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Summary 11 

A portable FTIR-ATR spectrometer was used to monitor small-scale must fermentations 12 

(microvinifications) with the aims to describe the process and to early detect problematic 13 

fermentations. Twenty fermentations at normal operation conditions (NOC) and 3 14 

fermentations that were intentionally deviated from NOC (yeast assimilable nitrogen 15 

deficiency - YAN) were monitored. FTIR-ATR spectra were registered after a minimum 16 

sample pretreatment during the fermentation process. In addition, density, sugars (glucose 17 

and fructose) and acetic acid contents were determined by traditional methods. Different 18 

multivariate analysis strategies (global and local models) were applied to the 19 

spectroscopic data to describe the evolution of the NOC fermentation and to early detect 20 

the abnormal fermentations. Global models based on principal component analysi (PCA) 21 

and partial least squares discriminant analysis (PLS-DA) allowed to describe the 22 

fermentations evolution in time and to correctly classify NOC and YAN fermentations. 23 

Abnormal deviations were successfully detected by developing one model for each 24 

sampling time. YAN experiments could be identified 49 hours after the beginning of the 25 

fermentations by means of Hotelling T2 and residual F statistics. In conclusion, ATR-26 

FTIR coupled to multivariate analysis showed great potential as afast and simple at-line 27 

analysis tool to monitor wine fermentation and to early detect fermentation problems  28 

Key words: ATR-FTIR, fermentation monitoring,, multivariate analysis, wine 29 



2 
 

Introduction  30 

In the winemaking industry, the control of the whole production chain, from harvest to 31 

bottling, is essential to obtain high-quality wines. One of the crucial phases in wine 32 

production is certainly the must fermentation, which is the biological transformation of 33 

grape juice into wine. Whereas it comprises many biochemical reactions, the most 34 

important change is the conversion of sugars into ethanol and CO2. Nevertheless, 35 

the secondary reactions that take place during must fermentation have a substantial 36 

impact on the quality, flavor and character of the final wine.1 37 

Must fermentation requires, therefore, a thorough monitoring: failing to achieve a 38 

successful process control at this stage may result in stuck or sluggish fermentations that 39 

could throw away a whole vintage or lead to low quality wines.2 40 

Several routine measurements such as density, temperature and pH, are usually carried 41 

out throughout the fermentation process in wine cellars. However, additional 42 

measurements (e.g. total and volatile acidity, sugars, SO2, assimilable nitrogen) which are 43 

often costly, time-consuming and require specific equipment and personnel, are 44 

commonly performed to gain more information.3 45 

In 2004 the United States Food and Drug Administration introduced the concept of 46 

‘Process Analytical Technologies’ (PAT), aiming at implementing a real-time monitoring 47 

system through the production chain. This would replace final product testing as quality 48 

is controlled during the production process, giving the possibility to ‘readjust’ a process 49 

before the product is made and thus minimizing rejects.4  50 

Over the last decades, infrared spectroscopy, in combination with multivariate analysis, 51 

has proven to be a powerful tool for food analyses and, specifically, for wine analyses. 52 

Partial Least Squares Regression (PLSR) has been the most used calibration algorithm to 53 

predict chemical or physical parameters in wine from spectroscopic data.5  54 
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As reviewed by dos Santos et al., it has been shown that Near Infrared Spectroscopy (NIR) 55 

and Mid Infrared Spectroscopy (MIR) are both suitable techniques to predict several 56 

quality control parameters in grape juice, must and wine at different production stages, 57 

including total sugars (mainly glucose and fructose), ethanol, glycerol, total phenolics, 58 

anthocyanins or acetic acid, among other compounds.6 The potential of NIR and MIR to 59 

monitor and model alcoholic fermentations was also investigated, demonstrating the 60 

usefulness of these techniques to monitor the evolution of the fermentation process.7-10 61 

Regmi et al used MIR in the transmission mode with PLSR to predict the concentration 62 

of several acids in wine. They obtained good calibration results for citric, malic, tartaric, 63 

acetic, succinic, and lactic acids.11  Moreover, MIR spectroscopy with PLS regression was 64 

also used for the quantification of reducing sugars, titrable acidity, total soluble solids, 65 

pH, and some phenolic compounds (see the review by Dambergs et al and references 66 

therein12) 67 

Among the different vibrational spectroscopic modes, the attenuated total reflectance 68 

MIR (ATR-MIR) mode is particularly advantageous over traditional transmission MIR 69 

modes because it requires little or even no sample pretreatment and it is faster and simpler 70 

to use. Moreover, as the infrared beam only penetrates the samples a few microns, so 71 

typical spectra saturation due to the high-water absorption band does not occur.13 72 

ATR-MIR was successfully employed to determine the total soluble solids (°Brix), pH, 73 

total phenolics, ammonia, free amino nitrogen, and yeast assimilable nitrogen (YAN) in 74 

grape juice samples.14 Kim et al. were able to predict alcohol, reducing sugars and 75 

titratable acidity in fermenting samples of Makgeolli rice wine using ATR-MIR, thus 76 

proving the suitability of this technique to monitor the fermentation process.15 Wu et al 77 

used ATR‐MIR to successfully monitor the course of Chinese rice wine fermentation.16 78 
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The researchers were capable to predict total sugar, ethanol, titratable acidity, and amino 79 

nitrogen by applying different calibration models. Previously, Cozzolino et al had also 80 

investigated the suitability of ATR‐MIR to predict the time course of fermentation in 81 

samples at different days of fermentation using PLS discriminant analysis (PLS‐DA) 82 

models. They obtained promising results, with low standard errors of prediction.17  83 

