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Abstract 18 

Near-infrared spectroscopy (NIRS) can be a faster and more economical alternative to traditional 19 

methods for screening varietal mixtures of nursery plants during the propagation process to ensure 20 

varietal purity and to avoid errors in the dispatch batches. The global objective of this work was to 21 

develop and optimize a NIR spectral collection method for construction of robust multivariate 22 

discrimination models. Three different varieties of Prunus dulcis (Avijor, Guara, and Pentacebas) 23 

of agricultural interest were used for this study. Sources of variation were investigated, including 24 

the position of the leaves on the trees, differences among trees of the same variety, and differences 25 

at the varietal level. Three types of processed samples were investigated. Fresh leaves, dried leaves, 26 

and dried leaves in powder form were included in each analysis. A study of spectral pre-treatment 27 

methods was also performed, and multivariate methods were applied to analyze the influence of 28 

different factors on classification. These included principal component analysis (PCA), partial least 29 

squares discriminant analysis (PLS-DA), and ANOVA simultaneous component analysis (ASCA). 30 

The results indicated that variety was the most important factor for classification. The spectral pre-31 

treatment that provided the best results was a combination of standard normal variate (SNV), 32 

Savitzky-Golay first derivative, and mean-centering methods. With regard to the type of processed 33 

sample, the highest percentages of correct classifications were obtained with fresh and dried 34 

powdered leaves at both the training set and test set validation levels. This study represents the first 35 

step towards the consolidation of NIRS as a method to identify Prunus dulcis varieties.  36 

Keywords: Optimization; Almond trees; Leaf analysis; Varietal purity; NIR; PLS-DA. 37 
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1. INTRODUCTION 38 

Rapid discrimination between vegetal varieties is a key requirement for all nursery plant production. 39 

The huge diversity of vegetal materials necessitates the incorporation of new control systems along 40 

the nursery plant production chain to avoid mixing varieties and to ensure varietal purity in the 41 

dispatch batches. 42 

Nowadays, the most extensively used methods for varietal identification are based on DNA 43 

analysis. These techniques include DNA amplification by the polymerase chain reaction (PCR) [1] 44 

followed by analysis of genetic variations, such as single nucleotide polymorphisms (SNPs) [2]. 45 

However, these biomolecular techniques are very expensive for routine analysis of a large number 46 

of samples. In this context, the use of spectroscopic analysis combined with chemometrics has 47 

recently increased. This combination comprises a rapid, accurate, and nondestructive methodology 48 

for the classification and authentication of agricultural products [3]. 49 

Near-infrared (NIR) spectroscopy has proved to be a powerful analytical tool and has been widely 50 

used in various sectors, including the petrochemical [4] and pharmaceutical industries [5]. It has 51 

also become a well-established technique for the quantitative and qualitative analysis of agricultural 52 

products [6]. Several recent studies have employed spectroscopic techniques for species 53 

discrimination [7,8], or differentiation of varietals within a species, such as tomato [9], rice [10] and 54 

lettuce [11]. For these reasons, NIRS can be considered a potential candidate for the differentiation 55 

of Prunus dulcis varieties. 56 

Despite recent studies, there is a lack of knowledge regarding the best methodology for accurate 57 

sampling of leaves. Most of the published works on species discrimination do not consider factors 58 

derived from the nature of the samples, which are potential sources of variance. For example, 59 

mature trees have a heterogeneous canopy composed of leaves in different phenological stages. It is 60 

thus important to take the sampling procedure into account, especially when an analysis is 61 

performed with whole leaves. Improper sampling may generate invalid data, the use of which could 62 

lead to incorrect conclusions [12]. To perform correct sampling, it is important to recognize sources 63 

of variation and to control for factors from which variation originates. Therefore, it is necessary to 64 

first develop a sampling protocol and to select the best material for use.   65 

Another analytically relevant aspect is the study of sample processing methods, which may 66 

considerably alter the vibrational spectrum of a sample compared to that collected with the sample 67 

in its native state. Due to economic and time constraints, it is generally best to avoid any type of 68 

sample processing. Moreover, modifying the native architecture of biological tissues can result in 69 
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the loss of information. Thus, performing analyses in vivo is preferred whenever possible [13]. 70 

