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BACKGROUND: Cancer therapy–induced cardiomyopathy (CCM) is 
associated with cumulative drug exposures and preexisting cardiovascular 
disorders. These parameters incompletely account for substantial 
interindividual susceptibility to CCM. We hypothesized that rare variants 
in cardiomyopathy genes contribute to CCM.

METHODS: We studied 213 patients with CCM from 3 cohorts: 
retrospectively recruited adults with diverse cancers (n=99), 
prospectively phenotyped adults with breast cancer (n=73), and 
prospectively phenotyped children with acute myeloid leukemia (n=41). 
Cardiomyopathy genes, including 9 prespecified genes, were sequenced. 
The prevalence of rare variants was compared between CCM cohorts 
and The Cancer Genome Atlas participants (n=2053), healthy volunteers 
(n=445), and an ancestry-matched reference population. Clinical 
characteristics and outcomes were assessed and stratified by genotypes. A 
prevalent CCM genotype was modeled in anthracycline-treated mice.

RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% 
of these patients received anthracyclines. Adult patients with CCM had 
cardiovascular risk factors similar to the US population. Among 9 prioritized 
genes, patients with CCM had more rare protein-altering variants than 
comparative cohorts (P≤1.98e–04). Titin-truncating variants (TTNtvs) 
predominated, occurring in 7.5% of patients with CCM versus 1.1% of The 
Cancer Genome Atlas participants (P=7.36e–08), 0.7% of healthy volunteers 
(P=3.42e–06), and 0.6% of the reference population (P=5.87e–14). Adult 
patients who had CCM with TTNtvs experienced more heart failure and 
atrial fibrillation (P=0.003) and impaired myocardial recovery (P=0.03) than 
those without. Consistent with human data, anthracycline-treated TTNtv 
mice and isolated TTNtv cardiomyocytes showed sustained contractile 
dysfunction unlike wild-type (P=0.0004 and P<0.002, respectively).

CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated 
genes, particularly TTNtvs, increased the risk for CCM in children and adults, 
and adverse cardiac events in adults. Genotype, along with cumulative 
chemotherapy dosage and traditional cardiovascular risk factors, improves the 
identification of patients who have cancer at highest risk for CCM.
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Considerable advances in cancer therapies have 
led to major improvements in long-term survival 
for many malignancies, but also to unintended 

side effects, including cardiotoxicity.1,2 Cancer therapy–
induced cardiomyopathy (CCM), identified as reduced 
left ventricular ejection fraction (LVEF) with or without 
signs and symptoms of overt heart failure,3 can oc-
cur during, shortly after, or many years beyond cancer 
treatments and affects the long-term prognosis of pa-
tients.1,4,5

Anthracyclines, which are commonly used to treat 
both solid tumors and hematologic malignancies in 
children and adults,2 cause cardiotoxicity in up to 10% 
of patients with cumulative dosages of 250 mg/m2 but 
in 65% of patients receiving cumulative dosages >550 
mg/m2.6 Combining anthracyclines with other thera-
pies, such as trastuzumab (an antibody targeting HER-
2), can provoke greater cardiotoxicity with depressed 
LVEF occurring in ≈18% to 34% of treated individu-
als, and severe, symptomatic heart failure in 2% to 
4%.3,7 Additional clinical parameters are recognized to 
contribute to CCM, including female sex, extremes of 
age, and preexisting cardiac risk factors.2 Even when 
accounting for these factors, predicting individual sus-
ceptibility to CCM remains challenging.

Several candidate gene and genome-wide association 
studies have identified common genetic variants that are 
associated with CCM through candidate gene analyses 
and genome-wide association studies.2,8–12 Although 
a recent systemic literature review concluded that the 
overall evidence supporting variant associations with 
CCM was limited, genetic data were robust for one in-
tergenic variant (rs28714259) and variants in proximity 
to 4 other genes.13 Rare variants in genes that cause 
familial cardiomyopathies14 have also been identified 
in several small case series and isolated patients with 
CCM.13,15–17

To better understand the clinical and genetic deter-
minants in CCM, we studied 3 CCM cohorts compris-
ing adult and pediatric patients with diverse malignan-
cies, of whom 90% received anthracyclines. We then 
corroborated our human findings through cardiac 
phenotyping of anthracycline-treated mice. From these 
analyses, we demonstrate the direct and prevalent in-
volvement of variants in genes associated with dilated 
cardiomyopathy and, in particular, titin-truncating vari-
ants (TTNtvs) in CCM.

METHODS
The data that support the findings of this study are available 
within the article, the online supplementary files, and pub-
licly available databases. Additional requests, from qualified 
researchers trained in human subject confidentiality proto-
cols, for anonymized data may be sent to the corresponding 
authors.

