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Abstract Public Key Encryption with Keyword Search (ab-
breviated PEKS) schemes enable public key holders to en-
crypt documents, while the secret key holder is able to gene-
rate queries for the encrypted data. In this paper we present
two PEKS schemes with extended functionalities.

The first proposed scheme supports conjunctive queries.
That is, it enables searching for encrypted documents con-
taining a chosen list of keywords. We prove the computa-
tional consistency of our scheme, and we prove security un-
der the asymmetric DBDH assumption. We show that it im-
proves previous related schemes in terms of efficiency and
in terms of index and trapdoor size.

The second proposed scheme supports subset queries
and some more general predicates. We prove the computa-
tional consistency of our scheme, and we prove our scheme
secure under the p−BDHI assumption. We show that it im-
proves previous related schemes in terms of efficiency and
expressiveness. Moreover, unlike previous related schemes,
it admits an arbitrary keyword space.
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1 Introduction

External storage servers allow users to retrieve outsourced
data selectively. For instance, a database located in a cloud
storage server can be queried for the segment of records sat-
isfying a certain condition. However, since such servers are
managed by untrusted third parties, users are usually reluc-
tant to outsource their sensitive data in the clear.

Encrypting the data to be outsourced is a good approach
to overcome this security concern. Nevertheless, traditional
encryption schemes fail to provide selective retrieval in an
efficient and secure way. Searchable encryption deals with
this problem by allowing data owners to issue queries for
encrypted outsourced data. Much like traditional encryption
schemes, searchable encryption schemes generally come in
two distinct types, serving different purposes: symmetric-
key searchable encryption (SSE) [15] and public-key search-
able encryption.

Public key searchable encryption (also named public key
encryption with keyword search), or PEKS, was firstly pro-
posed by Boneh et al. in [9]. Since their pioneering work,
there have appeared several PEKS schemes in the literature
[2,3,11,14,21,23,31,32,33,40,42], improving the scheme
in [9] in terms of efficiency, security or functionality.

The keyword search protocol considered in public-key
searchable encryption involves the following entities:

– a set of data suppliers, which provides and encrypts the
data to be outsourced,

– a storage server (e.g. an e-mail gateway or a database),
which stores the outsourced data, and

– a client of the storage server, who retains the ability to
generate queries for the encrypted data.

In the protocol, the client firstly sets up the scheme by gen-
erating some public parameters and shares them with the
server and the data suppliers. Then, it generates a public and
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private key pair and shares the public key with the data sup-
pliers. Afterwards, the data suppliers may wish to share a
collection of documents with the client, where each docu-
ment is indexed by a set of keywords. To do so, they encrypt
this collection, and upload the resulting ciphertexts to the
storage server. Also, the client wants to receive the stored
documents indexed by all keywords in a chosen list from
the storage server. To let the storage server know which en-
crypted document it should forward, the client generates a
query and sends it to the storage server. The storage server
is then able to use the received information to select the en-
crypted stored documents satisfying the conditions in the
queries, and to return those documents to the client. Note
that this is done without direct interaction between the client
and the data providers.

As for query expressiveness, the scheme in [9] achieves
single-keyword queries, i.e., queries matched by documents
indexed by a single chosen keyword. Single-keyword PEKS
schemes enable data providers to generate an encryption of
a keyword w by using the public key of the client and upload
it to the storage server. We call this an encrypted index and
we denote it by I(w). The client, holding the secret key, can
build a trapdoor T(w′) corresponding to some keyword w′.
By sending T(w′) to the storage server, the client empow-
ers the storage server to learn whether any encrypted index
I(w) satisfies w = w′, but no other information about I(w) is
revealed in this process.

One of the most common enhancements of PEKS is con-
junctive PEKS [11,21,30,31], which consists in enabling
conjunctive field keyword queries. Typically, in conjunctive
PEKS data providers encrypt a tuple (that is, an ordered
set) of keywords (w1, . . . ,wm) by using the public key of
the client, generating an encrypted index I(w1, . . . ,wm). The
client can produce a trapdoor associated to a tuple of key-
words (w′1, . . . ,w

′
l), along with a set of keyword fields (or

positions) { j1, . . . , jl} ⊆ {1, . . . ,m}. On receiving this trap-
door, the storage server can check if the predicate (w j1 =

w′1)∧ . . .∧(w jl =w′l) holds by using the index I(w1, . . . ,wm)

and the trapdoor. This usage of keyword fields is standard in
the PEKS literature and in many tools and applications re-
lated to encrypted search, such as in relational DBMS (in
the form of table fields), in the metadata of network pack-
ets and e-mails and in some of the proposed applications of
PEKS [9,13,30,36,41].

Another enhancement of PEKS is subset PEKS, first de-
fined in [11], which enables subset queries. In subset PEKS,
data providers encrypt a tuple of keywords (w1, . . . ,wm) by
using the public key of the client, generating an encrypted
index I(w1, . . . ,wm). The client can produce a trapdoor as-
sociated to m arbitrary sets of keywords (A1, . . . ,Am). When
receiving this trapdoor, the storage server can check if the
conjunctive subset query predicate (w1 ∈ A1)∧ . . .∧ (wm ∈
Am) holds by using the index I(w1, . . . ,wm) and the trapdoor.

In most of the proposed applications for single-keyword
PEKS, the exchanged ciphertexts take the form

Encpk(D)‖I(w1)‖· · ·‖I(wm),

where pk is the public key of the client, Enc is some public-
key encryption scheme, document D is indexed by keywords
w1, . . . ,wm, and I(w1), . . . ,I(wm) are the corresponding en-
crypted indexes. Such ciphertexts are uploaded to the server
by the data suppliers. The client can recover the documents
that are indexed by the keyword w in position i ∈ {1, . . . ,m}
by sending the trapdoor T(w) and the position i to the server.
The basic security property of PEKS schemes is that the
server does not learn any information about the encrypted
indexes unless it has the knowledge of a matching trapdoor.

Note that one could achieve conjunctive queries by using
single-keyword PEKS schemes, simply by querying for par-
ticular keywords as stated above, and computing the inter-
section of the results locally or in the storage server. When
doing so, the server learns which documents are indexed
by each of the keywords. The benefits of using conjunctive
PEKS against using single-keyword PEKS in this way are
mainly in efficiency and security, since trapdoors are usu-
ally much shorter, the intersection predicate is embedded in
the trapdoor and the intersection is computed at the storage
server.

The earliest application scenario for PEKS, as suggested
by Boneh et al. in [9], is e-mail gateways. In this scenario,
a user Alice wishes to read her e-mails, which are stored in
an untrusted e-mail gateway in an encrypted form. When re-
trieving her e-mails, she may want the e-mail gateway to for-
ward her just e-mails satisfying certain conditions, e.g. con-
taining the keyword “urgent” or having a particular sender
“Bob”. To enable the e-mail gateway to do so, she sends the
trapdoors corresponding to these keywords to the gateway,
e.g. T(“tag:urgent”) and T(“sender:Bob”).

Now, suppose user Bob wishes to send Alice an e-mail
D. He may encrypt D by using Alice’s public key pk and
attach the sender information and the “urgent” tag in the
form of encrypted indexes of the form I(“sender:Bob”) and
I(“tag:urgent”). Thus, Alice’s gateway would receive the
message

Encpk(D)‖I(“sender:Bob”)‖I(“tag:urgent”).

By matching the attached index with the stored trapdoors,
the e-mail gateway is able to know which e-mails should
be forwarded to Alice by checking which trapdoors match
which encrypted indexes. However, it learns nothing else
about the e-mails in the process. This example illustrates an
application covered by PEKS that seems, a priori, hard to
cover by using exclusively symmetric-key mechanisms such
as SSE.

Another natural application for PEKS schemes is related
to secure audit logs, and it was devised by Waters et al. in
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[41]. Audit logs are stored in an untrusted storage server in
an encrypted form by using an Identity-Based Encryption
(IBE) scheme (e.g. [8,10,25,24,39]), and PEKS encrypted
indexes are attached to it. Attributes for IBE and keywords
for PEKS are related to the audit record at hand, e.g. date
and time. An investigator Bob may wish to be granted access
to audit logs recorded, for instance, in a particular date and
time. To do so, Bob asks the key escrow agent, say Alice,
for the trapdoors and decryption keys corresponding to this
particular date and time. If Alice authorized Bob to issue this
particular search, she would serve Bob the requested IBE
decryption keys and PEKS trapdoor, and Bob would then be
able to retrieve the audit logs of interest from the untrusted
storage server.

