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Abstract

Near-infrared spectroscopy (NIRS) can be a fastémaore economical alternative to traditional
methods for screening varietal mixtures of nurggayts during the propagation process to ensure
varietal purity and to avoid errors in the dispabeliches. The global objective of this work was to
develop and optimize a NIR spectral collection mdtfor construction of robust multivariate
discrimination models. Three different varietied?ofinus dulcigAvijor, Guara andPentacebas

of agricultural interest were used for this stu8gurces of variation were investigated, including
the position of the leaves on the trees, differsrmaong trees of the same variety, and differences
at the varietal level. Three types of processedpteswere investigated. Fresh leaves, dried leaves,
and dried leaves in powder form were included icheanalysis. A study of spectral pre-treatment
methods was also performed, and multivariate metingte applied to analyze the influence of
different factors on classification. These inclugeithicipal component analysis (PCA), partial least
squares discriminant analysis (PLS-DA), and ANO\#Awdtaneous component analysis (ASCA).
The results indicated that variety was the mosbirigmt factor for classification. The spectral pre-
treatment that provided the best results was a t@tibn of standard normal variate (SNV),
Savitzky-Golay first derivative, and mean-centenngthods. With regard to the type of processed
sample, the highest percentages of correct cleagdhs were obtained with fresh and dried
powdered leaves at both the training set and étstadidation levels. This study represents ths fir

step towards the consolidation of NIRS as a metbadentify Prunus dulcisvarieties.

Keywords: Optimization; Almond trees; Leaf analysis; Varleiarity; NIR; PLS-DA.
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1. INTRODUCTION

Rapid discrimination between vegetal varieties kewrequirement for all nursery plant production.
The huge diversity of vegetal materials necessittte incorporation of new control systems along
the nursery plant production chain to avoid mixiagieties and to ensure varietal purity in the
dispatch batches.

Nowadays, the most extensively used methods faetehidentification are based on DNA
analysis. These techniques include DNA amplificatiy the polymerase chain reaction (PCR) [1]
followed by analysis of genetic variations, suclsiagle nucleotide polymorphisms (SNPs) [2].
However, these biomolecular techniques are vergmsipe for routine analysis of a large number
of samples. In this context, the use of spectrascamalysis combined with chemometrics has
recently increased. This combination comprisegparaccurate, and nondestructive methodology

for the classification and authentication of adtiaal products [3].

Near-infrared (NIR) spectroscopy has proved to peveerful analytical tool and has been widely
used in various sectors, including the petrocheldidand pharmaceutical industries [5]. It has
also become a well-established technique for tlamiipative and qualitative analysis of agricultural
products [6]. Several recent studies have emplspedtroscopic techniques for species
discrimination [7,8], or differentiation of varidsawithin a species, such as tomato [9], rice @]
lettuce [11]. For these reasons, NIRS can be cermida potential candidate for the differentiation

of Prunus dulcisvarieties.

Despite recent studies, there is a lack of knovwdeggarding the best methodology for accurate
sampling of leaves. Most of the published workspecies discrimination do not consider factors
derived from the nature of the samples, which atergial sources of variance. For example,
mature trees have a heterogeneous canopy compbieedes in different phenological stages. It is
thus important to take the sampling procedure @&tmunt, especially when an analysis is
performed with whole leaves. Improper sampling magerate invalid data, the use of which could
lead to incorrect conclusions [12]. To perform ectrsampling, it is important to recognize sources
of variation and to control for factors from whiehriation originates. Therefore, it is necessary to

first develop a sampling protocol and to selectitbést material for use.

Another analytically relevant aspect is the stuflgammple processing methods, which may
considerably alter the vibrational spectrum of mpgle compared to that collected with the sample
in its native state. Due to economic and time caigs, it is generally best to avoid any type of

sample processing. Moreover, modifying the natiahigecture of biological tissues can result in
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the loss of information. Thus, performing analysesivo is preferred whenever possible [13].
Occasionally, however, sample processing is asfratisable step. In any case, the option that best

accomplishes the objective of the study must bected.