Occasionally, however, sample processing is an indispensable step. In any case, the option that best 71 

accomplishes the objective of the study must be selected.  72 

The aim of this work is to determine how sampling of vegetal material affects the collection of NIR 73 

spectra for the construction of a multivariate discriminant model for Prunus dulcis varietal 74 

classification. The specific objectives are to 1) determine whether there are differences among the 75 

analyzed regions of the leaves or between their upper and lower surfaces; 2) to determine whether 76 

differences exist due to the age of the leaves; 3) identify the best sampling procedure for varietal 77 

discrimination of almond trees; and 4) study pre-treatment of spectral data and to identify the pre-78 

treatment that leads to the best classification model. 79 

2. MATERIAL AND METHODS 80 

2.1 Experimental design  81 

2.1.1 Assay one 82 

The first assay was performed to obtain information about the analyzed regions of fresh and dried 83 

leaves. Specifically, the NIR spectra differences resulting from including or excluding the primary 84 

veins of the leaves were examined (Error! Reference source not found.) together with analysis of 85 

the upper (adaxial) and lower (abaxial) leaf surfaces. Twenty samples from two varieties of almond 86 

trees, Guara and Pentacebas, were used for each experiment (Table 1). Results were evaluated by 87 

using PCA and PLS-DA models. This assay focused on aspects that affected only fresh and dried 88 

leaves. The information obtained in this assay was used for the development of the next two assays. 89 

[Insert Fig.1] 
90 

2.1.2 Assay two  91 

The second assay was designed to study the NIR spectra differences between young leaves and 92 

adult leaves and among samples from different trees of the same variety. The assay was performed 93 

on the Guara and Pentacebas varieties and on a third variety, Avijor. Four trees per variety were 94 

sampled, twelve in total. Twenty leaves were collected from each tree. Ten of the leaves were 95 

collected from the upper part of the branch (apex), which corresponded to young leaves, while the 96 

other ten were adult leaves that were collected from the lower part of the branch. Two hundred forty 97 

leaves were sampled in total (Table 1). Results were evaluated by using PCA and ASCA-ANOVA 98 

models. 99 
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2.1.3 Assay three 100 

Three different leaf processing methodologies were studied in the third assay; one for fresh leaves, 101 

one for dried leaves, and the other for dried powdered leaves. The aim was to determine whether the 102 

water content and macrostructures of the leaves had any influence on discrimination results. It is 103 

important to note that every sample was processed with each of the three methods in order to 104 

increase the comparative robustness. We also identified the most suitable pre-treatment method for 105 

NIR spectral analysis. The applicability of NIRS for discriminating between Prunus dulcis varieties 106 

was evaluated by mean partial least squares discriminant analysis (PLS-DA). The available data 107 

were randomly divided into calibration (70%) and validation (30%) sets, but both sets contained the 108 

same proportion of each variety to prevent unbalanced representation of the almond tree classes. To 109 

improve the robustness of comparing results from the three sample processing methods, the same 110 

samples included in the three sample processing datasets were used for both cross validation and 111 

test set validation. All of the samples used for assay two were also used for this assay (Table 1). 112 

[Insert Table 1] 113 

2.2 Description of the sampling field 114 

Vegetal material used in this study came from almond trees located at the mother plant field from 115 

the Center of Initial Materials of Agromillora Iberia, S.L.U. in Sant Sadurní d’Anoia (Catalonia, 116 

Spain). These trees are under a strict control in order to prevent the appearance of diseases and to 117 

ensure the sanitary quality of nursery plants. The use of molecular biology techniques to assess the 118 

traceability of the varieties was not necessary in this case because the almond trees were previously 119 

certificated by the company. 120 

The samples were stored in a plastic bag after collection, assigned identifiers, and stored at 4 °C 121 

until analysis. 122 

2.3 Sample pre-processing  123 

Samples were analyzed either as fresh leaves without processing, as dried leaves, or as dried 124 

powdered leaves. To obtain dried leaves, fresh leaves were heated in an oven at 65 °C for 48 hours. 125 

