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Abstract: Many MALDI-MS imaging experiments make a case versus control studies of different
tissue regions in order to highlight significant compounds affected by the variables of study. This
is a challenge because the tissue samples to be compared come from different biological entities,
and therefore they exhibit high variability. Moreover, the statistical tests available cannot properly
compare ion concentrations in two regions of interest (ROIs) within or between images. The high
correlation between the ion concentrations due to the existence of different morphological regions
in the tissue means that the common statistical tests used in metabolomics experiments cannot be
applied. Another difficulty with the reliability of statistical tests is the elevated number of undetected
MS ions in a high percentage of pixels. In this study, we report a procedure for discovering the most
important ions in the comparison of a pair of ROIs within or between tissue sections. These ROIs
were identified by an unsupervised segmentation process, using the popular k-means algorithm.
Our ion filtering algorithm aims to find the up or down-regulated ions between two ROIs by using
a combination of three parameters: (a) the percentage of pixels in which a particular ion is not
detected, (b) the Mann–Whitney U ion concentration test, and (c) the ion concentration fold-change.
The undetected MS signals (null peaks) are discarded from the histogram before the calculation of
(b) and (c) parameters. With this methodology, we found the important ions between the different
segments of a mouse brain tissue sagittal section and determined some lipid compounds (mainly
triacylglycerols and phosphatidylcholines) in the liver of mice exposed to thirdhand smoke.

Keywords: mass spectrometry imaging; metabolomics imaging; biostatistics; ion selection algorithms

1. Introduction

Mass Spectrometry Imaging (MSI) is a label-free analytical technique that can locate chemical
compounds (metabolites, peptides, lipids, or proteins) directly in a biological sample and give their
concentration for every pixel. The most common analytical strategy is MALDI due to its soft ionization,
fast analysis, high throughput, versatility, and selectivity [1]. Other techniques, like desorption
electrospray ionization (DESI), are becoming more popular because of the simplicity of their sample
preparation [2]. MSI is currently used in the fields of drug discovery and toxicology [3,4]. In
most experiments, researchers use a targeted strategy, which consists of visualizing and (sometimes)
quantifying the concentration of a particular compound, or a reduced set of compounds throughout
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the tissue. Many MSI software packages have been released [5]. However, none of them provides an
automated workflow for untargeted MSI applications since the end-user has to approach each MSI
experiment data analysis in its unique manner.

Besides annotating and identifying the MS ions, one of the main challenges in untargeted MSI
analysis is to determine the statistically differentiating ions in different regions of interest (ROIs) of
the same tissue section or in different tissues of case versus control experiments. These key ions
could be associated with biomarker candidates of disease or treatment efficacy. Previous studies have
successfully used segmentation processes to find these key ions between clusters [6,7]. Most of these
studies identify the key ions associated with a certain region by analysing the ions that most influence
the segmenting process. In [8], the authors applied a Non-negative Matrix Factorization multivariate
analysis to select a reduced group of lipid MS signals associated with the metabolite profile of each
component. The t-test associated with segmentation with Spatial Shrunken Centroids can find the
enriched and absent MS peaks for a particular region in a segmented image [9,10]. A technique
based on deep unsupervised neural networks and parametric t-SNE was used to detect metabolic
hidden sub-regions [11]. The same algorithm, linked to a significance analysis of microarrays (SAM),
detected the protein subpopulations that can differentiate between t-SNE segments in a dataset of breast
cancer samples; interestingly, they used the selected ions for a kNN second segmentation step [12].
Gorzolka et al. [13] studied the space-time profiling of the barley germination process by carrying out
an unsupervised joint segmentation of a high number of images and found the ion-associated profile
for every segment. The Algorithm for MSI Analysis by Semi-supervised Segmentation (AMASS) was
used to segment leech embryo samples [14] and there is a complete analysis of the ions associated to
every region according to its weighting factors. In all these references, no statistical significance test
was conducted on the key ions found.

Another common strategy in MSI data analysis is to manually define the ROIs to be compared,
guided by an annotated histology image [15–18]. In general, the ions are selected by means of statistical
hypothesis testing and the fold change (FC) calculation of the ion concentrations between ROIs. These
parameters are usually represented as volcano plots. By way of example, Hong et al. [19] studied
the global changes of phospholipids in brain samples from a mouse model of Alzheimer disease by
performing ANOVA tests of ion concentrations in ROI. A common problem that MSI has in calculating
statistical significance is that the p-values are generally extremely low [16]. This is because there are a
large number of pixels within each ROI, which gives this parameter a low discrimination power.