The aim of this work is to determine how samplifigegetal material affects the collection of NIR
spectra for the construction of a multivariate diestant model folPrunus dulcisvarietal
classification. The specific objectives are to &)edmine whether there are differences among the
analyzed regions of the leaves or between theieugpd lower surfaces; 2) to determine whether
differences exist due to the age of the leave&le3jtify the best sampling procedure for varietal
discrimination of almond trees; and 4) study pestment of spectral data and to identify the pre-
treatment that leads to the best classificationehod

2. MATERIAL AND METHODS
2.1 Experimental design
2.1.1 Assay one

The first assay was performed to obtain informatibout the analyzed regions of fresh and dried
leaves. Specifically, the NIR spectra differena@sutting from including or excluding the primary
veins of the leaves were examin&arpr! Reference source not found) together with analysis of
the upper (adaxial) and lower (abaxial) leaf siefadwenty samples from two varieties of almond
trees,GuaraandPentacebaswere used for each experiment (Table 1). Rewnwdte evaluated by
using PCA and PLS-DA models. This assay focusealspects that affected only fresh and dried

leaves. The information obtained in this assay uwgesl for the development of the next two assays.
[Insert Fig.1]
2.1.2 Assay two

The second assay was designed to study the NIRrapkfferences between young leaves and
adult leaves and among samples from different wédse same variety. The assay was performed
on theGuaraandPentacebasarieties and on a third varie#yijor. Four trees per variety were
sampled, twelve in total. Twenty leaves were cédlddrom each tree. Ten of the leaves were
collected from the upper part of the branch (apekjch corresponded to young leaves, while the
other ten were adult leaves that were collecteah fitee lower part of the branch. Two hundred forty
leaves were sampled in total (Table 1). Result®wealuated by using PCA and ASCA-ANOVA

models.
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2.1.3 Assay three

Three different leaf processing methodologies vstudied in the third assay; one for fresh leaves,
one for dried leaves, and the other for dried poeddéeaves. The aim was to determine whether the
water content and macrostructures of the leaveshgdéhfluence on discrimination results. It is
important to note that every sample was procesé#édeach of the three methods in order to
increase the comparative robustness. We also figehtihe most suitable pre-treatment method for
NIR spectral analysis. The applicability of NIRS fbiscriminating betweeRrunus dulcisvarieties
was evaluated by mean partial least squares disaithanalysis (PLS-DA). The available data
were randomly divided into calibration (70%) andidation (30%) sets, but both sets contained the
same proportion of each variety to prevent unbadmepresentation of the almond tree classes. To
improve the robustness of comparing results froerlinee sample processing methods, the same
samples included in the three sample processiragetst were used for both cross validation and

test set validation. All of the samples used faaggwo were also used for this assay (Table 1).
[Insert Table 1]
2.2 Description of the sampling field

Vegetal material used in this study came from alnivees located at the mother plant field from
the Center of Initial Materials of Agromillora Iber S.L.U. in Sant Sadurni d’Anoia (Catalonia,
Spain). These trees are under a strict controfderdo prevent the appearance of diseases and to
ensure the sanitary quality of nursery plants. $& of molecular biology techniques to assess the
traceability of the varieties was not necessati case because the almond trees were previously

certificated by the company.

The samples were stored in a plastic bag afteecidn, assigned identifiers, and stored at 4 °C
until analysis.

2.3 Sample pre-processing

Samples were analyzed either as fresh leaves wigliooessing, as dried leaves, or as dried
powdered leaves. To obtain dried leaves, fresteleaere heated in an oven at 65 °C for 48 hours.
A weight was placed on the leaves to keep thenafidtto facilitate their posterior analysis. Once
dried, the leaves were pulverized to a homogenpowsler with a grinder. Once samples were
dried, they were storad a desiccator with silica gel to prevent anyuefice from moisture. Only

one leaf was used per experiment. Each sample nedgzad in the three ways. First, they were
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analyzed in fresh, second in dried and finally égmvdered. In all the experiments each sample was

composed of one leaf only.
2.4 Acquisition of NIR spectra

Samples were scanned in reflectance mode usingarig\ |l FT-NIR analyzer (Thermo Scientific,
USA) equipped with an integrating sphere modulen@as were measured in the spectral range of
12000-3800 cfh (833-2630 nm). For each spectrum, 32 scans weraged with a resolution of 4
cm*. Each sample was analyzed in triplicate. Freshefeand dried leaves were placed directly
over the sphere and covered to prevent interfernoeenvironmental light. The powdered leaf
samples were measured in a standard sample cugatihatwith the instrument. A background
spectrum was collected every 20 minutes. All spestre recorded as log(1/R), where R was the
reflectance. Room temperature was maintained af€28nd the humidity remained constant

throughout the spectral acquisition process.
2.5 Spectral data pre-treatment

This was an important step, because although diffgrre-treatments have been reported on
extensively [14—16], there is still no clear cormeregarding the best pre-treatment or a guideline
to follow. As can be seen HError! Reference source not found, the spectra contained very little
noise. The raw spectra had to be corrected fottimeddind multiplicative effects that were probably
due to light scattering.

