
biological process, we calculate the biological process similarity
(see Methods) of randomly selected genes from the interactome
with each of the above processes. As expected, both diseases
have significantly higher biological process similarity with outflow
tract morphogenesis (Sgogp = 0.687, z-score =2.57 and Sgogpr =
0.747, z-score = 2.87 for ventricular septal defect and DiGeorge

syndrome, respectively), heart morphogenesis (Sgogp = 0.686,
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z-score =245 and Sgopp = 0.746, z-score =2.72 for ventricular
septal defect and DiGeorge syndrome, respectively), heart
development (Sgogp = 0.676, z-score = 2.17 and Sgopp = 0.727, z-
score = 2.41 for ventricular septal defect and DiGeorge syndrome,
respectively) and thyroid gland development (Sgogp = 0.656, z-
score=2.23 and Sgogp=0.717, z-score =2.65 for ventricular
septal defect and DiGeorge syndrome, respectively), compared
to random expectation (Fig. 5). The other important disease
group in this community consists of sclerosteosis, craniometa-
physeal dysplasia, oculodentodigital dysplasia, syndactyly, chon-
drocalcinosis 3MC syndrome, and Hajdu-Cheney syndrome,
which are all anomalies of the bones. Hajdu-Cheney syndrome,
in particular, has many cardiovascular manifestations, including
atrial and ventricular septal defects, and is, hence, effectively the
common disease that bridges the cardiovascular and bone
related diseases in this disease community.

As an additional check to verify the reliability of the boundaries
of the multiplex disease communities, we compare the intra-
community publication co-occurrences with inter-community
publication occurrences to test whether the high publication co-
occurrence of intra-layer disease pairs is accompanied by a lack of
publication co-occurrence for inter-layer disease pairs. We found
that the intra-community publication co-occurrence was higher
than the inter-community case for nearly all communities (SI
Section 11, Figs. S19-523).

Smaller communities with five or fewer diseases contain a
smaller fraction of the overall diseases, with 72 communities
comprising 146 diseases. A quick look at some of the many smaller
communities reveals that these communities are mostly comple-
tely homogeneous, consisting of synonymous diseases, Mendelian
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diseases and their direct complications, subtypes of the same
disease, or diseases with close genetic roots (see Supplementary
Table 1). They nevertheless offer very interesting disease
associations that are novel. For example, we find that idiopathic
pulmonary fibrosis (IPF) is grouped together with common
variable immunodeficiency and immunoglobulin alpha (IgA)
deficiency. Indeed, IgA in serum has recently been proposed as
a prognostic biomarker for IPF.** While space limitations preclude
our discussing every disease community in detail, given the high
cohesiveness of multiplex disease communities, readers can draw
similar possibly interesting disease-disease interactions from any
of the communities using Supplementary Table 1 as reference.

Finally, for a complete picture of disease-genotype relations, we
have carried out the same analysis on the disease multiplex
constructed using GWAS data for the genotype-layer instead of
using OMIM (see SI Section 12). Our results show that, once again,
despite the distinct sizes and topologies of the GWAS and OMIM
disease-gene networks,*> we are able to capture cohesive disease
groups. As an example, disease community 1 (Fig. S24) brings
together various types of amyotrophic lateral sclerosis (ALS) with a
group of cancer subtypes. The association between ALS and
cancer has recently been suggested, where significantly elevated
risk of ALS death among survivors of melanoma has been
shown.*

These proof-of-concept examples show that the multiplex
network of human diseases, coupled with community detection
methods designed to highlight the interplay between different
layers of the network, captures the biological similarity implicitly in
different data sources. It, therefore, brings a new dimension to
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disease relationships that cannot be achieved if we study disease
networks from the genotype and phenotype aspects separately.