Additionally, the statistical hypothesis testing (such as the t-test) fails when is applied to compare
the concentration of an ion between ROIs. The existence of morphological areas in the images is the
responsible of a high pixel autocorrelation. This violates the assumption of observation independence
necessary for statistical hypothesis testing. In order to find statistically significant ions between ROIs,
Conditional Autoregressive (CAR) models, which take into account the auto-correlated nature of ion
distribution concentration in MS image ROIs, are calculated to correct the p-values [20]. Nevertheless,
the difficulty of calculating the autocorrelation models and the complexity of the computational
approach hampers the inclusion of this strategy in a MSI workflow.

Another common situation in MS imaging is the elevated intensity differences of the ions’
concentration between pixels, due to the existence of several morphologic regions with different
metabolic profiles [21] and the ion shielding phenomena which takes place in MSI. It is also common
to find a high proportion of pixels where a certain ion is not detected, for a given signal to noise ratio.
This influences to a large extend the calculation of the p-values and the FC.

In this study, we describe the development of an ion filtering algorithm that is used in a
workflow for the untargeted analysis of metabolomic MALDI-MS images. The workflow consists of a
segmentation step, followed by the ion filtering procedure, independent of the segmentation process,
that detects the up/down regulated ions between image segments. Our algorithm calculates and
combines three parameters: (a) the Mann–Whitney U statistical test of the ion concentration between
segments [22]; (b) the FC in the ion concentration between segments; and (c) a new parameter that
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accounts for the proportion of pixels with undetected ions between segments. In addition, the data
from which parameters (a) and (b) are derived is obtained by previously filtering out the undetected
MS signals (null values). With this methodology, we can find the key ions between any segment pair in
MSI datasets, from single or multiple tissue sections. We successfully applied this workflow to the
analysis of mouse brain tissue sample and to study fatty liver disease in mice liver tissue samples.

2. Results

The rMSIKeyIon package, written in R, is able to find the key ions in a pair of ROIs within or
between images. The ions are selected according to the similarity parameters calculated in Appendix A
and ordered following the contrast parameter, described in Appendix B. In Figure 1, there is a description
of the data processing workflow, showing the main steps implemented in the rMSIKeyIon package.
The spectra preprocessing and image segmentation has to be performed before and independently to
the rMSIKeyIon execution. The resulting list of selected ions is related to the key metabolites exhibiting
biological difference between tissue regions and reducing the candidates to identify.
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Figure 1. Workflow of the data processing, indicating the steps performed by the rMSIKeyIon package.

In the next section, we will describe the results of the package in the analysis of a sagittal brain
mouse sample, which has been segmented by k-means algorithm (Section 2.1). In particular, we will
illustrate the up or down regulated ions resulting of the comparison of two clusters and the up/down
regulated ions when comparing one cluster with the rest.

In the Section 2.2, we will apply the package in the identification of the fat areas in control liver
samples and liver samples exposed to thirdhand smoke (THS).
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2.1. Results of the Brain Mouse Sample

Figure 2 shows the number of up and down-regulated ions associated with the comparison of
one particular cluster with each of the others (columns 1 to 6) in the segmented image of the brain
slice tissue of C57BL/6 mouse using the k-means algorithm (n = 7 clusters). Cluster 7, identified as
non-tissue section areas, has not participated in the comparisons. In column “All” appear the ions that
are up-regulated (or down-regulated) in a cluster as a result of the comparison between this cluster
and the rest of clusters, called “absolutely up-regulated ions” (or “absolutely down-regulated ions”).
The m/z values resulting from comparisons can be available at the GitHub repository of the package
(https://github.com/LlucSF/rMSIKeyIon).
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Figure 2. Number of up or down-regulated ions associated with the comparison of one particular
cluster with each of the others (columns 1 to 6) and the ions that are up-regulated (or down-regulated)
in a cluster as a result of the comparison between this cluster and the rest of clusters, called “absolutely
up-regulated ions” (or “absolutely down-regulated ions”). The image is composed by 6898 pixels and
the number of detected ions is 277. The percentile value used for the selection of the ions is 1% for the
null concentration parameter (Z) and 10% for the Mann–Whitney U (V) test and for the concentration
fold change (FC). The intensity threshold for the ions is 2.5 × 10−4 over the normalized spectra matrix.
The small lack of symmetry observed in the table is a consequence of the lack of symmetry in the
distributions considered. In (a), the up-down regulated ions are calculated following the classical
procedure, while in (b) the ions are calculated according the procedure described in section methods,
that considers that the null values are not taken into account.