CCM Cohorts, Healthy Volunteer, and 
Population Controls
Research protocols were reviewed and approved by the insti-
tutional ethics board at each participating site. Adult patients 
with CCM (cohorts A and B), parents of minor patients with 
CCM (cohort C), and healthy volunteers provided written 
informed consent. Cohort A includes non-Finnish European 
patients with CCM retrospectively collected from 6 European 
heart failure or cardiac transplantation clinics in Spain and the 
United Kingdom. Cohort B includes prospectively enrolled 
patients with breast cancer, participating in cardiotoxicity 
studies of cancer treatments (clinicaltrials.gov NCT01173341). 
Cohort C includes pediatric patients with newly diagnosed 
acute myeloid leukemia, enrolled in a clinical therapy trial ther-
apy (AAML1031; clinicaltrials.gov NCT01371981). Cohorts B 
and C are US patients with non-Finnish European, African, 
or Asian ancestry, who had prespecified clinical assessments 
with cardiac imaging (echocardiograms or multigated acquisi-
tion scans) before, during, and after chemotherapy. Table 1 
provides additional demographic profiles on these cohorts.

CCM was diagnosed irrespective of symptoms based on LVEF 
to <50 (cohort B) or <53% (cohorts A and C)3,18,19 and ≥10% 
reduction from baseline by echocardiography or <50% and 
≥10% reduction from baseline by radionuclide ventriculography, 
in the absence of established coronary artery disease, cardiomy-
opathy, primary valvular disease, or uncontrolled hypertension. 

Clinical Perspective

What Is New?
• This is the first study to consider the association 

between rare genetic variants in a large set of car-
diomyopathy genes and the occurrence of cancer 
therapy–induced cardiomyopathy (CCM).

• We demonstrated an increased prevalence of rare 
variants in cardiomyopathy genes, in particular, 
truncating variants in the TTN gene, in adult and 
pediatric patients who have cancer with CCM.

• We confirmed human genetic data with experi-
mental analyses, showing that anthracyclines 
induced protracted left ventricular dysfunction in 
mice with titin-truncating variants, but not in wild-
type mice.

What Are the Clinical Implications?
• Our findings show that variants in cardiomyopa-

thy genes contribute to CCM susceptibility among 
adult and pediatric patients with cancer.

• The identification of genetic risk factors opens new 
opportunities to define patients at high risk for 
CCM and associated adverse outcomes.

• Future investigations to define patients who have 
cancer with high risk for CCM through genetic test-
ing can assess the efficacy of prophylactic cardio-
protective drugs and treatment regimens to reduce 
CCM while providing effective cancer therapy.

D
ow

nloaded from
 http://ahajournals.org by on July 7, 2020



Garcia-Pavia et al Genetics of Cancer Therapy–Induced Cardiomyopathy

Circulation. 2019;140:31–41. DOI: 10.1161/CIRCULATIONAHA.118.037934 July 2, 2019 33

ORIGINAL RESEARCH 
ARTICLE

Additional clinical information including follow-up duration and 
adverse outcomes was obtained from medical and clinical trial 
records and patient reports. Where prechemotherapy cardiac 
imaging was absent, patients were included when LVEF was 
≤45% and no alternative cause for cardiac dysfunction other 

than chemotherapy was identified. LVEF recovery was defined 
by a final LVEF ≥50% with ≥5% LVEF increase or restoration of 
LVEF to the baseline value.18

Healthy volunteers of European ancestry (n=445) were pro-
spectively recruited participants into the U.K. Digital Heart Project 

Table 1. Clinical Characteristics at Baseline and Follow-Up in Patients With CCM in Study Cohorts

Characteristics Cohort A (n=99) Cohort B (n=73) Cohort C (n=41)

Baseline

        Age at chemotherapy onset, y 48.7±17.1 49.6±10.8 10.8±5.6

        Male sex, n (%) 33 (33)§ 0 (0)§ 17 (41)§

         Family history of cardiomyopathy, n (%) 3 (3) 0 (0) NA

        Ethnicity, n (%)    

         White 99 (100)§ 46 (63)§ 25 (61)§

         Black 0 (0)§ 23 (32)§ 9 (22)§

         Asian 0 (0)§ 4 (5)§ 3 (7)§

         Others 0 (0)§ 0 (0)§ 4 (10)§

        Comorbidities, n (%)    

         Current or past smokers 33 (33) 25 (34) 0 (0)

         Hypertension 29 (29) 29 (39) 0 (0)

         Hypercholesterolemia 27 (27) 17 (23) 0 (0)

         Diabetes mellitus 20 (20) 7 (10) 0 (0)

        Oncological disease, n (%)

         Breast cancer 51 (52)§ 73 (100)§ 0 (0)§

         Hematological malignancy 38 (38)§ 0 (0)§ 41 (100)§

         Other solid tumor 10 (10)§ 0 (0)§ 0 (0)§

        Exposure to anthracycline, n (%) 91 (91) 58 (79) 41 (100)