Other applications include secure cloud storage [13], de-
cryption key delegation systems [30] and context-based for-
warding [36]. Although SSE represents a much more effi-
cient solution than PEKS for cloud storage in the symmetric
setting, PEKS schemes can be useful in applications involv-
ing asymmetric architectures, such as when sending or shar-
ing outsourced data.

The first symmetric-key searchable encryption scheme
was proposed in 2000 by Song et al. in [37]. In 2004, Boneh
et al. presented the earliest PEKS scheme in [9]. This was
immediately followed by the first conjunctive searchable en-
cryption scheme in the symmetric setting by Golle et al.
[20], and by an extension of PEKS to conjunctive PEKS
by Park et al. [31]. Many authors then presented alternative
PEKS schemes that allow decryption of indexes [11,30,32],
multi-dimensional range queries [35], reduction of commu-
nication and storage costs [14,42], extension to multi-user
systems [21] or improvements of security in various ways
[2,13,17,28,33,40]. Among them, one of the most relevant
is the work by Boneh and Waters [11], in which they define
the general notion of a Hidden-Vector Encryption (HVE)
scheme, providing an enhancement of expressiveness of the
queries that allows for conjunctive and keyword search, and
also decryption of indexes. We overlook the existing work
on the symmetric-key setting of searchable encryption, since
it lies outside the scope of this article.

Also, the relationship between PEKS and Anonymous
Identity-Based Encryption, abbreviated AIBE, was first es-
tablished in [9]. Most AIBE schemes (e.g., see [8,10,25,24,
39]) can be easily translated to PEKS schemes and vice-
versa via a generic blackbox transformation [1,9].

We propose two PEKS schemes. The first one achieves
conjunctive field keyword search. Under the proposed se-
curity definition, it does not provide any security enhance-
ment against using a single-keyword PEKS scheme to issue
conjunctive field keyword queries. However, as we see in
Section 7, it improves all previous related schemes in terms
of efficiency in the most critical operations. Moreover, the
trapdoors generated by using this first scheme consist of just

one group element, and the index size improves all previous
PEKS schemes.

The second proposed scheme enables a class of gener-
alized subset queries, which includes subset queries as de-
fined in [11]. The proposed security definition guarantees
that nothing is leaked from encrypted indexes apart from the
output of the search process. To the best of our knowledge,
apart from the scheme in [11] no other subset PEKS schemes
have been proposed in the literature. The proposed scheme
improves [11] in terms of efficiency and expressiveness, and
it does not assume that keywords are taken from a finite key-
word space.

The security of the two proposed schemes relies on the
intractability of the asymmetric DBDH problem and of the
p−BDHI problem, respectively.

The remainder of this paper is structured as follows. In
Section 2, we outline the preliminaries needed in this work.
Our constructions for conjunctive and subset PEKS are de-
scribed in Sections 3 and 5. Sections 4 and 6 feature the con-
sistency and security proofs for our conjunctive and subset
PEKS schemes, respectively. In Section 7, we analyze the
efficiency of our schemes. We conclude the article in Sec-
tion 8 with some final remarks and future work directions.

2 Preliminaries

We start this section by giving some general notation and
by stating the general model for the proposed PEKS sche-
mes. We then give the consistency and security definitions,
providing the hardness assumptions on which we base the
security of our schemes. We finally give some implementa-
tion remarks.

2.1 Notation

We start by giving some standard notation and definitions
used in searchable encryption. In this work, a keyword de-
notes a binary string w ∈ {0,1}∗. We define a document as
a tuple of keywords D = (w1, . . . ,wm), and we say that key-
word wi is in keyword field (or position) i of D. Note that,
in this definition of document, we drop the data items (e.g.,
files, e-mails...) and consider only the indexing keywords.
We make this choice since PEKS works exclusively over
the indexing keywords, and data items may be protected by
other cryptographic means (as explained in Section 1 and as
studied in [17]).

If D0,D1 are two documents, we denote by D0∆D1 the
set of keywords appearing in either D0 or D1, but not in both
at the same time. So if, for instance, D0 = (“a”,“b”,“c”)
and D1 = (“a”,“d”,“e”), we would then have that D0∆D1 =

{“b”,“c”,“d”,“e”}. We also name D0∆D1 as the set of key-
words distinguishing D0 and D1.
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Given a positive integer m, we denote by [m] the set
{1, . . . ,m}. Given a function f : N→ R, we say that f (λ ) is
negligible in λ if for every positive polynomial g there ex-
ists an integer λ0 such that, for all λ > λ0, | f (λ )|< 1/g(λ ).
That is, if it decreases faster than any positive polynomial.

See [12] for an extensive and recent survey on the sub-
ject of searchable encryption.

2.2 Model for PEKS Scheme

We now give the general model for the proposed public-key
searchable encryption schemes. Although not stated, every
algorithm apart from Setup takes the public parameters as
input.

Definition 1 We define a PEKS scheme S as consisting of
five polynomial-time algorithms:

S .Setup(λ ): Probabilistic algorithm run by the client that,
given a security parameter λ , returns the public parame-
ters params of the scheme.

S .KeyGen(): Probabilistic algorithm run by the client that
derives a private key sk and a public key pk from the
public parameters params.

S .BuildIndexpk(D): Probabilistic algorithm, to be run by
data providers. It takes as input a document D and re-
turns a corresponding encrypted index I.

S .Trapdoorsk(L,J): Algorithm run by the client that takes
as input a tuple L of keywords and a set J of positions.
It returns a corresponding trapdoor T.

S .Search(I,T): Deterministic algorithm run by the server
and taking as input an encrypted index I and a trapdoor
T. It returns either 1 or 0.

2.3 Consistency Definition

The consistency property relates to the correctness of the
scheme, in the sense that an encrypted index and a trap-
door should match in the search process exactly when the
underlying document and query also match. If a document
and a query match, then by construction of our schemes the
corresponding encrypted index and trapdoor match in the
search process. However, the converse does not necessar-
ily hold. In this regard, the usage of hash functions in the
proposed schemes induces the existence of false positives in
the search process. Therefore, we must analyze the extent
to which false positives can be produced, and we recur to a
notion of consistency defined by Abdalla et al. in [1].

The consistency notions defined by Abdalla et al. in [1]
are, in increasing strength order, computational, statistical
and perfect. We prove consistency under the random oracle
model and under an adaptation of the weakest definition of

consistency in [1], namely computational consistency. In-
formally, their definition states that the advantage of any
polynomial-time adversary in finding a matching encrypted
index and trapdoor coming from a non-matching document
and query is negligible in the security parameter, where the
adversary has access to the public parameters and to the pub-
lic key.

Let S be a PEKS scheme. Given a security parameter
λ , we introduce a consistency game in the following three
phases:

– Setup. The challenger runs S .Setup on input λ and then
hands over the public parameters to the adversary. It also
runs S .KeyGen, keeps the private key sk secret and
hands over the public key pk to the adversary.

– Guess. The adversary outputs a document of the form
D = (w1, . . . ,wm) and a tuple of keywords of the form
L = (w′1, . . . ,w

′
l) together with a set of positions J =

{ j1, . . . , jl} ⊆ [m].
– Output. The challenger hands over to the adversary the

trapdoor T = S .Trapdoorsk(L,J), and then the adver-
sary computes I = S .BuildIndexpk(D). If it holds that
S .Search(I,T) = 1 and if there exists a ji ∈ J such that
w ji 6= w′i, then the adversary outputs a bit b = 1. Other-
wise, it outputs b = 0.

Definition 2 (Computational consistency of PEKS [1]) A
PEKS scheme S is computationally consistent if the advan-
tage of every probabilistic polynomial-time (PPT) adversary
A in the above game

AdvA (λ ) = Pr(b = 1)

is negligible in λ .

2.4 Security Definition

In this section we provide the hardness assumptions and the
security definitions used in the security analysis of the pro-
posed schemes. All proofs in this work are set in the random
oracle model (see [7]).