For each cluster comparison, an associated figure gives information about the resulting up or
down-regulated ions, and the number of null and non-null parameters defined in the section Ion
analysis and filtering (see below). The ions on the list are ordered in terms of the value of the “contrast
parameter”, calculated with Equation (A4) in Appendix B.

Figure 2a shows the results obtained by the classical procedure, where null values do not have a
special treatment. Figure 2b corresponds to the case in which the null values are treated separately.
Although both cases make use of the same processing parameters, the results are very different.
Figure 2b shows a higher abundance of up-down regulated ions versus Figure 2a. In addition, the ions
find in Figure 2b are of higher relevance, as can be seen in Figure S1. Figure S1 shows the two ions
with the highest contrast value from the volcano plot when comparing clusters 2 and 6. Figure S1a
corresponds to the classic test, and Figure S1b corresponds to the separation of the null values.

A slightly asymmetry is displayed in the tables present in Figure 2. Each parameter has its
own set of discriminant values. They are obtained from the evaluation of each parameter on all the
pairs of clusters without repetition. The distribution generated by the set of all these values may
not be symmetric. By applying the same percentile on both tails of the distribution, non-symmetric
discriminant values may arise.

https://github.com/LlucSF/rMSIKeyIon
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2.1.1. Comparison of C2 & C6

By way of example, the comparison of clusters C2 and C6 showed 63 up-regulated ions in C2
versus C6 and 16 down-regulated ions in C2 versus C6.

As an example, Figure S2 shows the volcano plot of the ions resulting from the comparison of C2
and C6. The ions at the top right and top left are selected by the ion filtering algorithm (see the caption
to Figure S2 for more details).

Figure S3a shows the histogram of the concentration of the up-regulated ion with the highest
contrast parameter (m/z 198.076) in C6, and Figure S3b shows the histogram of the up-regulated ion
(m/z 848.636) in C2 also with the highest contrast parameter.

Figure 3a shows the segmented brain image (n = 7), and Figure 3b,c shows the concentration
intensity plot of the ions mentioned above. In these intensity maps, the contrast intensity between
both ions and clusters is clear, and the intensity of m/z 848.636 is much higher in C2 than in C6 and
vice-versa for m/z 198.076.

1 
 

 

Figure 3. (a) Mouse brain segmentation using k-means (n = 7 clusters), (b) intensity map of ion m/z
848.636 (the up-regulated ion in C2 versus C6 with the highest contrasting parameter extracted from
the null concentration parameter) and (c) intensity map of ion m/z 198.076, the down-regulated ion
with the highest contrast parameter after comparing C2 and C6, extracted from the volcano plot. The
highlighted areas in (b,c) represent C2 (white contour) and C6 (red contour). (d) Mean spectrum (red),
spectra from C2 pixels (green), and spectra from C6 pixels (pink) near m/z 848.636 and m/z 198.076. The
spectra show the up-regulated and down-regulated behaviour of the ions. See also the optical image of
the same brain tissue section stained with a Hematoxilyn in Figure S4.

2.1.2. Absolutely Up and Down-Regulated Ions in Brain

According to the results in Figure 2b, there are 11 absolutely up-regulated ions in C2, and 34
absolutely down-regulated ions in C3. Figure 4 shows the concentration intensity plot of the two
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up-regulated ions (m/z 835.656 and m/z 806.633) in C2, and Figure 5 shows two down-regulated ions
(m/z 868.459 and m/z 853.471) in C3 with the highest contrast parameter. There is an evident similarity
between the images of the two up-regulated ions for one hand and two down-regulated ones for the
other one. A comparison of the images in Figure 4 with the distribution of C2 in the brain are clearly
similar. And the same is true of a comparison of the images in Figure 5 with the distribution of C3 in
the brain.
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2.2. Results of the Liver Samples