DISCUSSION

To obtain an in-depth understanding of the molecular basis of
human disease, we need to recognize the complex relationship
between genotype and phenotype in response to environmental
and genetic influences. At the current time, one of the most
important factors hampering the effective characterization of
diseases is the lack of apparent connection between how they
manifest and what their molecular underpinnings are. With this
issue as the starting point of this study, we made an attempt to
analyze systematically the structural and functional aspects of the
multiplex network of human diseases. We showed that diseases
with common genes tend to share symptoms, and we uncovered
the complementary nature of genotype and phenotype by
examining the interplay between the two network layers. We
reported our finding that, through the representation of disease
relationships in a multiplex network, a wide range of monogenic
and complex diseases can be grouped into communities that are
cohesive at both molecular and symptomatic levels. We argued
that the disease communities found in this way offer a flexible
description of pathobiological processes that melds together
genotypic and phenotypic aspects, while community detection
applied on separate layers results in layer-specific and distinct, yet
complementary, disease groupings. Disease networks have often
been studied in the context of either genetic relationships
between diseases, i.e,, shared genes,® or phenotypic relationships
between diseases, i.e., comorbidity® and shared symptoms.*” Yet,
it is crucial to recognize that genotype and phenotype maps offer
distinct and complementary views of biological systems.*® We,
therefore, believe that showing this complementary nature of
genotype and phenotype by simultaneously considering both
types of connections on a multiplex disease network that has
specifically been constructed using data collected and filtered in a
consistent manner for both layers provides important insights that
were previously elusive. In our view, this picture of complemen-
tary results obtained on single layers is important to recognize as a
current limitation that can be overcome with multiplex network
methods. In addition, we find it important to note the inherent
effect of the current incompleteness of the genotype- and
phenotype-layers, which stems from many yet-unknown disease-
gene or disease-symptom relationships. While we demonstrated
the advantage of the multiplex disease network in its present form
over single-layer disease networks combined and discovered
interesting disease associations, we are confident that the
accuracy of our method will increase in time as more of the
missing parts of each network are uncovered.

In contrast with the bottom-up “disease module” approach,
which starts with the known genetic determinants of diseases to
build disease modules and infer disease-disease interactions
based on the localization of these modules in the underlying
protein-protein interaction (PPI) network,>® we used a top-down
approach, where the starting point was diseases themselves rather
than the PPI, and recovered the underlying molecular mechanisms
that associate with those diseases. One advantage of the top-
down approach in characterizing diseases is that the construction
of the disease-disease network relies on the unambiguous and
relatively relaxed criterion of one shared gene or one shared
symptom, making in easier to merge and parse large disease-
related knowledge bases such as OMIM and Disease Ontology.
Overall, it is worthwhile to compare and contrast the top-down
and bottom-up approaches in future studies as they are likely to
offer complementary benefits and possibly a significant overlap of
results. For instance, one can envision a scenario where network-
based similarity methods such as topological overlap can be used
to calculate intra-community similarities to refine the disease
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groupings even further. Various network overlap metrics such as
the separation metric® can be used to determine disease similarity
at the interactome level. We also recognize the possible
limitations of our current “unweighted” network approach, where
a link is established between diseases if the minimal criterion of
one shared symptom or gene is met regardless of how many
symptoms or genes are shared between them, such as the
possible over-inclusion of edges due to common symptoms.
However, our aim at this initial stage is to work on the unweighted
network to serve as a minimal model of disease-disease
interactions in the genotype- and phenotype-layers. While within
the scope of this work we are able to validate the resulting
multiplex disease groupings through intra-community similarity
assessment and the recovery of known disease-disease relation-
ships, we find it important to note that the results can be
improved by treating each layer as weighted in future studies.

Our selection of diseases is geared toward maximizing the size
of the dataset and is, therefore, biased towards neither complex
nor Mendelian diseases. It, rather, includes diseases of a wide
range of prevalences and penetrances, from rare congenital
diseases to common cancer types and metabolic disorders. Our
approach, however, seamlessly integrates the two types of
diseases, with OMIM and GWAS evidence alike. For instance,
dedicated and up-to-date GWAS datasets from the GWAS Catalog
(https://www.ebi.ac.uk/gwas/) can be used in a similar fashion to
build the genotype-based layer of alternative multiplex disease
networks.