2.4.1 Hardness Assumptions

We now define symmetric and asymmetric bilinear groups.
In this article, group operations are always written multipli-
catively.

Definition 3 (Bilinear Groups) Let (G1, ·),(G2, ·) be two
cyclic groups of prime order q with generators g,h respec-
tively (usually denoted by G1 = 〈g〉, G2 = 〈h〉), and sup-
pose that there exists a cyclic group GT of order q and a
non-degenerate bilinear map e : G1×G2→GT .

We say that G1 is a symmetric bilinear group if there
exists an efficiently computable isomorphism between G1
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and G2. Under such an isomorphism, we denote G1 and G2
by G.

Similarly, we say that G1,G2 are asymmetric bilinear
groups if there exist no non-trivial efficiently computable
homomorphisms from G2 to G1.

The bilinear groups G,G1,G2 are taken to be subgroups
of the group of points of an elliptic curve, and GT is a sub-
group of the multiplicative group of a finite field [29]. The
definition of symmetric and asymmetric bilinear groups cor-
responds to Type 1 and Type 3 pairings in the paper by
Galbraith et al. [19]. The term pairing refers to the non-
degenerate bilinear map in the definition of bilinear group.
We refer the reader to their article for properties of partic-
ular instantiations, and to [4,34] for techniques to speed up
pairing computation.

The first scheme we propose is proved secure under the
asymmetric Decisional Bilinear Diffie-Hellman assumption
(asymmetric DBDH). This assumption is proposed in the
work [8] by Boneh and Boyen as a generalization of the
DBDH assumption (see [22]) to the asymmetric setting. The
DBDH assumption is easily seen to imply DDH in the target
group GT .

Definition 4 (Asymmetric DBDH Assumption) Let G1 =

〈g〉, G2 = 〈h〉 be asymmetric bilinear groups deterministi-
cally generated according to a security parameter λ . We say
the asymmetric DBDH assumption holds in G1 and G2 if for
every PPT algorithm B,

AdvB(λ ) =
∣∣∣Pr
(
B(g,ga,gb,h,ha,hc,e(g,h)abc) = 1

)
−Pr

(
B(g,ga,gb,h,ha,hc,e(g,h)r) = 1

)∣∣∣
is negligible in λ , where the probabilities are taken over
a,b,c,r uniformly distributed in Fq and over the random bits
of B.

The second scheme we propose is proved secure un-
der the Bilinear Diffie Hellman Inversion Assumption (p−
BDHI). This assumption is also proposed in [8]. According
to [18], the best known algorithm breaking p−BDHI is to
solve the Discrete Logarithm Problem (DLP) in G.

Definition 5 (p−BDHI Assumption) Let G = 〈g〉 denote
a symmetric bilinear group deterministically generated ac-
cording to a security parameter λ , and let p be a positive
integer. We say the p−BDHI assumption holds in G if for
every PPT algorithm B,

AdvB(λ ) = Pr
(
B(g,ga,ga2

, . . . ,gap
) = e(g,g)1/a

)
is negligible in λ , where the probabilities are taken over uni-
formly distributed a ∈ Fq and over the random bits of B.

In the proposed schemes and in the definitions above,
bilinear groups are generated according to the security pa-
rameter λ . We choose bilinear groups to have exponential
order in λ . See the security and consistency proofs for more
details about this choice.

2.4.2 Security Definition

We now introduce the security definition used in this article.
We adapt the security definition introduced by Boneh et al.
in [9] to the conjunctive and subset case of Definition 1.

The used security definition is a semantic-security style
definition that guarantees encrypted index indistinguishabil-
ity in the face of an adversary with access to the public key
and to trapdoors not containing any keyword distinguishing
the challenge candidate documents. Therefore, in the secu-
rity definition we propose, the adversary is not allowed to
obtain trapdoors associated to any word that appears in one
of the challenge candidate documents, but not in both.

Let S be a PEKS scheme. Given a security parameter λ ,
we introduce a security game in the following five phases:

– Setup. The challenger runs Setup on input λ and hands
over the public parameters to the adversary. It also runs
S .KeyGen, keeps the private key sk secret and hands
over the public key pk to the adversary.

– Query Phase 1. The adversary adaptively requests the
challenger for qT trapdoors of its own choice, where qT
is a polynomial value in the security parameter λ . We
denote the set of all keywords queried in this phase by
W1.

– Challenge. The adversary outputs two challenge candi-
date documents D0,D1 subject to the restriction that key-
words appearing in D0∆D1 have not been queried in
Query Phase 1. That is, (D0∆D1)∩W1 = /0. The chal-
lenger throws a fair coin b ∈ {0,1}, and outputs the en-
crypted index S .BuildIndex(Db) corresponding to Db.

– Query Phase 2. The adversary proceeds just as in Query
Phase 1, but it is not allowed to ask for trapdoors con-
taining keywords in D0∆D1. That is, if the set of all key-
words queried in this phase is W2, we impose (D0∆D1)∩
W2 = /0.

– Guess. The adversary outputs a guess b′ ∈ {0,1} for b.

Definition 6 (Semantic Security against Adaptive Cho-
sen Keyword Attacks) We say that a PEKS scheme S
is semantically secure against adaptive chosen keyword at-
tacks if the advantage of every PPT adversary A in distin-
guishing b in the above game

AdvA (λ ) =|Pr(b′ = b)−1/2|
= |Pr(A (X) = b|X = b)

−Pr(A (X) = b|X = 1−b)|

is negligible in λ .
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For conjunctive PEKS, the security definition we con-
sider is slightly weaker than in other related works, in the
following sense. Works such as [3,11,14,16,20,21] impose
the natural restriction of serving the adversary just trapdoors
coming from queries with equal search outcome over the
two challenge candidate documents. In the case of conjunc-
tive queries, the restriction we pose is stronger, since served
trapdoors can not contain any keywords distinguishing the
challenge candidate documents. This implies that trapdoors
could leak which encrypted indexes contain some of the key-
words in the underlying query, even if there is not a match.

In addition, the considered security definition does not
provide trapdoor unlinkability or remove the need for a se-
cure channel for trapdoors, as studied for instance in [2,13,
32,40].

2.4.3 Implementation Remarks

We refer the reader to [5] for remarks and references on the
following statements and for a recent review on the state of
the art of pairing computation.

The implementation of asymmetric bilinear groups for
elliptic curve cryptography is often based on BN, BLS, KSS
or MNT elliptic curves. In turn, symmetric bilinear groups
are implemented in practice on supersingular elliptic curves.

Supersingular elliptic curves are well known to require
large prime order groups for the DLP to be intractable (since
they have a small MOV exponent) and this would enlarge
the size of exchanged information in the proposed schemes.
Moreover, recent results on the discrete logarithm problem
[6] have rendered symmetric bilinear groups effectively ob-
solete for cryptographic purposes. Nevertheless, as in [26],
we note that the second scheme we propose can be imple-
mented in asymmetric bilinear groups as well, thus reduc-
ing the group order and increasing efficiency and security.
In this context, symmetric bilinear groups are used just to
facilitate the construction of the formal security proof.

We should note that asymmetric bilinear groups guar-
antee that we can securely and efficiently hash onto G1. In
particular, it is possible to efficiently and uniformly sam-
ple from G1 without computing multiples of the generator
g. The fact that we prove security under the random oracle
model forces the use of such hash functions in the proposed
schemes. See [38] for an explicit solution on secure hashing
for BN curves.

3 Conjunctive PEKS Scheme

The proposed scheme can be seen as an analog to Boneh et
al.’s scheme [9] by replacing the symmetric computational-
type hardness assumption with an asymmetric decisional-
type one. This replacement by a stronger assumption allows
one to take advantage of the bilinearity of pairings and build

a conjunctive PEKS scheme with small trapdoors and in-
dexes and efficient search process.

Following [14,20,21,30,31], we assume that the docu-
ments to be encrypted satisfy that

1. two different keyword fields never hold the same key-
word, and

2. every keyword field is defined.

As noted in the literature [31], this can be effectively
achieved by appending a keyword field identifier to every
keyword. For instance, when encrypting a document of the
form (w1, . . . ,wn), one can assume that wi = i‖w′i for some
keyword w′i (which could be NULL or ⊥) and for all i ∈ [m].
We implicitly assume keywords in documents and trapdoors
to be of this form.