        Cumulative anthracycline dose,* mg/m2 300.7±153.2 240±0 488.3±23.4

        Exposure to anti-HER2, n (%) 20 (20)§ 36 (49)§ 0 (0)§

        Radiation therapy to chest, n (%) 32 (32)§ 47 (64)§ 0 (0)§

        LVEF before chemotherapy,† % 62.1±5.4§ 55.0±4.7§ 64.5±5.8§

At CCM diagnosis

        Time from chemotherapy to diagnosis, y 3 (1–9)§ 0.7 (0.4–1.2)§ 0.3 (0.2–0.4)§

        LVEF at CCM diagnosis, % 33.0±10.0§ 41.5±5.5§ 44.8±6.7§

        NYHA functional class III–IV, n (%) 44 (44)§ 1 (1.3)§ NA§

Follow-up

        Duration of follow-up, y 4 (1–7)§ 1.7 (0.7–3.3)§ 2.3 (1.1–3.2)§

        Final LVEF, % 47.3±13.2 49.3±8.2 54.8±13.0

        LVEF recovery,‡ n (%) 50 (50) 33 (45) 28 (68)

        Cardiac transplantation, n (%) 9 (9) 0 (0) 0 (0)

        Cardiac death, n (%) 3 (3) 0 (0) 2 (5)

Data are expressed as numbers (%) or mean±SD, except for time from chemotherapy to cardiotoxicity diagnosis and duration of 
follow-up, which are expressed as median (Q1–Q3). Comorbidities are those present at diagnosis of CCM. Patient characteristics 
which are significantly different (adjusted P-value <0.05 using Fisher exact test for categorical variables and Welch t test for 
continuous variables) between adult cohorts A and B are shown in bold. CCM indicates cancer therapy-induced cardiomyopathy; 
HER-2, human epidermal growth factor receptor-2; LVEF, left ventricular ejection fraction; and NYHA, New York Heart Association.

*Cumulative anthracycline dose for 7 patients in cohort A is unknown; these patients were excluded from calculation. Fifty-
eight patients in cohort B who underwent anthracycline treatment received 240 mg/m2. Planned cumulative anthracycline dose 
for cohort C (492 mg/m2 for 40 patients and 342 mg/m2 for 1 patient) is noted in the table, but actual dose may have varied, 
because 17 patients underwent dose modification of unknown quantity during their treatment period.

†LVEF before chemotherapy was available to review in 31, 73, and 41 subjects in cohorts A, B, and C, respectively.
‡LVEF recovery was defined as an absolute increase in LVEF ≥5% with final LVEF ≥50% in the adult cohorts and ≥53% in 

the pediatric cohort.
§Significant values.
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(https://digital-heart.org/)20 with no cardiovascular disease or risk 
factors by self-report and normal cardiac magnetic resonance 
imaging.

Next-Generation Sequencing and Variant 
Analysis
Genomic DNA extracted from peripheral blood samples was 
used to produce DNA-sequencing libraries that were captured 
and sequenced on Illumina TruSight Cardio Sequencing kit 
and a custom Agilent array (DCMv5) as described.20,21 Variants 
were identified using the Genome Analysis Took Kit (GATK) 
HaplotypeCaller tool following GATK Best Practices.22 Rare 
variants (minor allele frequency <1.0e–4, assessed in ances-
try-matched subjects in the Genome Aggregation Database 
[gnomAD]23) were annotated by SnpEFF and GRCh37.68 (also 
see the online-only Data Supplement). The cumulative burden 
of rare variants in cardiomyopathy genes was compared in 
CCM cohorts with all patients who had breast (n=1042) and 
lung (n=1011) cancer participating in The Cancer Genome 
Project (TCGA),24 healthy volunteers, and gnomAD23 subjects 
with non-Finnish European, African, and Asian ancestries 
(combined and in ancestry-specific analyses).

Anthracycline Treatment of Mice
Protocols were reviewed and approved by the Institutional 
Animal Care and Use Committee at Harvard Medical School 
(Boston, MA). Wild-type and heterozygous C57BL/6N mice 
with a titin A-band truncation (Ttntv/+)25,26 received 3 doses 
of intraperitoneal doxorubicin (5 mg/kg) at weekly intervals 
(≈45 mg/m2). Cardiac function was assessed in vivo at base-
line (age=10–14 weeks) and weekly using a digital ultrasound 
system (Vevo 2100 Imaging System and MS550D transducer; 
FujiFilm VisualSonics) by an experienced observer blinded 
to mouse genotype and treatment. Cardiomyocytes from 
treated and untreated wild-type and Ttntv/+ mice were isolated 
and sarcomere contractility was measured (see the online-
only Data Supplement Methods).

Statistical Analyses
Cohort and subgroup analyses, and comparisons with TCGA 
genomic data,24 healthy volunteers, and reference popula-
tions23 were performed by Fisher exact test (2-tailed), binomial 
test, or Pearson χ2 test of association for categorical values. 
Welch t test and Kruskal-Wallis rank sum tests were used to 
assess numerical data. Analyses were conducted using either 
the Stata SE package (version 14, StataCorp) or the R statisti-
cal package (version 3.4.0; http://www.R-project.org/).

Additional method details are provided in the online-only 
Data Supplement.