The methodology used in this article has been applied to the study of non-alcoholic fatty liver
disease in mice exposed to thirdhand tobacco smoke (TBS) [23]. We have taken a total of six images
from the liver samples (three from a control mouse and three from a THS-exposed mouse). The
images has been segmented using the k-means algorithm (n = 6 clusters). The results of rMSIKeyIon
algorithm showed that cluster 2 (C2) has an elevated number of ions in the lipid mass range that
are absolutely up-regulated, and we hypothesized that this cluster represents the lipid droplet areas
characteristic of the fatty livers (see Figure 6) and the full segmented image (see Figure S5). The THS
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exposed mouse has the largest area, while the control animals have the smallest, in accordance with
Martins-Green et al. [23]. In addition, the Figure S6 is an optical image of a selected area of a tissue
section of a control and a THS exposed mouse stained with an Oil Red O protocol. It can also be
observed the higher density of lipid droplets in the THS exposed sample.
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Table S1 shows the compounds in C2 putatively identified after a manual curation process. As can
be observed, most of them are putatively identified as triglycerides or phosphatidylcholine. In Figure
S6, there is the intensity map of the triacylglycerol (50:30), which is highly similar to the geometry
of C2.

3. Discussion

Here, we developed a new methodology for the untargeted analysis of MS images that can be
used coupled with any segmentation process and an ion filtering algorithm based on the combination
of three parameters: (a) The ratio of ions with a null concentration between the regions, (b) the U
Mann–Whitney U Test, calculated by segregating the non-detected ions from the distribution, and
(c) the FC between the medians of the distribution (the non-detected ions were also segregated from
the distribution). This methodology has proved to be efficient at finding the up/down-expressed
ions in an intra-image analysis or in the comparative analysis of groups of images. The presented
workflow is different to previously released software tools due to two main reasons: (a) it is flexible
and independent to the segmentation process, so the ion selection process can be applied to any
clustering algorithm or manually drawn ROIs. (b) Our methodology provides a completely automated
ion filtering approach enabling the fast detection of a morphological region characteristic ions.

The results on the sagittal mouse brain sample show that an unsupervised clustering process
followed by the rMSIKeyIon algorithm is able to select the (possible) up/down-regulated ions between
any pair of clusters, in a holistic approach, and between one cluster and the rest. The concentration
maps of the selected ions, ordered by the contrast parameter, depicts faithfully the morphology of the
brain. These ions are probably biologically relevant and could be interesting to identify.
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Using the described methodology, we have been able to detect the regions containing the lipid
droplets in the liver samples from mouse exposed to THS. The putative identification of the key
up-regulated ions in the cluster 2, mainly triglycerides and phosphatidylcholines, confirm that THS
exposure conducts to the apparition of fatty liver disease in mice [23].

Untargeted metabolomics data analysis workflows are associated to standard analytical platforms
(LC-MS, GC-MS, and NMR) [24]. These analyses compare the concentrations of chemical compounds
in a CASE and a CONTROL group in order to discover features that they express differently and which
could be used as biomarkers or in biological pathway analysis. In general, the number of samples (n) of
each experimental group are similar, the distribution is normal (for large n values), and the principle of
independent measures is assumed. However, in spatial metabolomics, the number of samples in every
group (i.e., the number of pixels in an ROI) is not determined a priori, as in metabolomics studies.

Untargeted image analysis has two main applications:
(a) The comparison of two regions inside the same tissue section (intra-image analysis) to find the

relevant ions. This could be used to discover cancer biomarkers by comparing the ion profile of the
tumorous area with a non-tumorous area from the same sample. In general, the areas to be compared
are determined by a histopathologist annotating a consecutive tissue section. The size of the ROIs in
which we will compare the ions is determined manually.

(b) For several reasons, the analysis of morphologically equivalent regions in different tissues in a
case-control experiment is much more complicated. First of all, the tissue samples to be compared
between groups are equivalent but not similar because of the biological differences between the animals
and the intrinsic difficulty of achieving identical tissue sections. Consequently, it is not straightforward
to delimit the areas to be compared. The ROIs to be compared can be determined by histological
annotation (supervised process), or automatically by means of a segmentation process (unsupervised
process). In both cases, there are not established rules, and the following steps in the statistical analysis
of the ions between ROIs can be highly affected by this fact.

