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In the present study, a positive training set of 30 known human imprinted gene coding regions are compared with a set of 72
randomly sampled human nonimprinted gene coding regions (negative training set) to identify genomic features common to
human imprinted genes. The most important feature of the present work is its ability to use multivariate analysis to look at
variation, at coding region DNA level, among imprinted and non-imprinted genes. There is a force affecting genomic parameters
that appears through the use of the appropriate multivariate methods (principle components analysis (PCA) and quadratic
discriminant analysis (QDA)) to analyse quantitative genomic data. We show that variables, such as CG content, [bp]% CpG
islands, [bp]% Large Tandem Repeats, and [bp]% Simple Repeats, are able to distinguish coding regions of human imprinted
genes.
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1. Introduction

Genomic imprinting is an epigenetic modification of dis-
persed regions of the genome depending on their exposure
to the maternal or paternal germline. This results in differ-
ential expression of only one of the two alleles depending
on the parent of origin. Allele-specific CpG methylation,
histone acetylation, asynchronous DNA replication, and
chromatin condensation are all associated with imprinted
loci [1].

Recently, the question of whether imprinted genes have
sequence characteristics that distinguish them from non-
imprinted genes is drawing the attention of several research
groups. Such structural differences may elucidate the mecha-
nisms leading to allele-specific expression of imprinted genes
[2]. Greally [3] found that the main sequence characteristic
of human imprinted genes is a lower incidence of short
interspersed nuclear elements. For tandem repeats and
CpG islands, there is accumulating evidence correlating
these elements and genomic imprinting. Accordingly, some
authors [4-7] suggested using these sequence features as a
search tool for imprinted genes.

Identifying imprinted genes experimentally is challeng-
ing because the monoallelic expression of an imprinted gene
may occur only in one of possibly several isoforms, only in
particular tissues, or only at particular stages of development.
Many autosomal genes are imprinted only in specific tissues
or cell types, including GRB10 [8], Igf2/H19 [9], UBE3A
[10], ATP10A (formerly ATP10C) [11], and KCNQ1 [12].

Consequently, in the absence of any method for prioritis-
ing genes, an average of 100 genes must be examined before a
new imprinted gene can be identified. Indeed, experimental
identification of human imprinted genes to date has been
slow. To date, only ~60 human imprinted genes have been
identified.

For this reason, the application of sequence analysis
approaches to genome-wide screening of human genes,
which can be ranked to identify those with a sequence
composition suggestive of imprinting, is very useful.

To date, imprinted genes are predicted using a wide
range of genomic features and sophisticated strategies and
methodologies [13—16], but no simple sequence patterns and
models are known to accurately distinguish imprinted genes
from non-imprinted ones. But even so, a simple approach
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TaBLE 1: List of imprinted genes classified by expression.
Name Band Expression
TP73 1p36 M
LRRTM1 2p12 p
NAPIL5 4q22 p
PRIM2 6p12 M
PLAGLI 6q24 P
HYMAI 6q24 P
PEG10 7q21 P
PONI1 7q21 P
CALCR 7q21 M
PPP1R9A 7q21 M
MEST 7q32 p
COPG2 7q32 p
CPA4 7932 M
KLF14 7932 M
KCNK9 8q24 M
INPP5F_V2 10g26 P
KCNQ1 11p15 M
IGF2AS 11p15 P
SMPD1 11p15 M
IGF2 11pl5 P
ZNF215 11p15 M
H19 11p15 M
SLC22A18 11p15 M
PHLDA2 11pl5 M
NDN 15q11 P
MKRN3 15q11 P
MAGEL2 15q11 P
UBE3A 15q12 M
TCEB3C 18q21 M
NNAT 20q11 p

would be potentially valuable for directing laboratory work
in a first stage.

We are concerned with identifying possible candidate
imprinted genes to allow their imprinting status to be
determined experimentally. For this reason, human gene
coding region features are considered further with a view
to developing an approximation to a first-stage screening
and classifying genes into imprinted and non-imprinted
candidate groups. This study uses statistical approaches
for a first discrimination between imprinted and non-
imprinted genes based on the currently available coding
region sequences.