RESULTS
Patients With CCM 
We studied 3 CCM cohorts (Table 1). Cohort A includes 
99 patients of European ancestry with hematologic, 
breast, or other solid-tumor cancer (mean age at treat-
ment=48.7±17.1 years), recruited from heart failure and 

cardiac transplant clinics. Two US cohorts were identified 
through prospective longitudinal cardiac evaluations ob-
tained throughout cancer therapy: Cohort B comprised 
73 patients (mean age at treatment=49.6±10.8 years) 
with European, African, or Asian ancestry, enrolled from 
breast cancer clinics as part of a prospective study of who 
developed CCM during treatment; Cohort C comprised 
41 pediatric patients with newly diagnosed acute my-
elogenous leukemia  (mean age at treatment=10.8±5.6 
years) of diverse ancestries. Although individual treat-
ments varied, 90% of all patients with CCM received 
anthracycline and 33% of adults received trastuzumab. 
After normalizing anthracycline doses27 the cumulative 
equivalent dose was <400 mg/m2 in 93.9% of patients 
in cohort A, 100% of patients in cohort B, and 2.3% of 
patients in cohort C.

We assessed clinical risk factors for CCM in these 
cohorts. Seventy-six percent of all patients were CCM 
were females, predominantly treated for breast cancer. 
In cohorts A and B the prevalence of cigarette smoking, 
hypertension, and diabetes mellitus was comparable 
(P=not significant) to that of the general US popula-
tion,28 but hypercholesterolemia in patients with cancer 
was less common (P=3.0e–09). Three patients in co-
hort A, without prechemotherapy imaging studies, had 
family histories of cardiomyopathy of unknown cause. 
Patients in cohort C were considerably younger (mean 
age=10.8±5.6 years), without cardiovascular risk fac-
tors, and all had normal LVEF at study entry.

The median time after the initiation of cancer treat-
ment to CCM diagnosis in cohort A was 3.0 (range=1–9) 
years, but 0.3 to 0.7 years for cohorts B and C because 
of cardiac surveillance during treatment in these 2 co-
horts. At CCM diagnosis, the mean LVEF decrease was 
23.4±9.2% in cohort A, 13.5±3.3% in cohort B, and 
19.7±6.0% in cohort C. Across all cohorts, treatment 
with high cumulative anthracycline dose (>400 mg/m2) 
was not associated with poorer left ventricular (LV) dys-
function at CCM diagnosis (mean LVEF=42.0±9.6%). 
Patients (cohorts A and B) who received trastuzumab 
without anthracycline had similar cardiovascular risk 
factors and no significant differences in either base-
line or postchemotherapeutic LVEF (mean LVEF de-
crease=13.9±3.6%) in comparison with patients receiv-
ing anthracyclines with or without other agents (mean 
LVEF decrease=16.7±7.5%). Cardiac recovery occurred 
in approximately half of patients with CCM from each 
cohort, but 9% of patients in cohort A underwent car-
diac transplantation. Cardiac deaths occurred in 3% of 
patients in cohort A and in 5% of patients in cohort C.

Gene Variants in Patients With CCM 
We previously identified 9 genes with an excess of rare 
missense and in-frame insertions/deletion or truncating 
variants among patients with cardiomyopathy.29 Within 
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these prespecified genes, we examined rare variants (de-
fined as minor allele frequency <1.0e–4) among ancestry-
matched reference populations,23 CCM cohorts, healthy 
volunteers, and all breast and lung cancer participants in 
TCGA24 (Table 2). Because anthracyclines are highly ef-
fective and widely used to treat these malignancies,6 we 
expect that most TCGA participants received this che-
motherapeutic agent. The prevalence of rare protein-al-
tering variants across all 9 genes was significantly higher 
in a combined CCM cohort than in unselected lung and 
breast cancer TCGA participants (P=1.98e–04), healthy 
volunteers (P=3.90e–05), and reference populations 
(P=1.78e–06). Although patients with CCM had rare vari-
ants in several established dilated cardiomyopathy (DCM) 
genes (BAG3, LMNA, MYH7, TCAP, TNNT2, and TTN), 
only variants in TTN, which encodes titin, were significant-
ly increased. TTNtvs were highly enriched in all patients 
with CCM (n=16; 7.5%) in comparison with unselected 
breast or lung TCGA participants (combined, P=7.36e–08 
and Table I in the online-only Data Supplement), healthy 
volunteers (P=3.42e–06), and the reference population 
(P=5.87e–14). Subanalyses of patients with CCM and the 
reference population stratified by ancestry (Table II in the 
online-only Data Supplement), although limited by small 
numbers, confirmed the observed enrichment of TTNtvs 
in all patients with CCM. TTNtvs that are significantly 

 increased in patients with DCM 20,30 reside in exons that 
are highly expressed in LV tissues, especially those that en-
code the A-band and distal I-band.31 TTNtvs identified in 
patients with CCM shared these characteristics (Table 3).