Although not stated, every algorithm apart from Setup
takes the public parameters as input.

Definition 7 We define a public-key encryption with con-
junctive keyword search scheme S1 by means of the fol-
lowing five polynomial-time algorithms:

S1.Setup(λ ): Given a security parameter λ ∈ Z, fix two
asymmetric bilinear groups G1,G2 of prime order q ≥
2λ and denote the corresponding pairing by e : G1 ×
G2 → GT . Let g,h be random generators of G1,G2 re-
spectively. Let H : {0,1}∗→G1 be a collision-free hash
function. Define m ∈ Z as the fixed number of keywords
in every document, which we assume constant in λ and
satisfying m≤ (1+ logq)/2. Output the public parame-
ters params = {G1,G2,GT ,q,e,g,h,H,m}.

S1.KeyGen(): Choose β ∈ Fq uniformly at random.
Output the private key β and the public key α = hβ .

S1.BuildIndexα(D): Denote by D = (w1, . . . ,wm) the in-
put document consisting of a tuple of m keywords wi ∈
{0,1}∗. Then, uniformly generate a random nonce r ∈
Fq and set

I0 = hr

Ii = e(H(wi) ,α
r) for i ∈ [m].

Output the index I = (I0, I1, . . . , Im).
S1.Trapdoorβ (L,J): Denote by L = (w1, . . . ,wl) the input

tuple of keywords (where l ≤m and wi ∈ {0,1}∗) and by
J = { j1, . . . , jl} ⊆ [m] the input set of positions. Set

T0 =
(
∏

l
i=1 H(wi)

)β
.

Output the trapdoor T, consisting of T0 along with the
fields J to be queried.

S1.Search(I,T): Given the index I = (I0, I1, . . . , Im) and the
trapdoor T = (T0,J), where J = { j1, . . . , jl}, output 1 if

e(T0, I0) =
l

∏
i=1

I ji .

Otherwise output 0.
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We next give the consistency and security theorems for
our scheme. The proofs are deferred to Sections 4.1 and 4.2,
respectively.

Theorem 1 The proposed conjunctive PEKS scheme S1 is
computationally consistent under the random oracle model.

Theorem 2 Assume the DBDH assumption holds. Then, the
proposed conjunctive PEKS scheme S1 is semantically se-
cure against adaptive chosen keyword attacks under the ran-
dom oracle model.

4 Consistency and Security Proofs for the Conjunctive
PEKS Scheme S1

In this section, we present the consistency and the security
proofs of our conjunctive PEKS scheme S1.

4.1 Consistency Proof for the Conjunctive PEKS Scheme
S1

We dedicate this section to the proof of Theorem 1. By pro-
ceeding in a similar way than in the proof by Abdalla et al.
in [1], we prove consistency of the scheme S1 in the random
oracle model.

Let A be a PPT adversary in the consistency game de-
fined in Section 2.3, having access to the public parameters,
to the public key pk and to the hash oracle H modeled as
a random oracle. Let WSet be the set of keywords queried
to the hash oracle H throughout the game, whose size qH is
polynomial in λ . Let D=(w1, . . . ,wm), L=(w′1, . . . ,w

′
l) and

J = { j1, . . . , jl} ⊆ [m] denote the guess of A in the Guess
phase, where keywords are taken from WSet, and let J̃ be
the set of positions ji ∈ J such that w ji 6= w′i. Without loss
of generality, we rule out adversaries choosing J̃ = /0 in the
Guess phase. Let r ∈ Fq denote the random nonce generated
by A in the encrypted index generation of the Output phase.

Denote X = e
(
∏i∈J H(wi),hβ r

)
and also denote X ′ =

e
(
∏

l
i=1 H(w′i),h

β r
)
. Now note that the output of A in the

consistency game is 1 if and only if X = X ′. We proceed to
bound the probability of this event, which is AdvA (λ ) by
definition.

Let E be the event that there exist D = (w1, . . . ,wm),
L = (w′1, . . . ,w

′
l) and J = { j1, . . . , jl} ⊆ [m], among all pos-

sible guesses taking words in WSet, in such a way that the
equality ∏

l
i=1 H(w ji) = ∏

l
i=1 H(w′i) is satisfied. If rβ = 0,

then A always outputs 1. Otherwise, notice that X =X ′ hap-
pens only when E happens. Therefore,

AdvA (λ )≤ (q−1)2

q2 Pr(E)+
2
q

Since q≥ 2λ , it suffices to see that Pr(E) is negligible in λ .

Since H is modeled as a random oracle and since inver-
sion permutes group elements, by using Lemma 1 we see
that Pr(E) ≤ q2m

H
m22m

q . This bound is negligible in λ , since

q ≥ 2λ , and m,qH are assumed to be constant and polyno-
mial in λ , respectively.

As a consequence of this result, we conclude the proof
of Theorem 1. We next state the lemma used above.

Lemma 1 Let G be a finite group of order q and neutral el-
ement 1. Let m,n be positive integers with m≤ (1+ logq)/2
and set X1, . . . ,Xn independent and identically distributed
uniform random variables with support G.

Let An,2m denote the event that there exists a S⊆ [n] with
|S| ≤ 2m such that ∏i∈S Xi = 1. Then we have

Pr(An,2m)≤ n2m m22m

q
.

Proof To make the notation simpler, denote At,t by At and
set t = 2m. Notice that An,t happens for X1, . . . ,Xn exactly
when it happens for some subset of X1, . . . ,Xn with min(n, t)
terms. Therefore, by the union bound

Pr(An,t)≤
(

n
t

)
Pr(At)≤ ntPr(At).

We now lower bound the probability of the complemen-
tary event Ac

t .
We first prove Pr(Ac

t )≥∏
t−1
i=0

q−2i

q by induction on t over

positive integers. For t = 1 we have Pr(Ac
1) =

q−1
q . For t > 1

note that, for Ac
t to happen with X1, . . . ,Xt , the event At−1

must happen with X1, . . . ,Xt−1 and Xt can not take as a value
any of the inverses of the subproducts of X1, . . . ,Xt−1. There-
fore, there are at least q− 2t−1 possible values for Xt such
that At happens and we get that Pr(Ac

t )≥
q−2t−1

q Pr(Ac
t−1) as

claimed.
Now we have

Pr(At)≤ 1−
t−1

∏
i=0

q−2i

q
≤ 1−

(
1− 2t−1

q

)t

.

Since t ≤ 1+ logq, we can bound this last expression by
using the binomial inequality, obtaining Pr(At)≤ t2t−1

q , and
the result is proved.

4.2 Security Proof for the Conjunctive PEKS Scheme S1

We dedicate this section to the proof of Theorem 2. As in
[11], security is here proved in the random oracle model by
means of a sequence of hybrid games.

Given two documents D0 = (w0,1, . . . ,w0,m) and D1 =

(w1,1, . . . ,w1,m), let ∆ ⊆ [m] denote the set of positions cor-
responding to keywords in D0∆D1. For j ∈ [m] let ∆ j denote
the first min( j, |∆ |) elements of ∆ .
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Let G0 be the security game defined in Section 2.4.2.
Given j ∈ [m] we define a hybrid game G j, differring from
G0 only in that the keywords in positions in ∆ j of the chal-
lenge index are chosen uniformly at random by the chal-
lenger.

Specifically, we introduce the security game G j for j ∈
[m], consisting of the following five phases:

– Setup. The challenger runs Setup and hands over the
public parameters to the adversary. It also runs KeyGen,
keeps the private key sk secret and hands over the public
key pk to the adversary.

– Query Phase 1. The adversary adaptively asks the chal-
lenger for qT trapdoors of its own choice, where qT is a
polynomial value in the security parameter λ . We denote
the set of all keywords queried in this phase by W1.

– Challenge. The adversary outputs two challenge candi-
date documents D0, D1, subject to the restriction that
keywords appearing in D0∆D1 have not been queried in
Query Phase 1. That is, (D0∆D1)∩W1 = /0. The chal-
lenger throws a fair coin b ∈ {0,1} and computes the
index I = (I0, I1, . . . , Im) corresponding to Db. Then, for
every i ∈ ∆ j, the challenger replaces Ii with uniformly
sampled random elements from G1 and hands over this
modified index to the adversary as the challenge.