A weight was placed on the leaves to keep them flat and to facilitate their posterior analysis. Once 126 

dried, the leaves were pulverized to a homogeneous powder with a grinder. Once samples were 127 

dried, they were stored in a desiccator with silica gel to prevent any influence from moisture. Only 128 

one leaf was used per experiment. Each sample was analyzed in the three ways. First, they were 129 
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analyzed in fresh, second in dried and finally in powdered. In all the experiments each sample was 130 

composed of one leaf only. 131 

2.4 Acquisition of NIR spectra 132 

Samples were scanned in reflectance mode using an Antaris II FT-NIR analyzer (Thermo Scientific, 133 

USA) equipped with an integrating sphere module. Samples were measured in the spectral range of 134 

12000–3800 cm-1 (833–2630 nm). For each spectrum, 32 scans were averaged with a resolution of 4 135 

cm-1. Each sample was analyzed in triplicate. Fresh leaves and dried leaves were placed directly 136 

over the sphere and covered to prevent interference from environmental light. The powdered leaf 137 

samples were measured in a standard sample cup that came with the instrument. A background 138 

spectrum was collected every 20 minutes. All spectra were recorded as log(1/R), where R was the 139 

reflectance. Room temperature was maintained at ~25 °C, and the humidity remained constant 140 

throughout the spectral acquisition process. 141 

2.5 Spectral data pre-treatment 142 

This was an important step, because although different pre-treatments have been reported on 143 

extensively [14–16], there is still no clear consensus regarding the best pre-treatment or a guideline 144 

to follow. As can be seen in Error! Reference source not found., the spectra contained very little 145 

noise. The raw spectra had to be corrected for additive and multiplicative effects that were probably 146 

due to light scattering.   147 

[Insert Fig. 2] 148 

A basic pre-treatment was performed in assays one and two, which consisted of the standard normal 149 

variate (SNV) method with mean centering. In the assay three, four different pre-treatments were 150 

applied and compared to identify the combination that provided the best results in the PLS-DA 151 

model. The combinations used were: SNV method with mean centering; SNV method with 152 

Savitzky-Golay (SG) first derivative and mean centering; and finally, SNV method followed by de-153 

trending and mean centering.  Spectral pre-treatments were performed using PLS_Toolbox 154 

(Eigenvector Research Incorporated, Manson, WA) with MATLAB R2017b (MathWorks, Natick, 155 

MA).  156 

SNV is a normalization procedure for spectral light scattering correction. It is used to correct 157 

additive and multiplicative effects in the spectra due to particle size variation. SNV calculates the 158 

standard deviation of all the variables in a given sample spectrum. The entire data set is then 159 

normalized by this value, which yields a unit standard deviation (s = 1) for the sample spectrum 160 
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[17]. De-trending is sometimes used to remove constant, linear, or curved offsets and is often used 161 

in conjunction with SNV. With this method, the mean value or linear trend is subtracted from a 162 

vector or matrix. To achieve this, a polynomial of a given order is fitted to the entire data set, and 163 

the polynomial is simply subtracted. This algorithm fits all points in the baseline and the signal. 164 

[17]. SG first derivative was applied to remove baseline drift and to enhance small spectral 165 

differences. The SG derivative method includes a smoothing step, the Savitzky-Golay algorithm, 166 

which corrects for the increased noise due to application of the derivative. The SG derivatization 167 

algorithm requires selection of the filter width, which is the size of the window, the order of the 168 

polynomial, and the order of the derivative [18]. In this work, we selected a 15-point window and 169 

applied a second order polynomial. Mean centering is one of the most common pre-processing 170 

methods, in which the mean value of each column is calculated and subtracted from each individual 171 

value in the column. After mean centering, the mean of each column equals zero, and each row of 172 

mean-centered data reflects only how it differs from the average sample in the original data matrix 173 

[16]. 174 

2.6 Principal component analysis (PCA) 175 

PCA captures the largest amount of variance in the data and reduces the dimensionality of the 176 

original dataset through calculation of a new set of variables called principal components (PCs). 177 