2. Materials and Methods

A positive training set of 30 human genes (Table1)
that showed imprinting effects were selected for analysis
from the Catalogue of Imprinted Genes (http://igc.otago
.ac.nz/home.html). A negative training set of 72 randomly
selected control genes and a test set of 31 predicted
imprinted genes were compiled from the recent literature
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[16] and were collected from the NCBI nucleotide database
(http://www.ncbi.nlm.nih.gov/). See supplementary data for
more details about these genes used in this study.

The sequence characteristics of the coding regions of each
gene were examined in the analysis. These regions are the
portions of a gene or an mRNA which actually code for a
protein.

For CpG dinucleotide analysis, we used the NEWCP-
GREPORT program (http://mobyle.pasteur.fr/cgibin/portal
.py*form=newcpgreport), and the total number of
CpG islands was counted. For the repeat element
analysis, the Repeat Masker program (http://www
.repeatmasker.org/cgi-bin/WEBRepeatMasker) was used,
and for tandem repeat analysis, the ETANDEM pro-
gram (http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal
.py?*form=etandem) was used. All classes of repeat elements
output from Repeat Masker were collected. We used
ETANDEM to obtain numbers of tandem repeat elements
ranging from 5bp to 100bp. The Wilbur and Lipman
pairwise sequence alignment method, implemented in the
MegaAlign program of the DNAstar Sequence Analysis
software (Lasergene v8.0; http://www.dnastar.com) used
to align sequences of Large Tandem Repeats identified in
imprinted genes.

Principal component analysis (PCA) and quadratic dis-
criminant analysis (QDA) models of the [bp]% sequence
characteristics data were performed using the Minitab
software [17].

PCA analysis is a multivariate statistical technique. The
central idea of PCA is to reduce the dimensionality of a data
set that presents a large number of interrelated variables,
while retaining as much as possible the variation present in
the data set. PCA can search the data for qualitative and
quantitative distinctions in situations where the number of
data available is too large.

The purpose of the Quadratic Discriminant Analysis is
to predict membership of a group from a set of predictor
variables (the sequence characteristics). The discriminant is
the quadratic combination of the predictor variables that
best predicts group membership, allowing each gene to be
classified into either imprinted or control groups on the basis
of its sequence characteristics.

The performance of the classification was assessed using
internal and external validation methods according to our
software capabilities.

With the QDA model, we used an internal validation
method called cross-validation [18]. This method uses the
training set to check the model. Here, the training set is
divided in several segments. One segment is reserved to
corroborate the results, and the rest of them are used to build
the model.

This process is repeated as many times as segments you
have, and every time one of these segments is out of the
calibration, and the other ones are used to build the model.
Finally, all the segments are used to both build and validate
the model.

With the PCA model, we used the external validation
test set method. The number of elements of this set must be
large (at least 25% of the training set size), and it must be
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FiGure 1: The separation of the training set into four groups: I1,
12, NO_I1 and NO_I2. Notice that both PCs are responsible for the
separation.

independent of the training set, but also this test set must
represent the training set. The imprinted status of the test
set is known, so it is possible to assess the PCA model using
different elements that the ones used to build the model.

3. Results and Discussion

Recently, Ke et al. [14] found significant statistical differences
between some sequence descriptors of human imprinted and
control gene coding regions. These significant variables in
their regression model were the Simple and Large Tandem
Repeats, GC content, CpG islands, and short interspersed
nuclear elements.

Taking into account this fact, we considered these
descriptors (variables) as the most relevant ones for our
study. So, the [bp]% genomic sequence characteristics of
GC content, CpG islands, simple repeats (SR), large tandem
repeats (LTR) and SINEs of all imprinted and non-imprinted
coding region sequences were calculated.

Before applying the pattern recognition methods, each
calculated descriptor was autoscaled. In the autoscaling
method, each variable is scaled to a mean of zero and a
standard deviation of unity. This method is very important
because each variable is weighted equally, and this provides a
measure of the ability of a descriptor to discriminate classes
of compounds [19]. With this method, we can compare all
descriptors at the same level.