– Query Phase 2. The adversary proceeds just as in Query
Phase 1, but it is not allowed to ask for trapdoors con-
taining keywords in D0∆D1. That is, if the set of all key-
words queried in this phase is W2, we impose (D0∆D1)∩
W2 = /0.

– Guess. The adversary outputs a guess b′ ∈ {0,1} for b.

Let AdvA ,G j(λ ) denote the advantage of the PPT ad-
versary A in guessing b in the game G j. It is clear that
AdvA ,Gm(λ ) is negligible in λ for every PPT adversary A
because in Gm the two challenge candidate documents share
the same information with the challenge index.

Note that G0 is identical to the security game defined
in Section 2.4.2. We prove through Proposition 1 that the
proposed conjunctive PEKS scheme S1 is semantically se-
cure against adaptive chosen keyword attacks provided the
DBDH assumption holds.

Proposition 1 Assume that the DBDH assumption holds.
For any j ∈ {0, . . . ,m− 1} and for any PPT adversary A ,
the advantages of A in the games G j and G j+1, when using
the scheme S1, are negligibly close in λ . That is,

|AdvA ,G j(λ )−AdvA ,G j+1(λ )|

is negligible in λ .

Proof Let A be a PPT adversary. For every j ∈ {0, . . . ,m−
1}, we build a PPT DBDH distinguisher B j taking a DBDH
challenge tuple (g,ga,gb,h,ha,hc,v) as input and interacting
with A as the challenger in the security game of the scheme.

The distinguisher B j is built in such a way that, for tu-
ples with v = e(g,g)abc, A is playing the game G j, and for
tuples with v random A is playing the game G j+1. The out-
put of the DBDH distinguisher B j depends on the output of
A .

– Setup. The challenger B j runs S1.Setup(λ ) to obtain
params = {G1,G2,q,e,g,h,H,m} the public parameters
of the scheme, where H is the hash oracle described be-
low. B j hands over the public parameters to A .

– Keygen. The challenger B j hands over the public key ha

to A .
– Hash Oracle. The hash oracle H is operated by B j, and

it maintains a list of tuples of the form 〈w,s,c〉 with w ∈
{0,1}∗, s ∈ Fq and c ∈ {0,1}. The list is initially empty.
On input a keyword w ∈ {0,1}∗, the oracle H operates
as follows:
1. If there is an item in the list whose first element is

keyword w, denote it by 〈w,s,c〉. Then:
(a) If c = 0, the oracle returns gs.
(b) If c = 1, the oracle returns

(
gb
)s.

2. If there is no item in the list whose first element is
keyword w, then the oracle flips a coin c ∈ {0,1}
with Pr(c = 1) = 1/(2qT m+1), samples s ∈ Fq uni-
formly at random and inserts 〈w,s,c〉 into the list.
Then, it proceeds to give an output as in the previous
point.

– Query Phase 1. When A requests a trapdoor for key-
words L = (w1, . . . ,wl) in the set of keyword fields J =

{ j1, . . . , jl}, the algorithm B j first calls the oracle on in-
put each keyword wi and retrieves the associated oracle
list tuples 〈wi,si,ci〉. Then, if some coin flip ci = 1, B j
halts. Otherwise, B j hands over to A the trapdoor T
consisting of T0 = ∏

l
i=1 (g

a)si and J.
– Challenge. In this phase, the adversary A outputs two

documents D0 = (w0,1, . . . ,w0,m), D1 = (w1,1, . . . ,w1,m)

with the restrictions stated in the security game defined
in Section 2.4.2 and above, and B j throws a fair coin
b ∈ {0,1}.
Then, B j calls the hash oracle on every keyword wb,i to
fill the H-list with tuples 〈wb,i,sb,i,cb,i〉. The algorithm
B j halts if:
– For some i ∈ [m]\∆ j+1 we have cb,i = 1, or
– cb,t = 0, where {t}= ∆ j+1\∆ j.

Then B j samples a value r ∈ Fq uniformly at random,
and computes the challenge I = (I0, I1, . . . , Im) in the fol-
lowing way

I0 = hr,

Ii =


unif. sampled from GT if i ∈ ∆ j
vrsb,i if i ∈ ∆ j+1\∆ j 6= /0
e((ga)r,(hc)sb,i) if i ∈ [m]\∆ j+1 6= /0

and hands over I to A .
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– Query Phase 2. B j proceeds as in Query Phase 1.
– Guess. The adversary A outputs a guess b′ ∈ {0,1} for

b. If b = b′, B j outputs 1, and if b 6= b′, B j outputs 0.

Since the DBDH assumption holds, AdvB j(λ ) must be
negligible in λ . But

AdvB j(λ ) =|Pr(B j(X) = 1|X = 1)

−Pr(B j(X) = 1|X = 0)|
=Pr(B j does not halt)

· |AdvA ,G j(λ )−AdvA ,G j+1(λ )|.

By Lemma 2, Pr(B j does not halt) is non-negligible in λ ,
and the result is proved.

As a consequence of this result, we conclude the proof of
Theorem 2. We next state and prove the lemma referenced in
the proof of Proposition 1, which is an adaptation of a result
in [9].

Lemma 2 ([9]) The probability that algorithm B j does not
halt is non-negligible in the security parameter λ .

Proof We split the calculations between the query phases
and the challenge phase.

In each of the query phases, we allow A to ask for
a polynomial amount qT (in λ ) of trapdoor queries. This
amounts to throwing at most 2mqT coins c with Pr(c = 1) =
1/(2qT m+ 1). Since B j does not halt exactly when each
and every one of these throws outcome is 0, we have

Pr(B j does not halt in query phases)

≥
(

1− 1
2mqT +1

)2mqT

≥ 1/e,

which is non-negligible in λ .
For the challenge phase, B does not halt exactly when

the coin throw corresponding to the keyword in position
∆ j+1\∆ j (if nonempty) of the chosen challenge document
is 1 and the coin throws corresponding to the keywords in
positions in [m]\∆ j+1 of the chosen challenge document are
all 0. Since, if D0 6= D1 then |[m]\∆ j+1| ≤ m−1, we have:

Pr(B j does not halt in the challenge phase)

≥
(

1− 1
2mqT +1

)m−1 1
2mqT +1

≥ 1
e

1
2mqT +1

,

which is non-negligible in λ since m is constant in λ and qT
is polynomial in λ , and we get the stated lemma.

5 Subset PEKS Scheme

The second PEKS scheme we propose enables a class of
subset queries. This class includes subset queries as defined
in [11].

Subset queries, as understood by [11], are specified by
an ordered tuple of m sets of keywords (A1, . . . ,Am). Then,
a document D = (w1, . . . ,wm) satisfies such a query if and
only if the predicate (w1 ∈ A1)∧·· ·∧ (wm ∈ Am) holds. The
scheme we propose considers subsets in a partition of D in-
stead of keywords wi in this last predicate.

More concretely, in the setup algorithm we fix a parti-
tion J1, . . . ,Jm of [m]. Given a document D = (w1, . . . ,wm),
write Bi = {w j} j∈Ji for every i ∈ [m]. Given a query L =

(w′1, . . . ,w
′
l), J = { j1, ..., jl}, where J is written in increa-

sing order, consider Ai = {w′k} jk∈Ji for every i ∈ [m]. Then,
the document D satisfies the query L,J if and only if the
predicate (B1 ⊆ A1)∧ ·· · ∧ (Bm ⊆ Am) holds. Note that we
also admit empty keyword fields in documents, which are
denoted by keywords ⊥.

For the sake of clarity, before formally stating the pro-
posed construction, we give a brief example illustrating the
internal workings of the scheme.

The Setup algorithm of the scheme fixes a tuple of pos-
sibly repeated field identifiers ( f1, . . . , fm). We take m = 8
and ( f1, . . . , f8) = (1,1,1,2,2,2,3,3) as an example.