The PCs are linear combinations of the original variables. Samples and variables are projected onto 178 

the new PCs in the calculated PCA space. Samples are defined by their scores, and variables are 179 

defined by their loadings. Inspection of the scores and loading plots can lead to a better 180 

understanding of the different sources of variation in the data. As a data reduction technique, PCA 181 

is frequently the first step in the analysis of a high-dimensional data set. It can then be followed by 182 

classification, clustering, or other multivariate techniques [19].  183 

2.7 Partial Least Squares Discriminant Analysis (PLS-DA)  184 

PLS-DA is a classification technique widely used in research studies concerning both varietal 185 

classification and authentication of geographical origin [10,20]. PLS-DA is based on the PLS 186 

regression algorithm, which searches for linear combinations of the original variables (latent 187 

variables) that display maximum covariance with the Y-variables (classes). A discriminator, or 188 

threshold, is created that separates the different classes [21]. This technique allows determination of 189 

whether or not a given sample belongs in a specific predefined class [22]. The optimal number of 190 

factors or latent variables (LVs) for the PLS-DA models was estimated with a cross-validation 191 

procedure, and the number yielding the minimum classification error was selected. Venetian blinds 192 
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cross validation was used for the calibration with a data split of 10 and one sample per blind 193 

(thickness). 194 

2.8 ASCA-ANOVA 195 

Designed experiments with a single dependent variable are typically analyzed with ANOVA [23]. 196 

Problems occur when hundreds or thousands of variables are measured simultaneously, which is the 197 

case in spectroscopic analysis. ANOVA is thus not useful for analyzing multivariate data. 198 

Multivariate ANOVA (MANOVA) [24], the natural multivariate extension of ANOVA, breaks 199 

down when the number of measurements is smaller than the number of variables [25].  200 

ANOVA-simultaneous component analysis (ASCA) [26] is a method used to determine which 201 

factors in a fixed-effect experimental design are significant relative to the residual error. ASCA 202 

allows an ANOVA-like analysis, even when there are more variables than samples. Two matrices 203 

are used to perform the procedure. The X-matrix contains the experimental data, while the F-matrix 204 

represents the experimental design. PCA of each factor in the effect (X) matrix reduces the number 205 

of variables to a smaller number of principal components. In this way, the parameter estimation 206 

functionality of ANOVA is merged with PCA, and the presence of more variables than samples is 207 

no longer problematic [27]. Due to the hierarchy of factors analyzed in the present study, a nested 208 

design referred to as multi-level simultaneous component analysis (MLSCA) [28] was applied. 209 

Hence, the leaf age factor was nested within the tree factor, which in turn was nested within the 210 

variety factor.  211 

3. RESULTS AND DISCUSSION  212 

3.1 Assay one 213 

3.1.1 Comparison of leaf midvein and lamina 214 

Whether differences exist within the same leaf is a question that frequently arises. For this reason, 215 

spectra were collected in different areas of healthy leaves. The two regions of the leaves used for 216 

comparison are shown in Fig. 1. PCA was performed with two of the almond tree varieties, Guara 217 

and Pentacebas, to identify possible differences between the measurement areas on fresh and dried 218 

samples. These results are shown in Fig. 2. 219 

 220 

[Insert Fig. 3] 221 

   222 

Differences when including or not the primary vein were detected. The data clouds with and 223 

without midvein form separate clusters in both kinds of pre-processed samples. This cluster 224 
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separation can be observed in both varieties, although the separation is clearer for the Pentacebas 225 

variety. Differences were detected whether or not the primary vein was included. The data clouds 226 

with and without the midvein formed separate clusters for both processed sample types. This cluster 227 

separation was observed with both varieties, although the separation was more pronounced in the 228 

results from the Pentacebas variety. Considering the macrostructures and compositions of the 229 

analysis regions were not equivalent, which was reflected in their spectral signatures, these 230 

differences were justifiable. When the primary vein was scanned, the reflectance spectra of both the 231 

primary vein and the laminar regions located on either side of the primary vein were collected. 232 

Taking into account that secondary veins were present in the laminar regions, identifying 233 

differences between these regions indicated the primary vein had a profound influence on the 234 

spectra. 235 

The apical region and a region adjacent to the leaf margin showed more damage and decay than the 236 

central region of the leaves. Consequently, the central region was usually more stable. The leaf size 237 

could make it difficult to completely exclude the primary vein during measurement of the laminar 238 

region. Collecting spectra in the central region, including the primary vein, could therefore provide 239 

a standardized measure. 240 

 241 

3.1.2 Comparison of adaxial and abaxial surfaces 242 

Differences between the upper and lower surfaces of the leaves were also investigated. These 243 

results are shown in Error! Reference source not found.. In both fresh and dried samples, results 244 

of PCA revealed differences between the spectra obtained from the upper and lower leaf surfaces. 245 