In both cases, it is very common to find skewed ion distributions and a high percentage of null
values, a high degree of autocorrelation between pixels, and a very high number of observations
(pixels). This leads to extremely low p-values when classical parametric or non-parametric statistical
tests are used [25], so these tests are not appropriate for this kind of analysis. For all the above reasons,
the untargeted analysis of images remains a challenge. However, the results shown by rMSIKeyIon R
package have been revealed to be very useful to find the most differential ions between ROIs. The
biological relevance of these ions has been validated in a fatty liver study with animal models.

4. Materials and Methods

4.1. Materials

Indium tin oxide (ITO)-coated glass slides were obtained from Bruker Daltonics (Bremen, Germany).
The gold target used for sputtering coating was obtained from Kurt J. Lesker Company (Hastings,
England) with a purity grade higher than 99.995%. HPLC grade xylene was supplied by Sigma–Aldrich
(Steinheim, Germany), and ethanol (96% purity) was supplied by Scharlau (Sentmenat, Spain).

4.2. Methods

4.2.1. Sample Preparation

Mice models were developed at the Department of Molecular, Cell, and Systems Biology at
the University of California Riverside [23]. Animal experimental protocols were approved by the
University of California, Riverside, Institutional Animal Care and Use Committee (IACUC). The animal
use protocol is A3400-01. The suitability of the workflow presented here to determine significant ions
between ROIs from the same tissue was tested in a brain sample from a 6-month-old C57BL/6 mouse
feed with a standard chow diet (percent calories: 58% carbohydrates, 28.5% protein, and 13.5% fat). To
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test the suitability of the method in different tissue sections in a case versus control experiment, we
used liver samples from mice exposed to THS—the residual particles and gases from tobacco smoke
that remain in dust and surfaces—from weaning (three weeks of age) to 24 weeks, without exposure to
secondhand smoke (SHS) at any time during the study, and compared them with liver samples of mice
that had not been exposed to THS (control group) [26]. Brain and liver samples were snap frozen at
−80 ◦C after collection and stored and shipped at this temperature until analysis.

For MSI acquisition, the tissues were sectioned at −20 ◦C in slices 10 µm thick using a Leica
CM-1950 cryostat (Leica Biosystems, Nussloch, Germany) located at the Centre for Omics Sciences
(COS) of the Rovira i Virgili University and mounted on ITO slides by directly placing the glass slide
onto the section at ambient temperature. To remove residual humidity, samples were dried in a
desiccator under vacuum for 15 min after tissue mounting.

4.2.2. Deposition of Au Nanolayers for LDI-MS Imaging

Gold nanolayers were deposited on the 10 µm tissue sections using an ATC Orion 8-HV sputtering
system (AJA International, N. Scituate, MA, USA) [27]. Briefly, an argon atmosphere with a pressure of
30 mTor was used to create the plasma in the gun. The working distance of the plate was set to 35 mm.
Sputtering conditions for MS were ambient temperature, and RF mode at 60 W for 50 s. The argon ion
current was adjusted to 20 mL min −1.

4.2.3. LDI-MS Acquisition

One image of a sagittal brain tissue section and six liver tissue sections (three slices from a control
animal and three sections from a THS-exposed animal) were acquired using a MALDI TOF/TOF
UltrafleXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from Bruker Daltonics, also at
the COS facilities. Raster sizes of 80 and 20 µm were used for the brain and liver tissue sections,
respectively. The TOF spectrometer operated in reflectron positive mode with the digitizer set at a
sample rate of 1.25 GHz in a mass range between 70 and 1200 Da. The spectrometer was calibrated
prior to tissue image acquisitions using [Au]+ cluster MS peaks as internal mass references [27].

4.2.4. MSI Data Processing and Image Segmentation

The MSI data acquired with Bruker’s FlexImaging 3.0 software was exported to XMASS data
format using instrument manufacturer software packages (FlexImaging and Compass export). The raw
data was loaded using the in-house rMSI package [28]. This package provides a data storage format
based on segmented matrices and optimized for processing large MSI datasets in R language. Next,
we applied our complete MSI pre-processing workflow consisting of spectral smoothing, alignment,
mass recalibration, peak detection and peak binning [29] with the default parameters: Savitzky–Golay
kernel size of 7, peak detection threshold SNR of 5, and peak binning tolerance of 6 scans with 5%
filter. At this point, we obtained a peak matrix object of each MSI dataset: the brain tissue sagittal
section and the liver tissue sections. These peak matrix objects are highly reduced, robust, and accurate
representations of all the MSI data and can be used to perform complex statistical analyses on the huge
amount of data generated in the MSI experiment. ROIs were generated by means of a k-means process.
Finally, we applied the rMSIKeyIon workflow using the peak matrices as the input data.