When encrypting documents in BuildIndex, the docu-
ments D = (w1, . . . ,wm) can be thought of as a collection
of sets of keywords, where keywords in positions having
the same field identifier belong to the same set. Also, the
keyword ⊥ is allowed, and it stands for a null entry. For
instance, following the example above, the document D =

(w1,w2,w3,w4,w5,⊥,w7,⊥) can be thought of as the fol-
lowing collection of sets ({w1,w2,w3},{w4,w5},{w7}).

When generating trapdoors, we input a query consisting
of a tuple of keywords L = (w1, . . . ,wl) and a set of posi-
tions J = { j1, . . . , jl} written in increasing order. As above,
keywords in positions having the same field identifier are
thought to belong to the same set. Thus, in the example
above, the query for words L = (w′1,w

′
2,w
′
3,w
′
4,w
′
5,w
′
6,w
′
7)

at positions J = {1,2,3,4,5,6,8} can be thought of as the
collection of sets ({w′1,w′2,w′3},{w′4,w′5,w′6},{w7}).

Now, a document matches a query in the Search algo-
rithm exactly when the sets of keywords defined by the doc-
ument are contained in the sets of keywords defined by the
query, in a sequential way. That is, following the example
above, a match happens exactly when

({w1,w2,w3} ⊆ {w′1,w′2,w′3})∧ ({w4,w5} ⊆ {w′4,w′5,w′6})
∧ ({w7} ⊆ {w′7}).

We now describe the proposed subset PEKS scheme. Al-
though not stated, every algorithm apart from Setup takes
the public parameters as input.
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Definition 8 We define a public-key encryption with subset
keyword search scheme S2 by means of the following five
polynomial-time algorithms:

S2.Setup(λ ): Given a security parameter λ ∈ Z, fix a sym-
metric bilinear group G of prime order q ≥ 2λ and de-
note the corresponding pairing by e : G×G→ GT . Let
g be a random generator of G. Let H : {0,1}∗→ G and
H1 : GT → {0,1}∗ be collision-free hash functions. Set
m ∈ Z the maximum number of keywords in every doc-
ument, which we assume constant in λ and satisfying
m ≤ (1+ logq)/2. Define a tuple ( f1, . . . , fm) of possi-
bly repeated field identifiers describing which field does
each word in the documents belong to, where each fi ∈
[m]. Output params = {G,q,e,g,H,H1,m,( f1, . . . , fm)}
the public parameters of the scheme.

S2.KeyGen(): Choose a ∈ Fq uniformly at random.
Output the private key β = (βi)

m
i=1 and the public key

α = (αi)
m
i=1, where βi = a−i and αi = gai

.
S2.BuildIndexα(D): Given as input D = (w1, . . . ,wm) the

document consisting of a tuple of m keywords wi in the
domain {0,1}∗∪{⊥}, generate r1, . . . ,rm ∈ Fq uniform
random nonces in such a way that fi = f j implies ri = r j.

Set
I0 = H1

(
e
(
∏i∈[m]:wi 6=⊥H(wi)

ri ,g
))

Ii = α
ri
i for i ∈ [m].

Output the index I = (I0, I1, . . . , Im).
S2.Trapdoorβ (L,J): Given L=(w1, . . . ,wl) the input tuple

of keywords with l ≤ m, and the set of keyword fields
J = { j1, . . . , jl} ⊆ [m] written in increasing order, set

Ti = H(wi)
β ji for i ∈ {1, . . . , l}.

Output the trapdoor T, consisting of T1, . . . ,Tl along with
the fields J to be queried.

S2.Search(I,T): Denote the index I by I = (I0, I1, . . . , Im)

and the trapdoor T by T = (T0,{ j1, . . . , jl}). For every
t ∈ [m], let Jt denote the set of elements i ∈ [l] such that
f ji = t. For every i ∈ [l], compute vi = e(Ti, I ji).
Output 1 if there exists subsets J′t ⊆ Jt for t ∈ [m] such
that

I0 = H1

(
m

∏
t=1

∏
i∈J′t

vi

)
.

Otherwise output 0.

In the following example, we describe an application of
our subset PEKS scheme. We follow the e-mail gateway sce-
nario mentioned in Section 1 and proposed by Boneh et al.
in [9].

Example 1 Consider a user Alice that reads her e-mail on
various devices (such as laptop, smartphone and desktop).
Suppose that each message is tagged with a sequence of at

most four keywords to aid classification. Further suppose
that the first tag defines the priority of the message (e.g. “ur-
gent” or “low priority”) and that the last three describe its
category (e.g. “social”, “advertising” or “work”), so e-mails
have the structure

message‖priority tag‖cat tag 1‖cat tag 2‖cat tag 3.

Alice receives her e-mail through a gateway, who distributes
all messages to her devices according to the attached tags.
Due to privacy reasons, Alice does not wish her e-mail gate-
way to be able to read her e-mail messages nor to have any
knowledge of the attached tags. However, she still wants her
e-mail gateway to classify and distribute messages to her
devices correctly. Hence, she sets up a public-key encryp-
tion scheme (Gen,Enc,Dec) and disseminates her public
key material, so that senders can send her messages in an
encrypted form.

In this context, our subset PEKS scheme can be used to
encrypt the keyword tags.

To set up our subset PEKS scheme in the described set-
ting, Alice would first execute S2.Setup(λ ) and set m = 4
and ( f1, . . . , f4) = (1,2,2,2). Then, she would generate the
public key α and the private key β by calling S2.Keygen(),
and disseminate the public key.

Suppose that a user Bob wants to send Alice an e-mail
message M with low priority to schedule a work meeting. He
thus chooses the priority tag “low priority” and the category
tags “work” and “meeting”. He can then generate the index

I = S2.BuildIndexα((low priority,work,meeting,⊥))

and send Enc(M)‖I to her e-mail gateway.
Now, suppose that Alice wants to restrict the e-mails she

receives on her smartphone to personal e-mails, urgent work
e-mails and work e-mails for scheduling meetings. To do so,
she can send the following trapdoors to her e-mail gateway

T = S2.Trapdoorβ ((personal),{2})
T′ = S2.Trapdoorβ ((urgent,work),{1,2})
T′′ = S2.Trapdoorβ ((work,meeting),{2,3}).

When receiving an encrypted e-mail of the form Enc(M)‖I,
Alice’s e-mail gateway is trusted to forward it to her smart-
phone exactly when any of the evaluations S2.Search(I,T),
S2.Search(I,T′) and S2.Search(I,T′′) return 1.

We next give the consistency and security theorems for
our scheme. The proofs are deferred to Sections 6.1 and 6.2,
respectively.

Theorem 3 The proposed subset PEKS scheme S2 is com-
putationally consistent under the random oracle model.

Theorem 4 Assume that the (m + 1)−BDHI assumption
holds. Then, the proposed subset PEKS scheme S2 is se-
mantically secure against adaptive chosen keyword attacks
under the random oracle model.



Provably Secure Conjunctive and Subset PEKS 11

6 Consistency and Security Proofs for the Subset PEKS
Scheme S2

In this section, we give the consistency and security proofs
for the subset PEKS scheme S2.

6.1 Consistency Proof for the Subset PEKS Scheme S2

We dedicate this section to the proof of Theorem 3.
We now prove consistency in the random oracle model

of the scheme S2 in a similar fashion than in the proof by
Abdalla et al. in [1].

Let A be a PPT adversary in the consistency game de-
fined in Section 2.3, which has access to the public param-
eters, to the public key pk and to the hash oracles H,H1
modeled as random oracles. Let WSet, TSet be the sets of
polynomial (in λ ) size qH ,qH1 which consist of keywords
queried to the hash oracles H,H1 throughout the game, re-
spectively. Write ( f1, . . . , fm) the tuple of field identifiers
in the public parameters. Let D = (w1, . . . ,wm) and L =

(w′1, . . . ,w
′
l) and J = { j1, . . . , jl}⊆ [m] (written in increasing

order) denote the guess of A in the Guess phase.
For j ∈ [m], let D f j denote the set of keywords in D at

positions having field identifier f j. Let J̃ be the set of posi-
tions ji ∈ J such that w′i 6⊆ D f ji

. Without loss of generality,
we rule out adversaries choosing J̃ = /0 in the Guess phase.
Let r1, . . . ,rm ∈ Fq denote the random nonces generated by
A in the encrypted index generation of the Output phase.