[Insert Fig. 2]

A basic pre-treatment was performed in assays nddveo, which consisted of the standard normal
variate (SNV) method with mean centering. In theagighree, four different pre-treatments were
applied and compared to identify the combinatiat grovided the best results in the PLS-DA
model. The combinations used were: SNV method miglan centering; SNV method with
Savitzky-Golay (SG) first derivative and mean centg and finally, SNV method followed by de-
trending and mean centering. Spectral pre-treasneere performed using PLS_Toolbox
(Eigenvector Research Incorporated, Manson, WA) MATLAB R2017b (MathWorks, Natick,
MA).

SNV is a normalization procedure for spectral ligtdittering correction. It is used to correct
additive and multiplicative effects in the speditse to particle size variation. SNV calculates the
standard deviation of all the variables in a gisample spectrum. The entire data set is then
normalized by this value, which yields a unit stamtdeviationg = 1) for the sample spectrum
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[17]. De-trending is sometimes used to remove consiaefr, or curved offsets and is often used
in conjunction with SNV. With this method, the meatue or linear trend is subtracted from a
vector or matrix. To achieve this, a polynomiabajiven order is fitted to the entire data set, and
the polynomial is simply subtracted. This algoritfita all points in the baseline and the signal.
[17]. SG first derivative was applied to remove basdtirnf and to enhance small spectral
differences. The SG derivative method includes aathing step, the Savitzky-Golay algorithm,
which corrects for the increased noise due to eafidin of the derivative. The SG derivatization
algorithm requires selection of the filter widthhieh is the size of the window, the order of the
polynomial, and the order of the derivative [18]this work, we selected a 15-point window and
applied a second order polynomial. Mean centdsrane of the most common pre-processing
methods, in which the mean value of each colunzalisulated and subtracted from each individual
value in the column. After mean centering, the mafa@ach column equals zero, and each row of
mean-centered data reflects only how it differsrfithe average sample in the original data matrix
[16].

2.6 Principal component analysis (PCA)

PCA captures the largest amount of variance irdétta and reduces the dimensionality of the
original dataset through calculation of a new $etapiables called principal components (PCs).
The PCs are linear combinations of the originalaldes. Samples and variables are projected onto
the new PCs in the calculated PCA space. Sampededined by their scores, and variables are
defined by their loadings. Inspection of the scaned loading plots can lead to a better
understanding of the different sources of variatiothe data. As a data reduction technique, PCA
is frequently the first step in the analysis ofighhdimensional data set. It can then be followgd b

classification, clustering, or other multivariagehniques [19].
2.7 Partial Least Squares Discriminant Analysis $PDA)

PLS-DA is a classification technique widely usedarearch studies concerning both varietal
classification and authentication of geographicalio [10,20]. PLS-DA is based on the PLS
regression algorithm, which searches for linearloations of the original variables (latent
variables) that display maximum covariance withYreariables (classes). A discriminator, or
threshold, is created that separates the diffetasses [21]. This technique allows determination o
whether or not a given sample belongs in a spegiédefined class [22]. The optimal number of
factors or latent variables (LVs) for the PLS-DA aats was estimated with a cross-validation
procedure, and the number yielding the minimumsifigation error was selected. Venetian blinds
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cross validation was used for the calibration witthata split of 10 and one sample per blind
(thickness).

2.8 ASCA-ANOVA

Designed experiments with a single dependent Varee typically analyzed with ANOVA [23].
Problems occur when hundreds or thousands of Jasi@e measured simultaneously, which is the
case in spectroscopic analysis. ANOVA is thus eful for analyzing multivariate data.
Multivariate ANOVA (MANOVA) [24], the natural multiariate extension of ANOVA, breaks

down when the number of measurements is smallarttteanumber of variables [25].