However, this difference was not as clear in fresh leaves of the Pentacebas variety. The upper and 246 

lower surfaces of leaves in all plants are different. In addition, the stomas are usually present on the 247 

abaxial surface together with trichomes and others surface features. The differences between these 248 

two surfaces could be the cause for separation of their spectra in the PCA plots.  249 

 250 

[Insert Fig. 4] 
251 

 252 

A PLS-DA model was built to determine which surfaces were most suitable for discriminating 253 

between two almond tree varieties using fresh or dried samples. The classification results are shown 254 

in Table 2. The PLS-DA model had a classification score of 100% for both types of processed 255 

samples when the upper leaf surface was analyzed. Perfect discrimination was obtained using the 256 

lower leaf surface as well. Based on these results, the differences identified by PCA did not affect 257 

the discrimination results with either surface.  
258 
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 259 

[Insert Table 2] 260 

 261 

3.2 Assay two 262 

3.2.1 Variability between trees of the same variety 263 

 264 

Differences among trees of the same variety are important to consider when building a classification 265 

model. This source of variation determines the number of trees of each variety that must be sampled 266 

for development of the final model. If the variance is very large, it could affect the model’s 267 

discrimination capability. The PCA results from assay 2 are shown in Fig 4. 268 

 269 

[Insert Fig. 5] 270 

 271 

No differences were identified among the four trees studied within each variety. This was the case 272 

for fresh, dried, and dried powdered leaves. This was remarkable, because if significant differences 273 

were found, it would have been more difficult to build a good classification model. Also noteworthy 274 

was that the same results were obtained with samples processed with the three different methods, 275 

and with samples of different varieties. Such similar behavior in all cases is a positive indicator 276 

when creating a classification model. A more exhaustive study of the variability between trees was 277 

performed using the ASCA-ANOVA method, which is discussed in section 3.2.3. 278 

 279 

3.2.2 Variability between leaves of the same variety 280 

Since differences among almond trees of the same variety were not detected at the PCA level, we 281 

decided to include all samples of the same variety in a single PCA model. This made it easier to 282 

study the variability among samples within each variety while increasing the robustness of the 283 

model with more samples. The results of PCA modelling are shown in Error! Reference source 284 

not found..  285 

[Insert Fig. 6] 286 

Two clusters could be distinguished using only the first two principal components. This separation 287 

was very clear in some cases, such as the dried processed samples of the Pentacebas variety, for 288 

which the two clusters were completely separated (Fig. 6f). The results of all of the PCA models 289 

were similar, regardless of the sample processing method or the variety studied. However, overlap 290 

between the two data clusters was observed in some cases, such as dried samples of the Avijor 291 
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variety (Fig. 6d). The overlap could be explained by the presence of leaves in a phenological 292 

stadium intermediate between young and adult. It was possible to observe the progressive growth of 293 

the leaves, although this was not the goal of the assay. In any case, the results indicated there were 294 

differences between young and adult leaves at the spectral level. This difference should be 295 

considered at the time of sampling.  296 

  297 

3.2.3 ASCA-ANOVA analysis 298 

To study variability between Prunus dulcis varieties more deeply, an ASCA-ANOVA model was 299 

constructed for young and adult leaves from trees of the same variety. The modelling results are 300 

shown in Error! Not a valid bookmark self-reference.. The raw spectra pre-treatment used to 301 

develop the model, SNV with mean centering, was the same as that used for the PCA models.  302 