Denote X = e
(
∏i∈[m]:wi 6=⊥H(wi)

ri ,g
)

and, given a sub-
set J′ ⊂ J, denote X ′ = e

(
∏ ji∈J′H(w′i)

r ji ,g
)
. Now note that

the output of A in the consistency game is 1 if and only if
X = X ′ or H1(X) = H1(X ′) for some J′ ⊆ J with J′∩ J̃ 6= /0.

Let E denote the event that there exist D = (w1, . . . ,wm),
L = (w′1, . . . ,w

′
l) and J = { j1, . . . , jl} ⊆ [m], among all pos-

sible guesses taking words in WSet in such a way that we
have ∏i∈[m]:wi 6=⊥H(wi)

ri = ∏i∈[l] H(w′i)
r ji . Likewise, let E1

be the event that there exist T,T ′ ∈ TSet in such a way that
H1(T ) = H1(T ′).

If all r1, . . . ,rm 6= 0, then X = X ′ has nonzero probabil-
ity of happening only when E happens (note that by rang-
ing over all possible J we remove the need to include the
J′ above in the argument). Likewise H1(X) = H1(X ′) has
nonzero probability of happening only when E1 happens.
Therefore

AdvA (λ )≤
(

1− m
q

)
(Pr(E)+Pr(E1))+

m
q
.

Since q≥ 2λ and m is constant in λ , it suffices to prove that
Pr(E) and Pr(E1) are negligible in λ .

By computing the probability of the complementary and
using the binomial inequality, we see that Pr(E1) ≤ q2

H1
/q.

Now, since H is modeled as a random oracle and since in-
version permutes group elements, by using Lemma 1 we see

that Pr(E)≤ q2m
H

m22m

q . The obtained bounds are indeed neg-

ligible in λ , since q≥ 2λ , and m,qH are assumed to be con-
stant and polynomial in λ , respectively.

As a consequence of this result, we conclude the proof
of Theorem 3.

6.2 Security Proof for the Subset PEKS Scheme S2

We dedicate this section to the proof of Theorem 4.
We prove security in the random oracle model by fol-

lowing a similar technique than [9].
Suppose that there exists a PPT adversary A breaking

the security game defined in Section 2.4.2 with advantage
not negligible in λ . We then build a successful PPT (m+

1)−BDHI distinguisher B taking an (m+1)−BDHI chal-
lenge tuple (g,ga, . . . ,gam+1

) as input. By interacting with
A as the challenger in the security game defined in Sec-
tion 2.4.2, B computes e(g,g)1/a with non-negligible ad-
vantage in λ .

– Setup. The challenger B runs Setup(λ ) to generate the
public parameters of the scheme

params = {G,q,e,g,H,H1,m,( f1, . . . , fm)},

where H,H1 are handles to the hash oracles described
below. B hands over the public parameters to A .

– Keygen. The challenger B hands over the public key
(ga, . . . ,gam

) to A .
– Hash Oracle H. The oracle is operated by B, which

maintains a list of tuples of the form 〈w,s,c〉 with w ∈
{0,1}∗, s ∈ Fq and c ∈ {0,1}. The list is initially empty.
On input a keyword w ∈ {0,1}∗, the oracle H operates
as follows:
1. If there is an item in the list whose first element is

keyword w, denote it by 〈w,s,c〉. Then:
(a) If c = 0, the oracle returns gs.
(b) If c = 1, the oracle returns

(
gam+1

)s
.

2. If there is no item in the list whose first element is
keyword w, then the oracle flips a coin c ∈ {0,1}
with Pr(c = 1) = 1/(2qT m+1), samples s ∈ Fq uni-
formly at random and inserts 〈w,s,c〉 into the list.
Then, it proceeds to give an output as in the previous
point.

– Hash Oracle H1. The oracle is operated by B, which
maintains a list of tuples of the form 〈t,V 〉 with t ∈ GT
and V ∈ {0,1}∗. The list is initially empty. On input an
element t ∈GT , the oracle H1 operates as follows:
1. If there is an item in the list whose first element is t,

denote it by 〈t,V 〉. The oracle returns V .
2. If there is no item in the list whose first element is t,

then the oracle samples V ∈GT uniformly at random
and inserts 〈t,V 〉 into the list. Then, it proceeds to
give an output as in the previous point.
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– Query Phase 1. When A requests a trapdoor for key-
words L=(w1, . . . ,wl) in positions J = { j1, . . . , jl}writ-
ten in increasing order, the algorithm B first calls the H
oracle on input each keyword wi and retrieves the associ-
ated oracle list tuples 〈wi,si,ci〉. Then, if some coin flip
ci = 1, B halts. Otherwise, B hands over to A the trap-
door T consisting of Ti = (gam− ji+1

)si for i ∈ {1, . . . , l},
and J.

– Challenge. The adversary outputs two documents D0 =

(w0,1, . . . ,w0,m), D1 = (w1,1, . . . ,w1,m) with the restric-
tions stated in the security game defined in Section 2.4.2,
and B throws a fair coin b ∈ {0,1}.
Then, B calls the hash oracle on every keyword wb,i to
fill the H-list with tuples 〈wb,i,sb,i,cb,i〉. The algorithm
B halts if some cb,i = 1.
Then B uniformly chooses J ∈ GT and random nonces
r1, . . . ,rm ∈ Fq in such a way that if fi = f j then ri = r j,
and it computes the challenge I = (I0, I1, . . . , Im) in the
following way

I0 = J, Ii =
(

gai−1
)ri

and hands over I to A . In addition, B halts if ∑i sb,iri ≡
0 (mod q), and if not, it stores C = (∑i sb,iri)

−1 (mod
q).

– Query Phase 2. B proceeds as in Query Phase 1.
– Guess. The adversary A outputs a guess b′ ∈ {0,1} for

b. Then, B picks a random element 〈t,V 〉 from the list
in H1, and returns tC.

Note that the challenge is well-formed, and that it im-
plicitly imposes the equality J = H1

(
e
(
g∑i sb,iri ,g

)1/a
)

. If
B does not halt, then it perfectly simulates a real attack
game up until the moment when A issues an H1 oracle
query for t0 = e

(
g∑i s0,iri ,g

)1/a or t1 = e
(
g∑i s1,iri ,g

)1/a.
Let E denote the event that A issues a query for t0 or t1

in a real attack game. We now lower bound the probability
of E . Under the random oracle model, if E does not happen,
then B does not reveal any information about b. Therefore,

Pr(b′ = b) = Pr(E )Pr(b′ = b|E )+
1
2

Pr(¬E )

=
1
2
+Pr(E )

(
Pr(b′ = b|E )− 1

2

)
so we can express the advantage of A by

AdvA (λ ) = |Pr(b′ = b)− 1
2
|

= Pr(E ) ·
∣∣∣∣Pr(b′ = b|E )− 1

2

∣∣∣∣≤ 1
2

Pr(E )

and Pr(E )≥ 2AdvA (λ ).
Now, suppose that

1. B does not abort,

2. A eventually issues an H1 oracle query for either t0 or
t1, i.e. E happens, and

3. B chooses b such that A queries the H1 oracle for tb
(this is well defined, since A does not receive any infor-
mation about b until E happens).

Then, if B calls the hash oracle H1 on input tb in the
Guess phase, it successfully computes e(g,g)1/a. Since B
uniformly samples an element from all inputs processed by
the hash oracle H1 to generate its output in the Guess phase,
the probability of B breaking the (m+1)−BDHI assump-
tion in the above situation is at least 1/qH1 , where qH1 is the
polynomial amount of queries issued to the H1 oracle. This
implies

AdvB(λ ) = Pr(B(g, . . . ,gam+1
) = e(g,g)1/a)

≥ 1
qH1

Pr(B does not abort)Pr(E )
1
2

≥ 1
qH1

Pr(B does not abort)AdvA (λ ).

By following the same argument as in Lemma 2, we see
that Pr(B does not abort) is non-negligible in λ . Since A
breaks the security game defined in Section 2.4.2 with non-
negligible advantage and qH1 is polynomial in λ , we con-
clude that AdvB(λ ) is non-negligible as well.

As a consequence of this result, we conclude the proof
of Theorem 4.