We extended these analyses to include 40 other genes 
that have been implicated in cardiomyopathies.29 Vari-
ants in these genes account for a very small fraction of 
unselected patients with cardiomyopathy. There was no 
significant difference in the prevalence of all rare protein-
altering variants (minor allele frequency <1.0e–4; Tables 
III and IV in the online-only Data Supplement) or variants 
predicted as damaging (Tables V and VI in the online-only 
Data Supplement) in patients with CCM in each cohort or 
the combined CCM cohort, in comparison with healthy 
volunteers or in the reference population. For individual 
genes, the prevalence of rare variants was nominally in-
creased only in FKRP (encoding fukutin-related protein); 
recessive FKRP mutations cause several forms of muscu-
lar dystrophies with cardiac involvement.32

Clinical Outcomes in Adult Patients Who 
Have CCM With or Without TTNtvs
Patients with CCM in cohorts A and B were predomi-
nantly women (81%), with breast cancer (73%), with 
traditional cardiovascular risk factors, who received 

Table 2. Burden Analysis of 9 DCM Genes in CCM Cohorts

Gene
Cohort A 

(n=99)
Cohort B 

(n=73)
Cohort C 

(n=41)
All CCM 
(n=213)

TCGA* 
Breast/
Lung 

(n=2053)
HVOL† 
(n=445)

P Values Comparisons of

All CCM Versus NFE§ CCM 
(n=170) 

Versus NFE 
gnomADTCGA HVOL gnomAD‡

BAG3 1 (1.0%) 2 (2.7%) 0 (0.0%) 3 (1.4%) 18 (0.9%) 4 (0.9%) 0.44 (1) 0.69 (1) 0.44 (1) 0.37 (1)

DSP 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (0.2 %) 0 (0.0%) 1 (1) 1 (1) 1 (1) 1 (1)

LMNA 0 (0.0%) 1 (1.4%) 0 (0.0%) 1 (0.5%) 16 (0.8%) 2 (0.4%) 1 (1) 1 (1) 1 (1) 1 (1)

MYH7 3 (3.0%) 0 (0.0%) 0 (0.0%) 3 (1.4%) 35 (1.7%) 5 (1.1%) 1 (1) 0.72 (1) 1 (1) 0.75 (1)

SCN5A 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (0.2%) 1 (0.2%) 1 (1) 1 (1) 1 (1) 1 (1)

TCAP 1 (1.0%) 0 (0.0%) 1 (2.4%) 2 (0.9%) 2 (0.1%) 0 (0.0%) 0.05 (0.45) 0.10 (0.90) 0.07 (0.62) 1 (1)

TNNC1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.1%) 0 (0.0%) 1 (1) 1 (1) 1 (1) 1 (1)

TNNT2 0 (0.0%) 1 (1.4%) 0 (0.0%) 1 (0.5%) 7 (0.3%) 0 (0.0%) 0.55 (1) 0.32 (1) 0.50 (1) 0.34 (1)

TTN 10 (10.0%)‖ 4 (5.5%)‖ 2 (4.9%)‖ 16 (7.5%)‖ 22 (1.1%)‖ 3 (0.7%)‖ 7.36e–08
(6.62e–07)‖

3.42e–06
(3.08e–05)‖

5.87e–14
(5.28e–13)‖

2.03e–10 
(1.82e–09)‖

8 genes 
(no TTN)

5 (5.1%) 4 (5.5%) 1 (2.4%) 10 (4.7%) 86 (4.2%) 12 (2.7%) 0.72 0.25 0.01 0.21

9 genes 15 (15.1%)‖ 8 (11%)‖ 3 (7.3%)‖ 26 (12.2%)‖ 108 (5.3%)‖ 15 (3.4%)‖ 1.98e–04‖ 3.90e–05‖ 1.78e–06‖ 6.98e–06‖

The number of subjects with variants in each gene is noted in the table, and percentages are noted in parentheses (%). Types of variants analyzed for each 
gene: all protein-altering variants (BAG3, LMNA, TCAP, TNNC1, TNNT2), missense variants and in-frame deletion or insertion only (MYH7), frameshift variant, stop-
gained, splice-donor, and splice-acceptor variants only (DSP, SCN5A, TTN). P values were calculated via Fisher exact test for all CCM vs breast and lung cancer TCGA 
participants (TCGA) and healthy volunteers (HVOL) and binomial test for all CCM vs gnomAD.23 Bonferroni corrections are provided in parentheses. Significant values 
are shown in bold. CCM indicates cancer therapy-induced cardiomyopathy; and DCM, dilated cardiomyopathy.

*TCGA denotes all breast and lung cancer participants (n=2053) in The Cancer Genome Atlas.24

†HVOL denotes 445 healthy volunteers without cardiovascular disease based on detailed evaluations. 
‡gnomAD denotes reference population with African American, non-Finnish European, and East Asian ancestries. 
§NFE denotes non-Finnish Europeans ancestries. The subanalyses of NFE patients with CCM are compared with NFE gnomAD reference population n≥113 482. 
 ‖Significant values. 

See Table II in the online-only Data Supplement for subanalyses of patients with CCM and reference populations stratified by ancestry.D
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 anthracyclines (86.6%) or trastuzumab (33%), and 
with follow-up between 8.4 months and 18 years (Ta-
ble 1). We defined the clinical courses among patients 
who have CCM with TTNtv and compared risk fac-
tors for CCM and outcomes among patients with and 
without TTNtv (Table 4 and Tables VII through IX in the 
online-only Data Supplement). At diagnosis of CCM, 
the mean LVEF of patients with (34.9±7.4) and with-
out TTNtvs (36.8±9.5; P=not significant) were compa-
rable; however, patients with TTNtvs had more heart 
failure hospitalizations and atrial fibrillation (P=0.003 
for each) than those without TTNtvs. Recovery occurred 
in both groups, although the final mean LVEF was more 
depressed in patients with TTNtvs (39.6±14.2 versus 
48.9±10.8; P=0.03).