At the core of our disease classification is a technique that takes
into account the information flow within and across different
network layers. In the context of pathobiology, we use the term
“information flow” to refer specifically to the process by which
distant diseases can “communicate” by propagating genetic and
symptomatic signals through intermediary diseases in the global
disease network whereby, for example, disease A, which shares
certain genes (or symptoms) with disease B, can be related
indirectly to disease C, which also shares certain genes (or
symptoms) with disease B. The diseases sending and receiving
more information “flow” from each other in the genotype-layer
would likely have related molecular roots, whereas in the
phenotype-layer, this would mean groups of diseases that share
clinical manifestations. We note that the use of quotes in
“communication” is in order to emphasize that this is a process
that does not involve actual molecular signaling but rather a
conceptual one that implies associations between diseases.
Capable of traversing both layers of disease networks, this
method can put the same disease into two different communities
based on both genotypic and phenotypic data. This “redundancy”
of disease communities, with “bridge diseases” connecting them,
is a key component of the next generation of organic, flexible
disease classifications in which we can develop a network of
disease communities rather than the current tree-like, hierarchical
classification where a disease can only belong to one community.
We believe that the common biology of these bridge diseases
deserves further detailed investigation, and note it as an
important future direction.

Overall, this study provides a rich compendium of disease
associations and groupings that can be examined from many
aspects ranging from relationships between complex and
Mendelian disorders, to possible commonalities between com-
munities of diseases. To our knowledge, this is the first time
relationships between diseases have been assessed from the
perspective of multiplex networks using novel network techniques
designed specifically to uncover systemic properties at multiple
levels. Furthermore, it offers evidence of potential molecular
connections between diseases with similar clinical manifestations,
given that there are many such diseases whose molecular
connections to each other in the interactome are yet to be
determined. While one can take each pair of phenotypically similar

Published in partnership with the Systems Biology Institute


https://www.ebi.ac.uk/gwas/

A. Halu et al.

Table 1

40, 73, and 82)

Example multiplex disease communities where monogenic disorders were grouped together with the complex diseases for which they
increase risk (Communities 12, 16, 21, and 22), and Mendelian diseases with severe phenotypes were found in smaller communities (Communities 31,

Multiplex disease community # Diseases

cancer

schizophrenia, thrombophilia

12 asphyxiating thoracic dystrophy, autistic disorder, Bardet-Biedl syndrome, erythropoietic protoporphyria,
generalized epilepsy with febrile seizures plus, glycogen storage disease IV, hypermethioninemia, Joubert
syndrome, Meckel syndrome, nephronophthisis, nephrotic syndrome, orofaciodigital syndrome, renal-hepatic-
pancreatic dysplasia, Senior-Loken syndrome, thrombophilia, triple-A syndrome

16 basal cell carcinoma, breast cancer, Denys-Drash syndrome, desmoplastic medulloblastoma, Fanconi’s anemia,
Frasier syndrome, hereditary breast ovarian cancer, holoprosencephaly, malignant mesothelioma,
medulloblastoma, nephroblastoma, nephrotic syndrome, nevoid basal cell carcinoma syndrome, pancreatic

21 alcohol dependence, cerebrovascular disease, DiGeorge syndrome, essential hypertension, factor V deficiency,
factor XlIl deficiency, Hermansky-Pudlak syndrome, homocystinuria, panic disorder, prothrombin deficiency,

22 cataract, diabetic ketoacidosis, Donohue Syndrome, hyperinsulinemic hypoglycemia, maturity-onset diabetes of
the young, nonpapillary renal cell carcinoma, pancreatic agenesis, renal cell carcinoma, type 1 diabetes mellitus,
type 2 diabetes mellitus, Wolfram syndrome

31 achondrogenesis type B, atelosteogenesis, Beare-Stevenson cutis gyrata syndrome, Boomerang dysplasia,
diastrophic dysplasia, Larsen syndrome, multiple epiphyseal dysplasia, osteoarthritis, pseudoachondroplasia

40 cardiofaciocutaneous syndrome, Coffin-Lowry syndrome, cutaneous porphyria, fragile X syndrome, non-syndromic
X-linked intellectual disability, Rett syndrome, Smith-Lemli-Opitz syndrome

73 bronchiectasis, Camurati-Engelmann disease, cystic fibrosis, Liddle syndrome

82 glycine encephalopathy, Pfeiffer syndrome, Rubinstein-Taybi syndrome

The diseases mentioned in the Discussion are highlighted in bold

complex diseases and look into their molecular constituents to
identify any molecular commonalities with a dedicated study, our
approach offers a first step to do so globally.