 303 

[Insert Table 3] 304 

 305 

Tree variety was the most influential factor for variance among fresh and dried powdered leaves 306 

and accounted for 30.26% and 24.99%, respectively, of the total effect in these samples. Despite 307 

explaining 19.25% of the effect for dried leaves, tree variety was not the factor that accounted for 308 

the majority of variance. For two of the three processing methods, the variety factor had the greatest 309 

effect, which indicated that differences between varieties were important. The tree factor explained 310 

little of the variance for the three processing methods, which was in agreement with the PCA results 311 

shown in Fig 4. This indicated strong homogeneity between trees of the same variety, an aspect that 312 

could be key for effective discrimination between varieties. For fresh and dried powdered leaves, 313 

the age (young/adult) factor explained a higher percentage of variance than the tree factor, but it 314 

accounted for less of the variance than tree variety. In dried powdered leaves, the difference 315 

between the age and tree factors was not large. The age factor accounted for 6.68% of the variance, 316 

while the tree factor explained 1.87%. The difference was more notable for fresh leaves, as the age 317 

factor accounted for 19.11% of the explained variance. The age factor was most significant for 318 

dried leaves, accounting for 24.18% of the explained variance. Therefore, the age factor had a 319 

greater effect in non-powder samples. These results also correlated with the results of the PCA 320 

(Error! Reference source not found.), in which differences due to leaf age were observed, but 321 

overlap of the cluster regions was detected. 322 

 323 

All of the variance not explained by the studied factors accumulated in the residual term. In the 324 

three types of processed samples, the residual accounted for a high percentage of the variance. 325 
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Fresh leaves had a lower residual than either the dried or dried powdered leaves. It was thought that 326 

the main source of uncontrolled variance was the physiological state of the leaves, which included 327 

damage to the leaves and climatologic agents. The combination of these abiotic factors with biotic 328 

factors influences plant physiology [29,30]. It is important to note that the leaves used in this study 329 

came from trees located in an outdoor field. 330 

 331 

3.3 Assay three 332 

3.3.1 Spectral pre-treatment study 333 

[Insert Table 4] 334 

 335 

Error! Reference source not found. shows the results of the PLS-DA modelling using different 336 

spectral pre-treatments. The best classification results for the three types of samples were obtained 337 

with the SNV pre-treatment and application of the SG first derivative and mean centering. This was 338 

curious, because although modelling was performed for one material (almond tree leaves), the 339 

samples analyzed were completely different in terms of their macrostructures and dry compositions. 340 

With this spectral pre-treatment, 100% classification accuracy was achieved for at least one variety 341 

with each sample processing method. Results were even more remarkable with dried powdered 342 

leaves, for which 100% accuracy was attained in the test set validation for all three varieties. The 343 

lowest accuracy obtained with this spectral pre-treatment was 97.5% at both the cross-validation 344 

and test set validation levels. No relevant differences between the other two spectral pre-treatments 345 

were observed, so de-trending did not appear to have a significant effect. It is important to note that 346 

in the case of fresh leaves, similar results were obtained with the three different spectral pre-347 

treatments.  348 

   349 

3.3.2 Sample processing study 350 

Each sample processing method had its advantages and disadvantages. Fresh leaves did not require 351 

any processing, so measurement was faster and easier than it was with the other types of samples. 352 

However, the water content of the leaves was a disadvantage, because it generated wide bands in 353 

the NIR spectra. This could make discrimination between varieties more difficult. Samples can be 354 

dehydrated to circumvent the effects of water, but this process is time-consuming (48 h), so it is not 355 

the best option if rapid identification is required. 356 

To evaluate which of the processed samples was the most suitable for varietal classification, the 357 

advantages and disadvantages of each were considered together with the PLS-DA classification 358 
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results obtained with SNV spectral pre-treatment and application of the SG first derivative and 359 

mean centering (Table 4). 360 

The results obtained with the three types of sample processing at the calibration level could be 361 

considered quite good, although those obtained with fresh leaves were less stellar. The dried 362 

powdered leaves provided a higher percentage of correct classifications. For the test set validation, 363 

high percentages of correct classifications were obtained with all varieties and processed sample 364 

types. The results provided by the dried leaves were not as good as those obtained with the other 365 

two processed sample types, although the Pentacebas variety was correctly classified in 100% of 366 

the test set validations. Fresh leaves provided almost perfect classification, and nearly 100% correct 367 

classification was attained with dried powdered leaves. Taking only the PLS-DA results into 368 

account, the best sample processing method was drying and powdering the leaves. Considering the 369 

methodological aspects, using fresh leaves was the fastest and easiest option. The biggest drawback 370 