Modeling CCM in TTNtv Mice
Given the multiple variables that can influence cardio-
toxicity in human patients, we assessed whether TTNtvs 
increased susceptibility to anthracycline-induced cardio-
myopathy in an experimental model. Doxorubicin was 
administered (3 doses of 5 mg/kg at weekly intervals; 
cumulative=45 mg/m2) to genetically identical mice, 
with the exception of the absence (wild-type) or pres-
ence (Ttntv/+) of a heterozygous A-band titin truncation 
in one gene copy.25,26 Untreated Ttntv/+ mice have normal 
LV function (not significantly different from wild-type 
mice) and anthracycline administration comparably de-
pressed LV function in both genotypes at week 4 after 
treatments (Figure). However, at week 8, LV function 
recovered to baseline in wild-type mice but remained 

Table 3. Summary of TTNtv Identified From All 3 Cohorts With CCM

Variant Impact
TTN 
Band

Affected 
Exon

PSI of 
Affected 

Exon
Cancer 
Type Chemotherapy

LVEF at CCM 
(Change)

Follow-
Up, y

Adverse 
Outcome

chr2:179399704 
c.101638G>T

Nonsense (p.Glu33880X) M 359 1 Breast Epirubicin 30% (NA) 14 HF

chr2:179400742 
c.100731dupA

Frameshift 
(p.Ser33578IlefsTer15)

A 358 0.99 Breast Doxorubicin + 
Trastuzumab

37% (24%) 4 VT, HF

chr2:179410112 
c.95722+2delT

Splicing A 345 0.99 Endometrial Doxorubicin 20% (NA) 5 HF

chr2:179414849 
c.91715dupA

Frameshift 
(p.Asn30572fs)

A 338 0.98 Breast Epirubicin 42% (NA) 5 HF

chr2:179422284 
c.60512-2A>C

Splicing A 330 0.96 Breast Doxorubicin + 
Trastuzumab

43% (17%) 2.2 None

chr2:179425091 
c.85768C>T

Nonsense (p.Arg28590X) A 327 0.95 Breast Doxorubicin 35% (NA) 2 HF, VT, 
transplantation

chr2:179428124 
c.82734dupA

Frameshift 
(p.Val27579SerfsTer15)

A 327 0.95 Non-
Hodgkin 

lymphoma

Doxorubicin 29% (NA) 2 None

chr2:179432234 
c.78625G>T

Nonsense (p.Glu26209X) A 327 0.95 Non-
Hodgkin 

lymphoma

Doxorubicin 34% (NA) 3 HF

chr2:179435679 
c.75179delA

Frameshift 
(p.Asn25060fs)

A 327 0.95 Breast Doxorubicin + 
Trastuzumab

44% (12%) 3.4 None

chr2:179441250 
c.69715+6T>C

Splicing A 326 0.95 Breast Trastuzumab 38% (12%) 0.4 None

chr2:179446855 
c.66240delA

Frameshift 
(p.Asp22081MetfsTer31)

A 316 0.86 Bone 
sarcoma

Doxorubicin 25% (NA) 6 HF

chr2:179453355 
c.63096delT

Frameshift 
(p.His21032fs)

A 305 0.97 AML Daunorubicin+ 
Mitoxantrone

36% (22%) 2.8 None

chr2:179478777 
c.49345+2T>C

Splicing A 263 0.89 AML Daunorubicin+ 
Mitoxantrone

50% (18%) 0.8 None

chr2:179571683 
c.29042-2A>C

Splicing I 102 0.88 Breast Doxorubicin 35% (15%) 1.6 None

chr2:179604819 
c.13141G>T

Nonsense (p.Glu4381X) I 49 0.95 Breast Doxorubicin 31% (30%) 6 HF

chr2:179631116 
c.9693_9694delCT

Frameshift 
(p.Tyr3232CysfsTer5)

I 41 1 Breast Epirubicin 45% (NA) 6 HF

Variants are defined based on the meta-transcript (LRG_391_t1 / ENST00000589042) that incorporates all exons in described TTN isoforms (including fetal and 
noncardiac isoforms) with the exception of exons that are unique to the novex transcripts. 

AML indicates acute myeloid leukemia; CCM, cancer therapy–induced cardiomyopathy; HF, heart failure hospitalization; LVEF, left ventricular ejection fraction; NA, 
not available; PSI, proportions spliced in; TTNtv, titin-truncating variant; and VT, ventricular tachycardia.
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depressed through week 12 in Ttntv/+ mice (P=0.0004 
versus wild-type). Functional analyses in isolated cardio-
myocytes confirmed that LV dysfunction reflected cell 
autonomous effects of anthracyclines (Figure B). His-
tological analysis of cardiac tissues from anthracycline-
treated wild-type or Ttntv/+ mice were comparable and 
showed no significant increase in fibrosis or apoptosis 
in comparison with untreated mice.