4.2.5. Ion Analysis and Filtering

The procedure used for identifying statistically different ions compared the concentration
distributions of the ions in all possible pairs of ROIs in which the tissue (or tissues) had been segmented.

In general, the total number of pixels in each ROI is different and the probability density function
of the ion concentrations is not normal. We used the Mann–Whitney U test [22] because it can test the
null hypothesis (both sets of samples come from the same distribution) of two non-normal distributions
that have a different number of observations.
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In addition, in non-normal distributions of different sample sizes, there is usually a singular
element: In some ROIs, there is a considerable possibility that the distribution of some ions will have
small concentration values. Figure S8 represents the percentage of non-detected ions in the segmented
brain image, using the k-means algorithm with n = 7 clusters. It can be observed that for some clusters
(i.e., cluster 7) the percentage is very high.

For purposes of illustration, Figure S9 shows a simulated histograms of an ion in two different
clusters with samples taken from normal distributions, with different average values, to which
significant amounts of null values have been added. In total, there are 200 samples for both cases. Both
distributions appear to be very different and the Mann–Whitney U test yields a very high p-value
(0.38). The idea we have worked on here is to segregate the values obtained from non-detected ions
(null values) from the rest of the distribution so that they can be treated separately. Thus, we obtain a
very small p-value (of the order of 1 × 10−43). On the other hand, the percent of null values in each
ROI also provides valuable information. For these reasons, we decided to segregate the null values
from the ion matrix and use them to calculate a parameter (null concentration parameter), as will be
explained below.

The calculation of the null concentration parameter, as well as the non-null parameters
(Mann–Whitney U distribution and FC), are described in Appendix A.

Once the ions were selected using the two procedures described above, they were ordered in
terms of the contrast generated by every ion between one ROI and the set of other ROIs. The procedure
is described in Appendix B.

The ion filtering algorithm described in this section has been implemented in the R package named
rMSIKeyIons, accessible at (https://github.com/LlucSF/rMSIKeyIon). The software’s source code was
written in C++ and requires the GNU Scientific Library (GSL) (https://www.gnu.org/software/gsl).
Later, it was ported to R using the Rcpp R package. As input, the function requires an rMSIproc peak
matrix, a previously calculated segmentation and the percentiles for each parameter, and as output,
the function returns a list containing the ions for each comparison between all pair of clusters and the
data related with those ions.

4.2.6. Metabolite Identification

The obtained list of up regulated lipids for mice liver samples in cluster 2 was matched with the
HMDB 4.0 [30] database within a tolerance of 20 ppm and the possible ion adducts: H, Na, K, and
NH4. Results were filtered using the biological information of molecules provided by the HMDB, thus
metabolites with no biological origin or not likely to be found in liver were discarded.

5. Conclusions

In this study, we developed the ion filtering R package rMSIKeyIon. It is open source, publicly
available, and based on the combination of three parameters: the non-detected ion concentration ratio,
the Mann–Whitney U ion concentration test, and the FC in the ion concentration. The null values were
discarded before computing the last two parameters.

We demonstrated that our tool is very effective at discovering up or down-regulated ions
between clusters using an unsupervised k-means procedure. The ions selected are the candidates
that, subsequently, have to be identified. This package is a valuable tool for the untargeted analysis of
MALDI images and is an important advance in this area because, at present, there are no tools available.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/8/162/s1. The
brain dataset, the used clustering and a R script containing instructions about the installation and the testing of the
package accompanied with a document containing illustrative figures. Also the results of the method are included.

Author Contributions: X.C. and E.d.C. designed and conducted the research. M.M.-G. designed the animal
model experiments, and generated and collected the mice samples, and M.S. processed the liver and brain samples.
P.R. acquired the images and processed the data, N.R. supervised the biological interpretation and S.T. worked on
the putative identification of the metabolites in the liver samples. E.d.C. and L.S. programmed the ion filtering
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Appendix A Calculation of the Similarity Parameters between ROIs

In order to determine the ions that are expressed differently in two given ROIs, we calculate
three parameters:

(a) The null concentration parameter (Z parameter)
The Zi jk parameter is calculated according to Equation (A1):

Zi jk =

Nzi j
N j

Nzik
Nk

∀i ∈ I;∀ j, k ∈ Sp, (A1)

where Zi jk is the parameter that accounts for the null values (i.e., the non-detected values) of the i ion
when comparing the j and k ROIs; Nzi j and Nzik are the number of pixels with null values of the i ion
in j and k ROIs, respectively; N j and Nk are the total number of ROI pixels in j and k, respectively; I is
the set of ions and Sp is the set of ROIs.