A notable finding supported by clinical and genetic observa-
tions is that rare, Mendelian disorders predispose individuals to
more common, complex diseases.>” In fact, in many of the disease
communities, we observe monogenic disorders grouped together
with the complex diseases for which they increase risk (See
Table 1). For example, patients with Denys-Drash Syndrome,
which is a rare disorder characterized by abnormal kidney function
believed to be due to a mutation in the WT1 gene, have an
estimated 90 percent chance of developing a rare form of kidney
cancer known as Wilms tumor. Affected individuals may develop
multiple tumors in one or both kidneys, testes, or ovaries. We note
that this disease, along with Frasier syndrome, is grouped together
with cancer types in disease community 16. Similarly, it has been
documented that DiGeorge syndrome shows an increased risk of
schizophrenia,*® which are both grouped in disease community
21. Disorders related to the homozygous or compound hetero-
zygous deletions and loss-of-function mutations in NPHP1, such as
Joubert Syndrome or Senior-Loken syndrome, have been linked to
autism spectrum disorder,”° all of which can be found in disease
community 12. Individuals affected by Wolfram syndrome have
diabetes mellitus and degeneration of the optic nerve, and
we note these diseases in community 22. Many more examples in
line with the complex-Mendelian disorder associations can be
appreciated by inspecting our disease communities. Our disease
communities are, therefore, inclusive units wherein complex and
Mendelian disorders are linked with both genetic and clinical
factors.

Another interesting observation is that some Mendelian
diseases with severe phenotypes, which were believed to be
completely penetrant but were recently identified to be present
in individuals with no apparent clinical manifestations,”’ were
found in our dataset within the smaller disease communities with
size <10 (Cystic fibrosis: disease community 73(4), Smith-Lemli-
Opitz syndrome: disease community 40 (7), Pfeiffer syndrome:
disease community 82 (3), atelosteogenesis: disease community
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31(9)) (See Table 1). This observation may point to the fact that
these severe childhood diseases, which may include individuals
resilient to them, tend to avoid being classified alongside other
diseases, but, rather, have their own small cohesion groups.
Although the findings of that particular study currently remain to
be fully verified, it nevertheless represents an interesting research
frontier wherein genetic modifiers that affect phenotypic
variability are found through phenotype-genotype correlations
across multiplex networks ultimately to identify “fully penetrant”
Mendelian diseases that can be harbored by resilient individuals
more clearly.

The results of our work can be refined and built upon in many
ways. With the increased momentum towards precision
medicine, efficient subtyping of diseases becomes a crucial
need. To fill this need, multiplex disease networks that include a
number of disease subtypes can be analyzed and re-grouped
using network techniques. Similarly, a better classification of
spectrum disorders, which are a collection of multiple diseases
with some underlying commonalities, represents an important
frontier of disease characterization. From that perspective,
complex diseases that are regarded as spectrum disorders can
benefit from the new associations and disease groupings that
our approach provides. Another important direction would be
the application of multiplex network-based approaches geared
toward personalized diagnosis and treatment, with a focus on
drug discovery and target identification.>®>* Finally, since the
field of multiplex networks and the subsequent methods to
detect communities within them is a very rapidly evolving one,
more sophisticated multiplex community detection methods
offer the possibility of further improving the characterization of
diseases and identification of disease groups in the future.
Indeed, the use of a host of newly emerging community
detection methods tailored for multiplex networks>*—>® presents
an exciting future direction where they can be applied on global
multiplex disease networks similar to ours to find further novel
disease-disease associations and add many more layers of
molecular information to disease classification.
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METHODS

The genotype data set

The disease-gene bipartite network is built from the well known Online
Mendelian Inheritance in Man (OMIM) data set. OMIM (World Wide Web
URL: http://omim.org/)*’ 8 is a knowledge base whose content is derived
exclusively from the published biomedical literature describing human
phenotypes and genes. The version used in this study contains information
about 3369 genes and 4239 diseases, for a total of 5308 edges. The
bipartite network of gene-disease interactions was projected onto the
disease component to build the genotype-based disease-disease network
layer.