of fresh leaves was their water content, but this did not seem to hinder discrimination between the 371 

varieties studied.  372 

In the ASCA-ANOVA model performed in assay two (Table 3), the strongest effect on dried leaves 373 

was contributed by the leaf age factor. The age factor accounted for more variability than even the 374 

tree variety factor, which could be problematic. Fresh leaves exhibited more favorable behavior in 375 

the ASCA-ANOVA model. Results of the ASCA-ANOVA model with dried powdered leaves were 376 

similar to those obtained with fresh leaves, but the residual was higher.  377 

  378 

4. CONCLUSIONS AND PERSPECTIVES  379 

 380 

In this study, we defined a methodology for construction of a classification model that could 381 

discriminate between Prunus dulcis varieties using NIRS. We also identified the most important 382 

sampling and analysis aspects. In assay one, differences were seen in the PCA whether or not the 383 

midvein was included. The central leaf region provided more useful information for discriminating 384 

between almond tree varieties, because it contained both the primary vein and the laminar tissues. 385 

We also attempted to determine which surface of the leaves, adaxial or abaxial, was the most 386 

suitable for analysis. Despite the spectral differences observed, the comparison made using the 387 

PLSDA model indicated this was not an important aspect. 388 

In assay two, no notable differences were detected between trees of the same variety, which 389 

indicated that trees within each variety were quite homogeneous. Differences were observed at the 390 

PCA level between young and adult leaves, which indicated age was important to consider during 391 

the sampling process.  392 
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The best results from the PLS-DA models in assay three were obtained with dried powdered leaves 393 

when SNV was used for spectral pre-treatment with application of the SG first derivative (15-point 394 

window, second order) and mean centering. However, fresh leaves appeared to be the easiest and 395 

most suitable samples for laboratory or industrial analysis. These results indicated that both fresh 396 

leaves and dried powdered leaves could be useful for discriminating between Prunus dulcis 397 

varieties using NIR spectroscopy. 398 

All the information gathered in the present study will be used to build a classification model that 399 

includes more Prunus dulcis varieties. The potential of NIR spectroscopy for the classification of 400 

almond tree varieties and its implementation as a quality control tool in the nursery plant industry 401 

will be studied. 402 
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 495 

FIGURE CAPTIONS  496 

Fig. 1. Image of an almond leaf showing the two studied regions. 497 

Fig. 2. Mean raw spectra from the three processed sample types. Fresh leaf (green dashed line); 498 

dried powdered leaf (blue solid line); and dried leaf (red dotted line). 499 

Fig. 2. PCA results from the Guara and Pentacebas varieties with and without inclusion of the 500 

midvein. The presence of the midvein is indicated by red diamonds, and absence of the midvein is 501 

indicated by green squares. a) Dried leaf of the Guara variety; b) dried leaf of the Pentacebas 502 

variety; c) fresh leaf of the Guara variety; d) fresh leaf of the Pentacebas variety. 503 
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Fig. 3. PCA results showing the differences between the adaxial (red diamonds) and abaxial (green 504 

squares) leaf surfaces. a) Dried leaf of the Guara variety; b) dried leaf of the Pentacebas variety; c) 505 

fresh leaf of the Guara variety; d) fresh leaf of the Pentacebas variety. 506 

Fig 4. PCA results from the study of differences between trees of the same variety. Each tree is 507 

represented by a different symbol (triangle, circle, diamond, and square). a) Fresh leaf of the Avijor 508 

variety; b) fresh leaf of the Guara variety; c) fresh leaf of the Pentacebas variety; d) dried leaf of the 509 

Avijor variety; e) dried leaf of the Guara variety; f) dried leaf of the Pentacebas variety; g) dried 510 

powdered leaf of the Avijor variety; h) dried powdered leaf of the Guara variety; i) dried powdered 511 

leaf of the Pentacebas variety. 512 

Fig. 6. PCA results from the study of differences between young (yellow circles) and adult (pink 513 

stars) leaves. a) Fresh leaf of Avijor variety; b) fresh leaf of Guara variety; c) fresh leaf of 514 

Pentacebas variety; d) dried leaf of Avijor variety; e) dried leaf of Guara variety; f) dried leaf of 515 