ANOVA-simultaneous component analysis (ASCA) [26himethod used to determine which
factors in a fixed-effect experimental design agaificant relative to the residual error. ASCA
allows an ANOVA-like analysis, even when there m@e variables than samples. Two matrices
are used to perform the procedure. The X-matrixaioa the experimental data, while the F-matrix
represents the experimental design. PCA of eacbrfacthe effect (X) matrix reduces the number
of variables to a smaller number of principal comgrtts. In this way, the parameter estimation
functionality of ANOVA is merged with PCA, and tpeesence of more variables than samples is
no longer problematic [27]. Due to the hierarchyasftors analyzed in the present study, a nested
design referred to as multi-level simultaneous congnt analysis (MLSCA) [28] was applied.
Hence, the leaf age factor was nested within & feictor, which in turn was nested within the

variety factor.
3. RESULTS AND DISCUSSION
3.1 Assay one

3.1.1 Comparison of leaf midvein and lamina

Whether differences exist within the same leafdgiastion that frequently arises. For this reason,
spectra were collected in different areas of hgdéhves. The two regions of the leaves used for
comparison are shown in Fig. 1. PCA was performitd two of the almond tree varietigSuara
andPentacebago identify possible differences between the raesment areas on fresh and dried
samples. These results are shown in Fig. 2.

[Insert Fig. 3]

Differences when including or not the primary veiere detected. The data clouds with and
without midvein form separate clusters in both ki pre-processed samples. This cluster
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separation can be observed in both varieties, @finéhe separation is clearer for the Pentacebas
variety. Differences were detected whether or hetgrimary vein was included. The data clouds
with and without the midvein formed separate clisster both processed sample types. This cluster
separation was observed with both varieties, aljhdbe separation was more pronounced in the
results from théentacebasariety. Considering the macrostructures and caitipas of the

analysis regions were not equivalent, which waecedd in their spectral signatures, these
differences were justifiable. When the primary weias scanned, the reflectance spectra of both the
primary vein and the laminar regions located ohegiside of the primary vein were collected.
Taking into account that secondary veins were piteéaethe laminar regions, identifying

differences between these regions indicated tmeagpyi vein had a profound influence on the
spectra.

The apical region and a region adjacent to therteafjin showed more damage and decay than the
central region of the leaves. Consequently, thérakbregion was usually more stable. The leaf size
could make it difficult to completely exclude themary vein during measurement of the laminar
region. Collecting spectra in the central regimicjuding the primary vein, could therefore provide

a standardized measure.

3.1.2 Comparison of adaxial and abaxial surfaces

Differences between the upper and lower surfacéisedleaves were also investigated. These
results are shown i&rror! Reference source not found. In both fresh and dried samples, results
of PCA revealed differences between the spectriredd from the upper and lower leaf surfaces.
However, this difference was not as clear in fleslves of théentacebavariety. The upper and
lower surfaces of leaves in all plants are differémaddition, the stomas are usually presenhen t
abaxial surface together with trichomes and otherface features. The differences between these

two surfaces could be the cause for separationeif spectra in the PCA plots.

[Insert Fig. 4]

A PLS-DA model was built to determine which surfageere most suitable for discriminating
between two almond tree varieties using fresh imddsamples. The classification results are shown
in Table 2. The PLS-DA model had a classificatioare of 100% for both types of processed
samples when the upper leaf surface was analysefedPdiscrimination was obtained using the
lower leaf surface as well. Based on these reshksjifferences identified by PCA did not affect
the discrimination results with either surface.
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260 [Insert Table 2]

261

262 3.2 Assay two

263 3.2.1 Variability between trees of the same variety

264

265  Differences among trees of the same variety ar@itapt to consider when building a classification
266  model. This source of variation determines the nemal trees of each variety that must be sampled
267  for development of the final model. If the varianse&ery large, it could affect the model’s

268  discrimination capability. The PCA results fromag& are shown in Fig 4.

269

270  [Insert Fig. 5]

271

272 No differences were identified among the four treteslied within each variety. This was the case
273 for fresh, dried, and dried powdered leaves. Tlas vemarkable, because if significant differences
274  were found, it would have been more difficult taltha good classification model. Also noteworthy
275  was that the same results were obtained with sanppéeessed with the three different methods,
276 and with samples of different varieties. Such similehavior in all cases is a positive indicator

277  when creating a classification model. A more extiagistudy of the variability between trees was
278  performed using the ASCA-ANOVA method, which isalissed in section 3.2.3.

279

280  3.2.2 Variability between leaves of the same wariet

281  Since differences among almond trees of the sametyavere not detected at the PCA level, we
282  decided to include all samples of the same vaietysingle PCA model. This made it easier to
283  study the variability among samples within eachetgrwhile increasing the robustness of the

284  model with more samples. The results of PCA maadglire shown iError! Reference source

285  not found..