7 Efficiency Analysis

We next lay out the efficiency measures of the proposed
schemes and of other similar searchable encryption sche-
mes. We state the size and the time needed to generate an
encrypted index and a trapdoor, and also the time taken to
perform a search operation. We omit multiplication time,
hash evaluation time, key setup time, field identifiers size
and key storage size in the efficiency analysis. Notice that
the search time refers to performing a search operation for a
single encrypted index. Note that this is the case of applica-
tion examples stated in Section 1. Thus the search time over
a set of encrypted indexes scales linearly in the number of
encrypted indexes.

To analyze performance, we implement our schemes S1
and S2 and the schemes in [31] by using the PBC library
[27], and we provide the estimated running times for each al-
gorithm. All simulations ran on an Intel R©CoreTM i7-4510U
CPU at 2.00GHz and 8GB memory under Ubuntu 16.04.1
LTS.

For the sake of comparison, we use symmetric bilinear
groups (type A pairings in the PBC library documentation)
in all implementations. Also, as suggested in the PBC li-
brary documentation, we fix a 512-bit base field order and a
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160-bit group order to instantiate the bilinear group. In our
implementations, we did not use pre-processing or any of
the functions that the PBC library provides in order to speed
up computations.

7.1 Conjunctive PEKS Scheme

Since we restrict the analysis to conjunctive PEKS sche-
mes, the schemes [2,16,32,33,35] lie out of the scope of
the analysis. However, we include the single-keyword PEKS
scheme [9] by Boneh et al. in our analysis for the sake of
comparison, extending it to the conjunctive case by consid-
ering the concatenation of indexes and trapdoors and the se-
quential evaluation of the Search algorithm. Note that, for
the single-keyword case m = l = 1, our scheme and [9] have
similar efficiency marks.

We also restrict the analysis to the public-key setting,
so we leave out schemes such as [3,13,14]. Other schemes
such as [20,42] are omitted due to security considerations.

The size and time efficiency measures can be found in
Tables 1 and 2 respectively.

Scheme Index size Trapdoor size
[9] BDOP mE +mF lE
[31] PKL I 2E +mF E
[31] PKL II 2mE 2E
[30] PCL (2m+1)E 2E +F
[11] BW (2m+2)E (2l +1)E
[21] HL (m+2)E 3E
S1 E +mF E

m: number of keywords in the index
l: number of keywords in the trapdoor
E: size of elliptic curve point
F : size of finite field element

Table 1 Size efficiency comparison of conjunctive PEKS schemes.

Scheme Index time Trapdoor time Search time
[9] BDOP me+2mG lG le
[31] PKL I me+(m+2)G G e+G
[31] PKL II (4m+1)G+X 2G 2e+G
[30] PCL (4m+1)G+2X 2G 2e
[11] BW (6m+2)G (5l +1)G (2l +1)e
[21] HL (2m+2)G 3G 3e
S1 me+2G2 G1 e

m: number of keywords in the index
l: number of keywords in the trapdoor
e: pairing evaluation time
G: exponentiation time in symmetric bilinear group G
G1: exp. time in asymmetric bilinear group G1
G2: exp. time in asymmetric bilinear group G2
X : exponentiation time in finite field

Table 2 Time efficiency comparison of conjunctive PEKS schemes.

Note that the proposed scheme achieves the lowest effi-
ciency marks for index size, trapdoor size, trapdoor genera-
tion time and search time. This is not so for the index gen-
eration time, which is constrained by the computing power
of the senders. However, in several applications the search
time and the index and trapdoor size measures are far more
critical, since they are constrained by the throughput of the
network and by the computing power of the storage server,
and search operations may be executed more than once per
encrypted index.

In Table 3, we give the estimated running times in mil-
liseconds for Table 2 by arbitrarily fixing m = 8 and l = 8,
and using 48-bit keywords. For implementation reasons, we
do not give the performance analysis for the schemes in [21,
30], mainly because they require the evaluation of multiple
independent hash functions. We also omit the analysis of the
conjunctive PEKS scheme in [11] for efficiency reasons.

Scheme Index time Trapdoor time Search time
[9] BDOP 58.7ms 36.5ms 7.33ms
[31] PKL I 53.1ms 29.7ms 2.73ms
[31] PKL II 59.8ms 3.08ms 3.26ms
S1 35.9ms 26.5ms 0.94ms

Table 3 Performance analysis of conjunctive PEKS schemes.

We observe that S1 achieves the best index computa-
tion and search time in the studied case. Also, the second
scheme in [31] gives the best trapdoor computation time.
This is achieved in [31] by removing the need for an admis-
sible encoding scheme, thus replacing products in the bili-
near group by sums in the underlying finite field.

7.2 Subset PEKS Scheme

We now give the efficiency measures for the proposed sub-
set PEKS scheme and the related subset PEKS scheme by
Boneh and Waters [11]. For the sake of comparison, we as-
sume that queries are always the ones supported by [11]. See
the beginning of Section 5 for more details.

One of the main differences between both schemes is
that in the proposed scheme the keyword space is an arbi-
trary exponential-sized keyword space {0,1}∗, while in [11]
keywords are taken from a finite polynomial-sized keyword
space. We denote by n the size of this keyword space in the
efficiency analysis. Another difference is that, in the scheme
we propose, the number of keywords in queries is limited
at S2.Setup. We denote by L the maximum number of key-
words in a trapdoor. The size and time efficiency measures
can be found in Tables 4 and 5 respectively.

We now give the estimated running times in millisec-
onds for the S2 scheme. Since the performance of the sub-
set PEKS scheme in [11] depends strongly on the size of the
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Scheme Index size Trapdoor size
[11] BW (2nm+2)E (2nm+1)E
S2 LE +H lE

n: size of the keyword space
m: number of keywords in the index
l: number of keywords in the trapdoor
L: maximum number of keywords in a trapdoor
E: size of elliptic curve point
F : size of finite field element
H: size of strings in Im(H1)⊆ {0,1}∗

Table 4 Size efficiency comparison between subset PEKS schemes.

Scheme Index time Trapdoor time Search time
[11] BW (6nm+2)G (5nm+1)G (2nm+1)e
S2 e+2LG lG le

n: size of the keyword space
m: number of keywords in the index
l: number of keywords in the trapdoor
L: maximum number of keywords in a trapdoor
e: pairing evaluation time
G: exponentiation time in symmetric bilinear group G
X : exponentiation time in finite field

Table 5 Time efficiency comparison between subset PEKS schemes.

keyword space, it is difficult to choose parameters allowing
a sensible comparison. Therefore, we omit the performance
analysis of [11].

We arbitrarily fix m = 8, l = 8, and use 48-bit keywords.
We also instantiate the index and the trapdoor so that the
search operation takes the longest possible. In the proposed
scheme, the computation of an index and a trapdoor takes an
estimated time of 39.5ms and 36.6ms respectively, and the
search time is approximately 7.57ms.

8 Conclusion and Future Work

Public Key Encryption with Keyword Search (PEKS) sche-
mes enable public key holders to encrypt documents, while
the secret key holder is able to generate queries for the en-
crypted data. In this article we have presented two PEKS
schemes enabling conjunctive and subset queries. We have
proposed a security notion for PEKS and we have proved
the proposed schemes secure under the asymmetric DBDH
problem and the p−BDHI problem, respectively. We have
also proved the computational consistence of our construc-
tions. The main strength of our schemes lies in their effi-
ciency since, as shown in the provided efficiency analysis,
they improve all previous related schemes in some of the
most critical operations.

The proposed schemes could possibly admit various ex-
tensions. For example, we believe it is possible to extend
our subset PEKS scheme to allow decryption of encrypted
indexes by embedding messages in the target group, as done

in works such as [11]. Such an extension would allow the
retrieval of messages in the search process.

In [1], Abdalla et al. prove computational consistency
for the PEKS scheme [9] by Boneh et al., and give a modi-
fied scheme achieving the stronger notion of statistical con-
sistency. Since the conjunctive PEKS scheme we propose
here can be seen as a natural extension to the scheme in [9]
to the conjunctive case, it would be interesting to find similar
modifications that improve consistency.

It would also be interesting to maintain a good efficiency
and security trade-off while improving the security notion.
For example, by providing tight security proofs in the stan-
dard model, or by removing the need for a secure channel
for trapdoors.
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