Pentacebas variety; g) dried powdered leaf of Avijor variety; h) dried powdered leaf of Guara 516 

variety; i) dried-powdered leaf of Pentacebas variety.  517 
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TABLES  534 

Table 1. Summary of the samples used in the study. 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

Table 2. PLS-DA results from the comparison of adaxial and abaxial leaf surfaces. 544 

 545 

Table 3. Results of ASCA-ANOVA modelling to study variance of the factors. 546 

 Fresh leaves Dried leaves Dried-powdered 
leaves 

Factor Principal 
components 

Effect % Principal 
components 

Effect % Principal 
components 

Effect % 

Variety 2 30.26 2 19.25 2 24.99 
Tree 3 1.83 3 4.69 3 1.87 
Young / adult 1 19.11 1 24.18 1 6.68 
Residual 6 48.80 3 51.88 3 66.46 
 547 

 548 

 549 

 550 

 551 

 552 

  
Varieties 
 

Fresh samples Dried samples Dried-powdered 
samples 

Number of samples 
Assay 
one 

Guara 10 10 not used 
Pentacebas 10 10 not used 

Assay 
two 

Avijor 80 80 80 
Guara 80 80 80 
Pentacebas 80 80 80 

Assay 
three 

Avijor 80 80 80 
Guara 80 80 80 
Pentacebas  80 80 80 

  
Real class 
 

Data set 
Fresh samples  Dried samples 
Assigned class Assigned class 
Guara Pentacebas Guara Pentacebas 

Adaxial Guara Cross-
validation 

100 % 100 % 100 % 100 % 
Pentacebas 100 % 100 % 100 % 100 % 

Abaxial Guara Cross-
validation 

100 % 100 % 100 % 100 % 
Pentacebas 100 % 100 % 100 % 100 % 
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Table 4. PLS-DA model results of the spectra pre-treatment and study of the types of pre-processed 553 

samples. 554 

Dried-powdered leaves 
Real class Data set Assigned class 

SNV + 
Mean 
center 

SNV + 1st derivative + 
Mean center 

SNV + De-trending + 
Mean center 

Avijor Cross-
validation 

87.4 % 99.2 % 86.6 % 

Test set 
validation 

97.5 % 100 % 97.5 % 

Guara Cross-
validation 

89.9 % 99.2 % 89.1 % 

Test set 
validation 

96.6 % 100 % 96.6 % 

Pentacebas Cross-
validation 

97.5 % 100 % 97.5 % 

Test set 
validation 

99.2 % 100 % 99.2 % 

     
Dried leaves 
Real class Data set Assigned class 

SNV + 
Mean 
center 

SNV + 1st derivative + 
Mean center 

SNV + De-trending + 
Mean center 

Avijor Cross-
validation 

97.5 % 99.2 % 95.0 % 

Test set 
validation 

95.0 % 98.3 % 93.3 % 

Guara Cross-
validation 

95.0 % 100 % 93.3 % 

Test set 
validation 

92.5 % 97.5 % 91.7 % 

Pentacebas Cross-
validation 

97.5 % 99.2 % 93.3 % 

Test set 
validation 

97.5 % 100 % 98.3 % 

     
Fresh leaves 
Real class Data set Assigned class 

SNV + 
Mean 
center 

SNV + 1st derivative + 
Mean center 

SNV + De-trending + 
Mean center 

Avijor Cross-
validation 

100 % 97.5 % 100 % 

Test set 99.2 % 100 % 99.2 % 
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 555 

 556 

 557 

 558 

 559 

validation 
Guara Cross-

validation 
99.2 % 97.5 % 99.2 % 

Test set 
validation 

98.3 % 99.2 % 98.3 % 

Pentacebas Cross-
validation 

99.2 % 100 % 99.2 % 

Test set 
validation 

99.2 % 99.2 % 99.2 % 
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Highlights  

• NIRS was used for discriminating between three Prunus dulcis varieties. 

• Several spectral pre-treatment strategies were investigated. 

• A combination of SNV, SG first derivative, and mean centering methods was optimal. 

• Tree variety and leaf age were the most important classification factors for PLS-DA. 

• NIRS is a rapid and economical method for nursery plant classification. 