The phenotype data set

The disease-symptom bipartite network is built from the well known
Human Phenotype Ontology data set. Human Phenotype Ontology>®
provides a structured, comprehensive and well-defined set of 10,088
classes (terms) describing human phenotypic abnormalities and
13,326 subclass relations between the HPO classes. We have found 6662
diseases with relationships to 11,052 symptoms, for a total of 100,281
edges. The bipartite network of symptom-disease interactions was
projected onto the disease component to build the phenotype-based
disease-disease network layer.

Linking genotype and phenotype data sets

Among the 3919 diseases common to both databases, we focused our
attention on the subset of diseases matching the Disease Ontology
database. Disease Ontology® represents a comprehensive knowledge
base of developmental and acquired human diseases. It semantically
integrates disease and medical vocabularies through extensive cross
mapping and integration of several disease-specific terms and different
identifiers. We found 2255 matching unique OMIM identifiers for 910
diseases. Finally, we discarded the isolated diseases without any links in
either layer, which resulted in 779 diseases in the multiplex network.
Despite the seemingly high number of diseases in the OMIM and HPO
databases, a large number of these disease names are synonyms of each
other, resulting in @ much smaller number of diseases when semantically
integrated through the Disease Ontology database. While integrating
databases inevitably results in the exclusion of some diseases, we ensured
that our multiplex disease network, which has close to 800 diseases,
represents the largest available dataset satisfying our strict criteria. The
resulting multiplex diseasome is publicly available at the following URL:
https://github.com/manlius/MultiplexDiseasome, and data and an inter-
active web applet for the exploration of multiplex disease communities is
available at https://github.com/r-duh/MultiplexDiseasomeCommunities.

Significance of overlapping interactions across layers

We find that 139 edges overlap between the two layers (Fig. S1),
significantly higher than what would be expected at random (31.80 £ 5.15
edges). The randomization scheme is such that we keep the degree
distribution of each network fixed while randomizing the edges per layer
for a total number of 5000 times. The distribution resulting from this null
model is normal (Shapiro-Wilk test P=0.33) and the z-score for the
observed overlap is 20.8 (Fig. S2).

Gene similarity of disease pairs

An important indicator of whether or not diseases connected by genotypic
or phenotypic relations have a substantially similar genetic background is
the gene overlap of disease pairs. To quantify this gene overlap, we
calculated the Jaccard index J of the gene sets of diseases connected by an
edge (SI Section 13). We then calculated the average Jaccard index (J)
overall edges in the genotype layer, the phenotype layer, and the edge
overlap network, i.e., the network obtained from the multiplex disease
network by considering only overlapping disease-disease interactions. We
compared the average Jaccard indices of each network with the random
expectation, calculated by generating ensembles of networks with the
same degree distribution in each layer separately. We observed that the
gene similarity of disease pairs in the phenotype network is comparable to
random expectation due to the non-specificity of many symptoms,
whereas for the genotype layer and the edge overlap network, the gene
similarity is significantly different from random expectation (Fig. S$25).
Moreover, the gene similarity of the overlap network is higher than both
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the genotype and phenotype layer. This suggests that the additional layer
of information provided by the phenotype layer, despite having little gene
overlap overall itself, helps filter out the disease pairs in the genotype layer
that have higher gene overlap, reinforcing the genetic effect between
disease pairs. In other words, arising as a natural feature of the data,
disease pairs whose relationship is supported by both genotype and
phenotype evidence have a higher gene overlap than the genotype layer,
which hints at the complementary and cooperative nature of these two
factors worthy of further investigation.

Community detection on single and multilayer networks

Infomap is an algorithm to optimize the map equation.>**° This
information-theoretic equation makes extensive use of the duality
between the problem of compressing a data set and the problem of
revealing significant structures within it. To achieve its goal, the algorithm
makes use of random walkers to explore the network, encoding their flow
with sequences of bits. In our case, the data set is a network and the
(unknown) significant structures are the communities. Each possible
community partition of the network result in a specific encoded flow: the
partition whose description length is minimum is the optimal one.
Therefore, the Infomap algorithm exploits the dynamics on the network to
reveal the underlying community structure.