Firstly, we started applying the PCA technique. After
several PCA analyses, the best separation was obtained by
using the following descriptors: GC content, [bp]% CpG
islands, [bp]% Simple Repeats and [bp]% Large Tandem
Repeats. This suggests that in this case, the other variables
are not significant for the classification of the coding regions
studied.

The PCA results show that the first component (PC1)
is responsible for 49.6% of the variance of the data.
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FIGURE 2: Plot of the loading values of the selected variables used in
the training set.

Considering the first (PC1) and second (PC2) components,
the accumulated variance increases to 72%. Figure 1 shows
that both PC1 and PC2 are in fact responsible for the
discrimination between imprinted (two groups: 11 and 12)
and non-imprinted (two groups: NO_I1 and NO_I2) genes.
PC1 and PC2 can be represented by the following equations,
that in fact form the PCA pattern recognition model:

PC1 = 0.535 [GC content] + 0.511 [[bp]% CpG islands]
+0.521 [[bp]% LTR] + 0.426 [[bp]% SR],
PC2 = —0.425 [GC content] — 0.467 [[bp]% CpG islands]
+0.313 [[bp]% LTR] +0.71 [ [bp]% SR.
(1)

From Figure 2 and (1), we can see that the imprinted group
I1 has large values for GC content and [bp]% CpG islands
and a major content of [bp]% LTR compared with the 12
group. The imprinted group I2 has small values for GC
content and [bp]% CpG islands and a major content of
[bp]% SR.

On the other hand, we can see that the major part of
non-imprinted genes, the NO_I2 group, has small values for
[bp]% SR and [bp]% LTR, and the NO_I1 group has large
values for the same both descriptors. It is clear that there
are four coding region groups, and each one is located in
practically one specific quadrant of the XY axes.

Genomic sequence characteristics of a total of 22544 bp
from the coding sequences of 12 (I1 group) imprinted genes
were compared to those of 66959 bp of coding sequences of
18 (I2 group) imprinted genes (Table 2) in order to carry
out a deep study of the most relevant imprinted descriptors.
The average number of CpG islands was higher in I1 group
(1.8) than in I2 group (0.4). The frequency of G + C was also
higher in I1 genes (62%) than in 12 ones (45%). Moreover,
the average number of the ratio [bp]% LTR/[bp]% coding
sequence coefficient is higher in the I1 group (I1) than in I2
(0.03). Note that these results are in good agreement with the
loadings of the PCA model.

We found an obvious functional difference between 11
and I2 groups in terms of expression pattern. We observed
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TaBLE 2: The number of large tandem repeats (LTR), CpG islands, and GC content in coding sequences of imprinted genes.
Number
I1 group Lenght cCoGntent QpG IIjll"llin ber Size count Consensus
islands
TP73 2234 64.6 3 0 — —
LRRTM1 2217 58.4 2 1 247 ctgcegaaccacaccttccaggac
KLF14 1383 66.8 2 1 189 cggegegeecgecgecte
KCNK9 1303 60.1 2 0 — —
KCNQ1 3262 63.4 1 1 304 CgCgECCYCCgrrecgggrrecgrgrccce
IGF2AS 2056 64 1 0 — —
SMPD1 2473 59.8 1 1 6.9 cgctgg
IGF2 1356 63.7 3 1 1418 tceeeecctcetcte
SLC22A18 1549 65 1 0 — —
PHLDA2 937 61.7 1 1 914 ccgegecct
NDN 1897 523 ) 1 57 4 cccaggeccacaacgecccgggegecccgaaggeggttcegecggecg-
cggeeecgg
TCEB3C 1877 64.7 2 0 — —
Number
12 group Lenght cCoGntent CpG IL\IFI;H ber Size count Consensus
islands
NAP1L5 1912 42.9 0 1 127 ggaggaggagga
PRIM2 2353 40.7 0 0 — —
PLAGL1 4354 46.9 1 1 253 atcttacaaaaaaaaaaaaaaaaaa
HYMAI 5005 42.1 1 1 137 tatatatatataa
PEG10 6628 44.7 ) ) 423124 ?fcajgctctcagaggagaacaacaaccttcgagagcaggtgg/ ccgeegec-
PONI1 2395 41.3 — —
CALCR 3470 40.4 — —
PPP1R9A 9705 39.9 5.8 ttttc
MEST 2507 45.1 | ) 424233 ggcggctgcgectgecgegeccggtgctgeccagegetgegg/caaaaaaa-
aaaaaaaaaaaaaaa
COPG2 3365 43.1 0 — —
CPA4 2807 48.9 — —
INPP5F_V2 4955 43.5 1 — —
tattcgacatcaaaaaattcatactgaagcgaaggcctataaatgcaataa-
ZNF215 3658 40.4 ] ) 4.3 84 3 atgtgggaaagccttcagccgaagtgcagacct/aaaactgcatactggag-
ataagtcctgaaaatgtaaaaaatgtaggaaaaccttcaaccggagttcag-
aacttatttaacatca
H19 2615 55.9 0 2 8.10 204 gggggggal/ctttttcttcttcctecttt
MKRN3 3107 48 0 1 295 ttaaaaattatatatataagaatataaaa
MAGEL2 2294 53.7 0 2 36.721.3 cgggecctgagtgtctgggagggcccaageacctec/ggectcctcaaaag-
agcgeag
UBE3A 4491 36.7 10_7 aaaacaaaaa
NNAT 1338 56.5 0 0 — —