The equation calculates the ratio between the null values of a particular ion in the two ROIs. A
value of Zi jk > Zhigh (Zhigh being a positive value greater than 1) means that the i ion is more expressed
in k ROI than in j ROI, while Zi jk < Zlow (Zlow being a positive value much lower than 1) means that the
i ion is less expressed in k ROI than in j ROI.

The importance of this parameter is assessed in Figure S7. For clusters 1 to 7, we plotted, the
percentage of pixels that have null concentration for every ion.

The Zhigh and Zlow values are calculated by following these steps:

(1) The Z values of all ions, for all cluster-pairs, are calculated according to Equation (A1).
(2) An ordered rank list of all the Z values is created.
(3) Zlow is determined considering that this value is a certain percentile PZ of the rank list of Z values.
(4) Zhigh is determined considering that this value is a certain percentile 100 − PZ of the rank list of

Z values.

(b) Non-null concentration parameters (V parameters)
Provided that the distribution of the ions concentration is non-normal, we considered

the U Mann–Whitney U test and the concentration FC between two ROIs, as a non-null
concentration parameters.

Generally speaking, if Nj and Nk are high, the random variable U can be regarded as normally
distributed [22]. The Ui jk parameter is then normalized following Equation (A2):

Vi jk =
Ui jk −mu

σu
, (A2)

where mu and σu are the average and standard deviation of zero Ui jk and Vi jk is a random variable with
a normalized Gaussian distribution. If V has values close to 1 the similarity between the distributions
is high, while values close to zero indicate disparate distributions. The value obtained for V indicates
the similarity between the distributions of two ROIs for an ion.
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Another parameter often used to compare sets of magnitudes is the FC, defined as the ion median
concentration quotient between two ROIs Equation (A3):

FCi jk =
Mi j

Mik
, (A3)

where Mi j is the distribution median of the i ion in j ROI and Mik is the same for k ROI. For every i ion,
the FCi jk parameter is calculated between the j and k ROIs. For a pair of ROIs, a Volcano plot [31] can
be drawn from the V and FC parameters.

In this representation, the position occupied by the ions is important: the ions located in the top
corners generate very different distributions in the two ROIs. The ions at the top left are under-expressed
(Vi jk < Vhigh ∧ Fci jk < Fclow) and the ions at the top right are over-expressed (Vi jk< Vhigh ∧ Fci jk >Fchigh).

The values Vhigh, Fchigh and Fclow are calculated following the same steps as for Zhigh and Zlow,
but with a difference in the percentile value. The ions located in the areas of interest must satisfy the
probability of being within a range associated with two random variables; that is to say:

P
(
Vi jk ≤ Vhigh, Fci jk ≤ Fclow

)
for under-expressed ions and P

(
Vi jk ≤ Vhigh, Fci jk ≥ Fchigh

)
for

over-expressed ions. Assuming that these are independent random variables, we obtain
P
(
Vi jk ≤ Vhigh

)
= P

(
Fci jk ≤ Fclow

)
= P

(
Fci jk ≥ Fchigh

)
=
√

Pz/100. That is, the percentile that has
to be used to determine the cutoff values in the volcano plot should be PV = 10·

√
PZ

Appendix B Determination of the Discriminating Figure Values and Generation of the
Discriminant Ions Lists

The contrast parameter Ci j∨Sp of the i ion between the j ROI and all the ROIs (set Sp is calculated
according to Equation (A4)):

Ci j∨Sp =

1
N j

∑N j

p=1 m j
ip

1
N

∑NSp

k=0

∑Nk
p=1 mk

ip

, (A4)

where N is the total number of pixels in Sp, N j and Nk are the number of pixels in the j and k ROIs

respectively. NSp is the total number of ROIs in set Sp, m j
ip and mk

ip are the magnitude of the i ion in
pixel p of the j and k ROI, respectively. The list is ordered according to the Ci j∨Sp , assuming that high
values mean high contrast and vice-versa.
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