DISCUSSION
We demonstrate an increased prevalence of DCM-as-
sociated gene variants, predominantly TTNtvs, in adult 
patients who have cancer and pediatric patients who 
have acute myelogenous leukemia with CCM relative to 

 controls. Although the majority of the patients with CCM 
have European ancestry, the frequency of cardiomyopa-
thy variants in other patients with CCM who have other 
ancestries was not significantly different (Table II in the 
online-only Data Supplement). TTNtvs were identified in 
16 of 213 CCM cases (7.5%), a considerably higher prev-
alence than in unselected breast and lung cancer TCGA 
participants (1.1%, P=7.36e–08) or healthy volunteers 
(0.7%, P=3.42e–06) and enriched in comparison with 
ancestry-matched reference populations (P=5.87e–14). 
Because cardiac status is not recorded for TCGA partici-
pants, these data provide conservative estimates of the 
burden of TTNtvs in CCM. Further support that TTNtvs 
contribute to CCM is derived from a mouse model of 
CCM: anthracycline-treated Ttntv/+ mice and isolated car-
diomyocytes had protracted LV and cellular dysfunction 
in comparison with wild-type.

Clinical outcomes among patients with CCM showed 
considerable variability, but cardiac function improved 
in 45% to 68% of adult and pediatric patients. Recov-
ery occurred in 83 adults and 28 children, and was not 
significantly correlated (P≥0.5) with preexisting cardio-
vascular risk factors in adults, TTNtvs, high (>400 mg/
m2) anthracycline dose, or trastuzumab therapy. How-
ever, adult patients who have CCM with TTNtvs had 
more heart failure hospitalizations and atrial fibrillation, 
as occurs in patients with DCM caused by TTNtvs,33,34 
and cardiac function was worse in patients with than in 
patients without these variants.

In addition to TTNtvs, our analyses identified rare 
protein-altering variants in 5 genes previously studied 
in patients with DCM.29 Mutations in BAG3, LMNA, 
MYH7, and TNNT2 are established autosomal domi-
nant causes of DCM.14,35 TCAP mutations are occasion-
ally identified in patients with DCM,36 but more com-
monly cause a recessive form of limb-girdle muscular 
dystrophy.37 Despite the low prevalence of variants in 
these genes across all CCM cohorts (4.7%), their critical 
roles in myocyte biology imply that variants identified 
here may contribute to an individual’s risk for CCM.

The increased burden of rare variants, including 
TTNtvs, indicate that genetics is an important compo-
nent in CCM susceptibility and adverse outcomes. We 
demonstrate that genetics is associated with CCM sus-
ceptibility across different cancer types and treatment 
regimens, in particular, those including anthracycline 
and trastuzumab (Table 1). Genetic variants in previ-
ously identified cardiomyopathy genes were increased 
among adult cancer survivors with overt CCM and se-
vere clinical courses, and among prospectively studied 
adult and pediatric patients with mild CCM identified 
during ongoing cancer treatment. It is notable that 
heart failure, cardiac transplantation, aborted sudden 
death, and cardiac death occurred years after comple-
tion of chemotherapy regimens in some patients with 
CCM (Table  4), an observation that  underscores the 

Table 4. Comparisons of Risk Factors and Outcomes in Adult Patient 
Who Has CCM With and Without TTNtv

Clinical Characteristics
TTNtv 
(n=14)

Non-TTNtv 
(n=158) P Value*

Baseline    

Male sex, n (%) 2 (14.3) 31 (19.6) 1

Comorbidities, n (%)

        Current or past smokers 3 (21.4) 55 (34.8) 0.39

        Hypertension 4 (28.6) 54 (34.2) 0.78

        Hypercholesterolemia 6 (42.9) 38 (24.1) 0.20

        Diabetes mellitus 2 (14.3) 25 (15.8) 1

Oncological treatments, n (%)

        Doxorubicin ± other 13 (92.9) 136 (86.1) 0.70

At CCM diagnosis    

        LVEF at CCM diagnosis, % 34.9±7.4 36.8±9.5 0.38

        NYHA functional class III–IV, 
n (%)

6 (42.9) 39 (24.7) 0.2

Follow-up

        Last LVEF, % 39.6±14.2 48.9±10.8 0.03‡

        LVEF recovery, n (%) 6 (42.9) 77 (48.7) 0.78

        On neurohormonal blockers,† 
n (%)

10 (71.4) 121 (76.6) 0.74

        Atrial fibrillation, n (%) 5 (35.7) 10 (6.3) 0.003‡

        Heart failure–related 
hospitalization, n (%)

9 (64.3) 39 (24.7) 0.003‡

        Cardiac transplantation, n (%) 2 (14.3) 7 (4.4) 0.16

        Aborted sudden cardiac 
death, n (%)

1 (7.1) 6 (3.8) 0.45

        Cardiac death, n (%) 0 (0.0) 3 (1.9) 1

        Death from all cause, n (%) 0 (0.0) 5 (3.2) 1

CCM indicates cancer therapy–induced cardiomyopathy; LVEF, left 
ventricular ejection fraction; NYHA, New York Heart Association; and TTNtv, 
titin-truncating variant.