maternal expression for 67% of the I1 imprinted genes and
paternal expression for 61% of the 12 imprinted genes.

Moreover, other important observation is that all the
Large Tandem Repeats of the I1 group genes are inside CpG
islands while this fact is not observed in the 12 group. These
results agree with those of Meguro et al. [11]: the CpG islands
of imprinted genes contain some special DNA elements that
distinguish them from CpG islands of biallelically expressed
genes.

To identify sequence fingerprints and similarities among
Large Tandem Repeats in the two imprinted groups, we
used the Wilbur and Lipman pairwise sequence align-
ment method (see supplementary data for details). The I1
sequences group is quite consistent; all sequences are rich in
GC content, and the similarity index of the aligned fragments
ranges from 60 to 100%. In contrast, the sequences of the 12
group are longer, more heterogenous in terms of nucleotide
composition; in some of them, the presence of a polyA motif
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could be empathised. The 12 sequence repeats show a much
more wide range of similarity index. In addition, because
of some significant differences in nucleotide composition
between members of 12 sequences, some 12 sequence pairs
could not to be aligned. From this analysis, we can conclude
that these two Large Tandem Repeats: GC-motifs (in I1
group) and AT-motifs (in I2 group) are highly conserved
sequence patterns across their respective coding regions.

Then, we built a new model using another statistical
technique: the quadratic discriminant analysis (QDA). QDA
is also closely related to principal component analysis (PCA)
in that both look for combinations of variables which best
explain the data. QDA explicitly attempts to model the
difference between the classes of data (supervised pattern
recognition). PCA, on the other hand, does not take into
account any difference in class (nonsupervised pattern
recognition).

Table 3 shows the results of the QDA classification model.
The total percentage of correct classification was 93%, and
the proportions for each group are 100% (12), 92% (11), 90%
(NO_I1) and 92% (NO_12).

After the employing of QDA and PCA methods, we
proceeded to the validation of their respective classification
models.

The cross-validation approach was used to validate the
QDA model. The total percentage of correct classification
was 83% (Table 3). Therefore, this result confirms the
existence of four groups between the coding regions charac-
teristics.

On the other hand, the test set approach was used to
validate the PCA model. We decided to apply the PCA
model to a series of new predicted imprinted genes whose
imprinting status was predicted by other methodologies [16]
but it is still not experimentally proved. In this way, apart
from the construction of a representative test set, we could
compare our PCA results with the ones of Luedi et al. [16].