286 [Insert Fig. 6]

287  Two clusters could be distinguished using onlyftiret two principal components. This separation
288  was very clear in some cases, such as the drieggsed samples of tRentacebasariety, for

289  which the two clusters were completely separatégl @F). The results of all of the PCA models
290  were similar, regardless of the sample processietpoal or the variety studied. However, overlap
291  between the two data clusters was observed in sases, such as dried samples ofAhigor
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variety (Fig. 6d). The overlap could be explaingdh®e presence of leaves in a phenological
stadium intermediate between young and adult. & passible to observe the progressive growth of
the leaves, although this was not the goal of say In any case, the results indicated there were
differences between young and adult leaves atgbetisal level. This difference should be

considered at the time of sampling.

3.2.3 ASCA-ANOVA analysis

To study variability betweeRrunus dulcisvarieties more deeply, an ASCA-ANOVA model was
constructed for young and adult leaves from tréeseosame variety. The modelling results are
shown inError! Not a valid bookmark self-reference.. The raw spectra pre-treatment used to

develop the model, SNV with mean centering, wassttrae as that used for the PCA models.

[Insert Table 3]

Tree variety was the most influential factor forimace among fresh and dried powdered leaves
and accounted for 30.26% and 24.99%, respectigéhe total effect in these samples. Despite
explaining 19.25% of the effect for dried leavesgtvariety was not the factor that accounted for
the majority of variance. For two of the three @sging methods, the variety factor had the greatest
effect, which indicated that differences betweeriet@s were important. The tree factor explained
little of the variance for the three processinghmds, which was in agreement with the PCA results
shown in Fig 4. This indicated strong homogenedéineen trees of the same variety, an aspect that
could be key for effective discrimination betweemigties. For fresh and dried powdered leaves,
the age (young/adult) factor explained a highecgatage of variance than the tree factor, but it
accounted for less of the variance than tree warietdried powdered leaves, the difference
between the age and tree factors was not largead&dactor accounted for 6.68% of the variance,
while the tree factor explained 1.87%. The diffeemwas more notable for fresh leaves, as the age
factor accounted for 19.11% of the explained vagaMhe age factor was most significant for

dried leaves, accounting for 24.18% of the expldivariance. Therefore, the age factor had a
greater effect in non-powder samples. These reslsitscorrelated with the results of the PCA
(Error! Reference source not found), in which differences due to leaf age were obesarbut

overlap of the cluster regions was detected.

All of the variance not explained by the studiectdas accumulated in the residual term. In the

three types of processed samples, the residualiammbfor a high percentage of the variance.
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Fresh leaves had a lower residual than eitherriled dr dried powdered leaves. It was thought that
the main source of uncontrolled variance was thaiplogical state of the leaves, which included
damage to the leaves and climatologic agents. dhbimation of these abiotic factors with biotic
factors influences plant physiology [29,30]. lingportant to note that the leaves used in thisystud

came from trees located in an outdoor field.

3.3 Assay three
3.3.1 Spectral pre-treatment study
[Insert Table 4]

Error! Reference source not found.shows the results of the PLS-DA modelling usirffedent
spectral pre-treatments. The best classificatienltg for the three types of samples were obtained
with the SNV pre-treatment and application of ti@& f8st derivative and mean centering. This was
curious, because although modelling was perforroedrie material (almond tree leaves), the
samples analyzed were completely different in tesfribeir macrostructures and dry compositions.
With this spectral pre-treatment, 100% classifaraticcuracy was achieved for at least one variety
with each sample processing method. Results wene @ore remarkable with dried powdered
leaves, for which 100% accuracy was attained irtebeset validation for all three varieties. The
lowest accuracy obtained with this spectral prattrent was 97.5% at both the cross-validation
and test set validation levels. No relevant diffiees between the other two spectral pre-treatments
were observed, so de-trending did not appear te haignificant effect. It is important to notettha
in the case of fresh leaves, similar results wétained with the three different spectral pre-

treatments.