The generalization of this algorithm to the case of multilayer networks,
called Multiplex Infomap,*? is based on the same principle. In this case, the
random walkers explore all of the layers of the multilayer structure within
which there is a parameter, the relax rate, regulating the probability of
visiting more nodes within the same layer than across layers. In other
words, this parameter is used to modulate the “flexibility” of movement
across layers in the absence of information on the actual interlayer link
weights. Numerical experiments>2 show that values of the relax rate close
to approximately 0.5 are generally good enough to balance exploration
within and across layers. We accordingly use a relax rate of 0.45
throughout the analysis (see SI Section 3 and Fig. S6 for a sensitivity
analysis for determining the relax rate).

Similarity measures: MimMiner

In order to determine the phenotypic similarity of the diseases in a given
cluster, we used the MimMiner similarity matrix.> MimMiner assesses the
semantic similarity of phenotypic terms related to diseases in the OMIM
database. For each OMIM disease, it builds a feature vector consisting of
Medical Subject Headings (MeSH) concepts that collect all synonyms and
uniquely identify terms, which makes it a more versatile method than
keyword-based searches. The MimMiner similarity score is calculated using
these feature vectors, resulting in normalized values between 0 and 1. In
our analyses, we used the MimMiner similarity matrix to determine the
intra-community similarity of all of the 30 communities of diseases. Of the
779 OMIM diseases we consider in our dataset, 675 (87%) were mapped to
the MimMiner matrix. We follow the cutoff of 0.3 proposed in the original
paper® to define associations that are biologically informative, whereas we
deem scores above 0.6 to be significantly functionally similar.

Similarity measures: gene ontology based on gene set similarity

For an insight into the similarity of the molecular mechanisms
underlying the diseases in our disease communities, we make use of
the GO-based gene set similarity measure proposed in." We prefer the
gene set based similarity over pairwise gene similarity measures since
pairwise gene similarity does not scale as well to large gene sets and
since we aim to compare pairs of diseases in each community, many of
which have multiple genetic elements. This measure essentially lets us
rank each GO term with respect to a gene set based on the number of
genes in the set that are annotated by the ancestors of that GO term.
We limit our attention to Biological Process. Furthermore, for concrete-
ness, we only consider evidence codes EXP, IPl, IDA, IMP, IGI, IEP, ISS,
ISA, ISM, and ISO, which are either experimental or computational
analysis evidence codes.

Similarity measures: comorbidity (relative risk)

Another similarity measure we use in assessing the homogeneity of our
disease communities is comorbidity, i.e., the co-occurrence of diseases in
the same patient. For this, we use a healthcare dataset comprising the
patient history of 13 million elderly Americans over the age of 65 covered
by the Medicare program.® We manually curate our disease set consisting
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of 779 diseases to reflect the 3-digit ICD-9 disease classification code. We
quantify the comorbidity of disease pairs using relative risk (RR) score,
which is given by the ratio of the observed co-occurrence of a disease to
the expected probability of co-occurrence if the diseases were indepen-
dent from each other,

Cag/N
P4Pg/N?

where Cyp is the observed co-occurrence of disease A and B, P, and Pg are
the prevalence of disease A and B, and N is the total number of patients in
the dataset's population. A relative risk greater than 1 indicates a
comorbidity that is higher than expected. Since RR values can vary several
orders of magnitude depending on the prevalence of a disease, we take
the logarithm of RR values when visually representing them.

RRag = (M

Similarity measures: gene overlap

As an additional proxy of the molecular intra-similarity of disease
communities, we calculate the direct gene overlap between pairs of
diseases. This is intended to provide a direct and straightforward measure
of shared genetic constituents. We then use Jaccard index J to quantify the
gene overlap with

_94N3s
9gaU gs
where g, and gp are the gene sets of disease A and disease B.

@)

Publication co-occurrence

To validate the biological meaningfulness of the content of our disease
communities, we seek to gain an overview of the literature associations of
diseases from PubMed records. PubAtlas (World Wide Web URL: http://
www.pubatlas.org/) is a web service that acts as a front end to the
PubMed/MEDLINE database. Using PubAtlas, we generate “literature
heatmap” for each disease community by querying the names of diseases
within each community. The color in these heatmaps is given by the
logarithm of the Jaccard association value. We also represent this heatmap
with a network of literature associations where the color (same as the
heatmap) and the width of the link reflect the strength of association.
Using PubAtlas hence lets us identify the disease pairs in a disease
community that have known former associations through literature,
providing us with a basis for validating the community as well as distilling
its basic characteristics.
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