To form a randomly test set, we did a full-text
mining search with all Luedi’s predicted gene names
across the publication data of the Nutrigenomics Database
(http://133.11.220.243/nutdb.html). After that, we formed
a test group of 31 supposed imprinted genes related to
nutrigenomics in humans (Table 4). It is important to
emphasise that these possible imprinted genes are related
with dietary factors known to influence DNA methyla-
tion as alcohol, folate, zinc, and cadmium. We thought
that this fact may be interesting for future nutrigenomic
work.

We calculated the genomic sequence characteristics of the
31 coding regions, and then we checked if our PCA pattern
recognition model could classify them as imprinted genes,
too.

Figure 3 shows the results of the PCA calculations for the
first (PC1) and second (PC2) principal components. Before
carrying out the prediction calculations, the descriptors
were also autoscaled as previously. We found that 27 of
the 31 genes were classified in the two correct imprinted
quadrants (84%) by the PCA model. The GFI1, HSPAS,
HOXDY9, PITX2, PTPRN2, GADD45G, GATA3, NRGN,
F10, JAG2, GATA6, ELA2, and ZNF42 genes are classified

5
TasLE 3: Classification obtained with the QDA analysis.
Group 12 Il NO.I1 NO_I2
count 18 12 21 51
Summary of classification
True group

Put into group 12 I NO.I1 NO_I2
12 18 0 2 3
I 0 11 0 1
NO_I1 0 0 19 0
NO_I2 0 1 0 47
Total N 18 12 21 51
N correct 18 11 19 47
Proportion 1,00 0,92 0,90 0,92

N =102; N correct = 95; proportion correct = 0,93; proportion correct
with cross-validation = 0.833.

TABLE 4: List of 31 genes from the test group.

Gene Expression Lenght Chromosome
GFI1 P 2784 1
EFNA4 M 1276 1
HSPA6 M 2664 1
SHC1 M 1752 1
CYP1B1 p 5128 2
SIX3 p 1926 2
OTX1 M 2176 2
BCL2L11 P 3422 2
HOXD9 M 2089 2
PER2 M 6219 2
PPARG P 1883 3
POLR2H M 821 3
PITX2 P 2122 4
TLL1 P 6654 4
NDUFS4 p 668 5
ITGB8 M 8787 7
CDKe6 M 11611 7
PTPRN2 M 4767 7
GADD45G P 1078 9
AKRIC2 p 1663 10
GATA3 p 3070 10
NRGN p 1295 11
KLRF1 P 1242 12
KLRC3 P 1042 12
POU4F1 M 5015 13
F10 M 1560 13
JAG2 M 5077 14
SFRS2 M 2923 17
GATA6 M 3494 18
ELA2 M 938 19
ZNF42 M 2620 19

in the I1 imprinted group. The 12 imprinted groups are
formed by EFNA4, BCL2L11, PER2, PPARG, POLR2H,
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FIGURE 3: Scores for the predicted imprinted genes.

TLL1, NDUFSA4, ITGB8, CDK6, AKR1C2, KLRF1, KLRC3,
POUA4F1, and SFRS2 genes.

Therefore, taking together these results and the ones of
Luedi et al., we can suggest these 27 genes as good candidates
for an experimental imprinting determination.

4. Conclusions

The most important feature of the present work is its ability
to use multivariate analysis to look at variation, at coding
region DNA level, among imprinted and non-imprinted
genes. There is a force affecting genomic parameters that
appears through the use of the appropriate multivari-
ate methods (principle components analysis (PCA) and
quadratic discriminant analysis (QDA) to analyse quanti-
tative genomic data. We show that variables, such as, CG
content, [bp]% CpG islands, [bp]% Large Tandem Repeats,
and [bp]% Simple Repeats are able to distinguish human
coding region imprinted genes.

We know that a conclusive assessment of prediction
methods for imprinted genes is problematic due to the small
number of affected genes, their clustering in small genomic
regions, and the difficulty of experimental validation.

However, we think that the application of this PCA
sequence analysis approach to genome-wide screening of
human genes, which can be ranked to identify those with a
sequence composition suggestive of imprinting, is potentially
valuable for a first-stage approximation directing follow-up
laboratory work.

Clearly an approach like this can be further refined
and the resolution improved as more imprinted genes are
identified and confirmed and the genome sequencing is
completed.
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