3.3.2 Sample processing study

Each sample processing method had its advantagedisadvantages. Fresh leaves did not require
any processing, so measurement was faster and tremidt was with the other types of samples.
However, the water content of the leaves was ald&s#age, because it generated wide bands in
the NIR spectra. This could make discriminationestn varieties more difficult. Samples can be
dehydrated to circumvent the effects of water,thist process is time-consuming (48 h), so it is not
the best option if rapid identification is required

To evaluate which of the processed samples wasitis¢ suitable for varietal classification, the
advantages and disadvantages of each were corsidgether with the PLS-DA classification
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results obtained with SNV spectral pre-treatmentaplication of the SG first derivative and
mean centering (Table 4).

The results obtained with the three types of sappdeessing at the calibration level could be
considered quite good, although those obtained fnesh leaves were less stellar. The dried
powdered leaves provided a higher percentage ofcorlassifications. For the test set validation,
high percentages of correct classifications wetaiobd with all varieties and processed sample
types. The results provided by the dried leave®wet as good as those obtained with the other
two processed sample types, althoughReetacebasariety was correctly classified in 100% of
the test set validations. Fresh leaves providedstiperfect classification, and nearly 100% correct
classification was attained with dried powdered/dsa Taking only the PLS-DA results into
account, the best sample processing method wasgdayid powdering the leaves. Considering the
methodological aspects, using fresh leaves wafagitest and easiest option. The biggest drawback
of fresh leaves was their water content, but thisndt seem to hinder discrimination between the
varieties studied.

In the ASCA-ANOVA model performed in assay two (1&aB), the strongest effect on dried leaves
was contributed by the leaf age factor. The agmfarcounted for more variability than even the
tree variety factor, which could be problematiegtr leaves exhibited more favorable behavior in
the ASCA-ANOVA model. Results of the ASCA-ANOVA meldwith dried powdered leaves were

similar to those obtained with fresh leaves, batrésidual was higher.

4. CONCLUSIONS AND PERSPECTIVES

In this study, we defined a methodology for congion of a classification model that could
discriminate betweeRrunus dulcisvarieties using NIRS. We also identified the mogtortant
sampling and analysis aspects. In assay one, eliifes were seen in the PCA whether or not the
midvein was included. The central leaf region pded more useful information for discriminating
between almond tree varieties, because it contdinddthe primary vein and the laminar tissues.
We also attempted to determine which surface ofghees, adaxial or abaxial, was the most
suitable for analysis. Despite the spectral difiees observed, the comparison made using the

PLSDA model indicated this was not an importaneasp

In assay two, no notable differences were detdmtaeen trees of the same variety, which
indicated that trees within each variety were ghamogeneous. Differences were observed at the
PCA level between young and adult leaves, whickcatdd age was important to consider during

the sampling process.
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The best results from the PLS-DA models in assmgetlvere obtained with dried powdered leaves
when SNV was used for spectral pre-treatment withlieation of the SG first derivatid.5-point
window, second ordegnd mean centering. However, fresh leaves appéaitszithe easiest and
most suitable samples for laboratory or industiglysis. These results indicated that both fresh
leaves and dried powdered leaves could be usefdioriminating betweeRrunus dulcis

varieties using NIR spectroscopy.

All the information gathered in the present studly be used to build a classification model that
includes mord’runus dulcisvarieties. The potential of NIR spectroscopy for tlassification of
almond tree varieties and its implementation agaity control tool in the nursery plant industry
will be studied.
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FIGURE CAPTIONS

Fig. 1. Image of an almond leaf showing the twali&d regions.

Fig. 2. Mean raw spectra from the three procesaetbke types. Fresh leaf (green dashed line);
dried powdered leaf (blue solid line); and driedf lged dotted line).

Fig. 2. PCA results from the Guara and Pentacebagties with and without inclusion of the

midvein. The presence of the midvein is indicatgddsl diamonds, and absence of the midvein is

indicated by green squares. a) Dried leaf of ther&wariety; b) dried leaf of the Pentacebas

variety; c) fresh leaf of the Guara variety; dsfideaf of the Pentacebas variety.
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Fig. 3. PCA results showing the differences betwihenadaxial (red diamonds) and abaxial (green
squares) leaf surfaces. a) Dried leaf of the Guarity; b) dried leaf of the Pentacebas varie}y; ¢
fresh leaf of the Guara variety; d) fresh leaftef Pentacebas variety.

Fig 4. PCA results from the study of differencesnlaen trees of the same variety. Each tree is
represented by a different symbol (triangle, cirdiamond, and square). a) Fresh leaf of the Avijor
variety; b) fresh leaf of the Guara variety; c)stideaf of the Pentacebas variety; d) dried leahef
Avijor variety; e) dried leaf of the Guara variety;dried leaf of the Pentacebas variety; g) dried
powdered leaf of the Avijor variety; h) dried powee leaf of the Guara variety; i) dried powdered
leaf of the Pentacebas variety.