*P values were calculated using the Fisher exact test for categorical variables 
and the Welch t test for continuous variables. 

†Number of patients who were taking at least one of β-blockers, 
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, or 
mineralocorticoid receptor antagonists. No data were available to review for 1 
of the patients with TTNtv.

‡Significant values.
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need for continued cardiac surveillance in patients 
with CCM.

These data establish a genetic relationship between 
DCM and CCM. Cardiomyopathy variants were found 
in 12.2% of patients with CCM (Table  2), whereas 
these occur in ≈40% of patients with familial and spo-
radic DCM.31,38–40 Whether broader genomic analyses 
may uncover additional genetic contributors to CCM 
is worthy of study. TTNtvs are significantly prominent 
in DCM, occurring in 15% of ambulatory and 25% of 
end-stage patients,30,31,34,38 but are rarely identified in 
childhood-onset DCM,41 whereas here we identified 
TTNtvs in 8.1% of adults and 5.0% of children with 
CCM. TTNtvs found in patients with CCM, like those 
in patients with DCM, disrupted exons that are consti-
tutively expressed in the heart and are overrepresented 
in the A-band (Table  3). TTNtvs also occur in ≈15% 
of patients with peripartum cardiomyopathy21 and in 
≈10% of individuals with alcoholic cardiomyopathy,42 
findings that imply additional cardiovascular stress can 
unmask the deleterious cardiac effects of TTNtvs. Con-
sistent with this supposition, in vitro analyses of hu-
man isogenic cardiomyocytes (derived from induced 
pluripotent stems cells) demonstrate that titin provides 
an essential mechanical connection that propagates 
diastolic traction stresses from β-cardiac myosin dur-
ing sarcomere formation. Cardiomyocytes with TTNtvs 
have diminished reassembly of sarcomeres after stress 
in comparison with cells without TTNtvs.43 We suggest 
that chemotherapy, like pregnancy and excessive alco-
hol, is an important provocation that is poorly tolerated 
by TTNtvs, a conclusion that is supported both by these 
human data and by analyses of anthracycline-treated 
TTNtv mice.

We recognize several limitations in this study. Given 
the demographic profiles of the cohorts studied here, 
further analyses of patients with diverse ancestries 
are needed. Cohort A was retrospectively recruited 

after diagnosis of CCM, and these patients had more 
 severe phenotypes and longer durations of follow-up 
than the prospectively identified patients in cohorts B 
and C. Because breast cancer was the most common 
diagnosis in adult patients with CCM and all pediatric 
cases had acute myelogenous leukemia, these find-
ings may not be relevant to other cancers and other 
treatment regimens. All patients had individual che-
motherapy dosages and additional treatments based 
on clinical practice and treatment protocols. These 
and other variables may influence susceptibility to 
CCM. This study compared the frequency of TTNtvs 
among patients with CCM to the frequency of TTNtvs 
in a large cohort of patients with cancer participat-
ing in TCGA, some fraction of whom likely developed 
CCM. A limitation of our study is that we do not 
know which TCGA subjects developed CCM, poten-
tially affecting the accuracy of the TTNtv frequency 
estimate in the CCM-free cancer cohort. A more ideal 
comparison group would have been patients treated 
with chemotherapy who did not develop cardiomy-
opathy. While recognizing these issues, we suggest 
that enrichment of protein-altering variants and TTNt-
vs across all cohorts strongly supports the conclusion 
that genetics, like high-dose anthracycline and com-
bination therapy, and cardiovascular risk factors con-
tribute to CCM.

Current strategies to diagnose CCM focus on imag-
ing and circulating biomarkers1,2,18,44–46 and treatment 
guidelines are limited, often recommending interruption 
or discontinuation of chemotherapy that can negatively 
impact the survival of patients with cancer. The identi-
fication of genetic risk factors opens new opportunities 
to identify patients with cancer at high risk for CCM 
and to assess the efficacy of prophylactic cardioprotec-
tive drugs and treatment regimens.47–49 Future investiga-
tions will determine if early recognition of patients who 
have cancer with high CCM risk through genetic testing 

Figure. Persistent cardiac dysfunction in Ttntv/+ mice after anthracycline treatment.  
A, Untreated Ttntv/+ mice have left ventricular function comparable with wild-type (WT) mice.25,26 Intraperitoneal doxorubicin (5mg/kg) was administered (arrows) 
to WT and Ttntv/+ mice (n=15 per genotype) in 3 successive weekly doses (cumulative dose=45 mg/m2). Serial echocardiograms showed persistent significantly 
depressed systolic function (mean fractional shortening ±SD) in Ttntv/+ in comparison with WT mice (P=0.0004). B, Isolated cardiomyocytes (n≥52 per group) were 
studied 12 weeks after initial doxorubicin injection. Cardiomyocytes from doxorubicin-treated Ttntv/+ mice had significantly depressed contractility (P<0.002) in 
comparison with cardiomyocytes from doxorubicin-treated WT mice or untreated mice. NS indicates not significant.
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can optimize cancer and cardiovascular treatments to 
reduce CCM while providing effective cancer therapy.
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