Fig. 6. PCA results from the study of differencesadeen young (yellow circles) and adult (pink
stars) leaves. a) Fresh leaf&fijor variety; b) fresh leaf dbuaravariety; c) fresh leaf of
Pentacebasariety; d) dried leaf afvijor variety; e) dried leaf ocBuaravariety; f) dried leaf of
Pentacebasariety; g) dried powdered leaf Akijor variety; h) dried powdered leaf Guara

variety; i) dried-powdered leaf &fentacebasariety.
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TABLES

Table 1 Summary of the samples used in the study.

Fresh samples| Dried samples Dried-powdeyaa
Varieties samples __ _
Number of sample: 037
Assay | Guare 10 10 not use caq
one Pentacebe 10 10 not use
Assay | Avijor 80 80 80 539
two Guare 80 80 80
Pentacebe 80 80 80 %
Assay | Avijor 80 80 80 caq
three Guare 80 80 80
Pentaceba 80 80 80 542
Fresh samples Dried samples
Real class Data set Assigned clas Assigned clas
Guare Pentacebe Guare Pentacebe
Adaxial | Guare Cros« 100 % 100 % 100 % 100 %
Pentacebe | validation 100 % 100 % 100 % 100 %
Abaxial | Guare Cros+ 100 % 100 % 100 % 100 %
Pentacebe | validation 100 % 100 % 100 % 100 %

Table 2 PLS-DA results from the comparison of adaxial abexial leaf surfaces.

Table 3 Results of ASCA-ANOVA modelling to study varianokthe factors.

Fresh leaves Dried leaves Dried-powdered
leaves
Factor Principal Effect ¥ | Principal Effect % | Principal Effect ¥
components components components
Variety 2 30.2¢ 2 19.2¢ 2 24.9¢
Tree 3 1.82 3 4.6¢ 3 1.87
Young / adul 1 19.11 1 24.1¢ 1 6.6¢
Residue 6 48.8( 3 51.8¢ 3 66.4¢
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Table 4. PLS-DA model results of the spectra pre-treatragut study of the types of pre-processed

samples.

Dried-powdered leaves

Real clas | Data se Assigned clas
SNV + SNV + ®'derivative + | SNV +De-trending +
Mean Mean center Mean center
center
Avijor Cros«- 87.4% 99.2 % 86.6 %
validation
Test se 97.5% 100 % 97.5%
validation
Guare Cros+- 89.9 % 99.2 % 89.1 %
validation
Test se 96.6 % 100 % 96.6 %
validation
Pentacebe | Cros«- 97.5% 100 % 97.5 Y%
validation
Tes set 99.2 % 100 % 99.2 %
validation
Dried leaves
Real clas | Data se Assigned clas
SNV + SNV + 'derivative + | SNV + Detrending +
Mean Mean center Mean center
center
Avijor Cros«- 97.5 Y% 99.2 % 95.0 %
validation
Test se 95.0 % 98.3 % 93.3%
validation
Guare Cros+- 95.0 % 100 % 93.3 %
validation
Test se 92.5% 97.5% 91.7 %
validation
Pentacebz | Cros«- 97.5% 99.2 % 93.3%
validation
Test se 97.5% 100 % 98.3 %
validation
Fresh leave
Real clas | Data se Assigned clas
SNV+ SNV + ®'derivative + | SNV + Detrending +
Mean Mean center Mean center
center
Avijor Cros«- 100 % 97.5% 100 %
validation
Test se 99.2 % 100 % 99.2 %
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validatior

Guare Cros+- 99.2 ¥ 97.5% 99.2 %
validation
Test se 98.3 % 99.2 % 98.3 %
validation

Pentacebe | Cros«- 99.2 % 100 % 99.2 ¥
validation
Test se 99.2 % 99.2 % 99.2 %
validation
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Highlights

¢ NIRS was used for discriminating between three Prunus dulcis varieties.

e Several spectral pre-treatment strategies were investigated.

¢ A combination of SNV, SG first derivative, and mean centering methods was optimal.
e Tree variety and leaf age were the most important classification factors for PLS-DA.

¢ NIRS s a rapid and economical method for nursery plant classification.