Portable FTIR instruments are rapidly gaining popularity across the food industry sector. 84 

They are cheaper, simpler to use, and faster than traditional instruments and allow sample 85 

analysis to be performed directly on the field: for these reasons, they could be considered 86 

powerful tools to rapidly perform quality control test and process monitoring especially 87 

when coupled with multivariate analysis. Portable FTIR instruments have been used for 88 

multiple purposes in foodstuff analysis, including, eg, the prediction of fatty acid content 89 

in marine oil, quantification of acrylamide in potato chips, or quantification of trans‐fat 90 

content in fat and oil samples.18-20 To our knowledge, this is the first time that a portable 91 

ATR‐FTIR device is used for the analysis of must and wine fermenting samples. 92 

The aim of this research was to develop a strategy to monitor the must fermentation and 93 

to early detect deviation from the typical fermentation using a portable ATR-FTIR 94 

instrument coupled with multivariate analysis. The first step of the study concerned the 95 

investigation of the suitability of the instrument to the scope. Twenty‐three must 96 

fermentations were carried out, and data were recorded during the whole process after a 97 

minimum sample pretreatment. Different multivariate approaches were applied for 98 

modeling the typical fermentation process, thus describing the normal operation 99 

conditions (NOC), and to early predict deviation from the NOC, in particular for a 100 

fermentation run with deficiency of assimilable nitrogen. The choice of the chemometric 101 

strategy was driven by the idea to give to winemakers a quite easy to understand process 102 

control model, which coupled with a portable device resulted in a process control 103 
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methodology cheap and easy to implement. 104 

 105 

Material and methods 106 

Samples 107 

Concentrated white natural must was obtained from “Concentrats Pallejà” (Riudoms, 108 

Spain). This was diluted 1:4 with distilled water to give an initial sugar (glucose and 109 

fructose) concentration of about 200 g/L (to emulate the concentration of sugars found in 110 

a must coming from optimal mature grapes) and supplemented with 0.3 g/L of 111 

actimaxbio*(Agrovin) to ensure a YAN source. Table 1 summarizes the chemical 112 

parameters of must once diluted and supplemented. 113 

 114 

209 g/L glucose + fructose 

228 g/L yeast assimilable nitrogen 

pH = 3.94 

Total Acidity = 7.0 g Tartaric acid/L 

Density = 1.0865 g/mL 

Malic acid = 2.12 g/L 

 Table 1. Chemical Parameters of diluted must 115 

 116 

The microvinifications were conducted in 500 mL Erlenmeyer flasks containing 350 mL 117 

of diluted must and under constant temperature of 18°C. Twenty microvinifications were 118 

carried out without manipulating them or varying any parameter (NOC). Moreover, three 119 

microvinifications were intentionally altered to promote nitrogen deficiency: they were 120 

run without the addition of the YAN source. 121 

Yeast and nutrients 122 

The alcoholic fermentations were carried out by Saccharomyces cerevisiae yeast, and the 123 

inoculation was done asfollows: 3.15 g of active dry yeast “VitilevureDV10” (Danstar 124 
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Ferment AG, Denmark) was rehydrated in 60 mL of milliQ water, and 2 mL of yeast 125 

solution was added to the 23 Erlenmeyer flasks containing 350 mL of must, to reach a 126 

final concentration of 0.3 g/L in each flask. 127 

ATR-FTIR spectroscopic analysis 128 

Data acquisition was performed using a portable 4100 ExoScan FTIR instrument 129 

(Agilent, California, USA), equipped with an interchangeable spherical ATR sampling 130 

interface, consisting on a diamond crystal window.  131 

A total of 17 sampling points (times) were analyzed before the end of fermentation. 132 

Samples were randomly collected twice a day (every 12 hours approximately), 133 

centrifuged at 10 000 rpm for 10 minutes so that the supernatant could be collected using 134 

a micropipette. A drop of the supernatant was placed on top of the crystal using a Pasteur 135 

pipette, ensuring that the surface was completely covered with the sample, and the 136 

spectrum was recorded immediately afterwards. All spectra were recorded in the region 137 

of 3999 to 649 cm, with 32 scans and 8 cm−1resolution. An air background was collected 138 

after every triplicate, that is, one background per sample. After each measurement, the 139 

crystal was carefully cleaned using deionized water and cotton wipes. Spectra were 140 

examined using the Microlab PC software (Agilent, California, USA), and data were 141 

saved as.spc files. 142 

Absorbance data were used for the chemometric calculation. The mean of the sample 143 

replicates was calculated, and different preprocessing (smoothing and normalization) 144 

methods were tested in order to remove unwanted variations not due to changes in 145 

chemical compounds during fermentation, such as baseline drifts and noise observed in 146 

the raw spectra. 147 
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The final data was a three‐way array containing the spectroscopic signals of 23 samples 148 

(20 NOC and three YAN) with 899 wavelengths recorded for 17 times covering a total of 149 

258 hours of fermentation. 150 

Quality Control Parameters 151 

Reference analyses were carried out every 24 hours to monitor the fermentation process. 152 

Density was measured using an Densito 30PX electronic densimeter (Mettler Toledo), 153 

whereas sugars (glucose and fructose) and acetic acid were determined using a Y15 154 

Analyser (Biosystems, Barcelona, Spain). All the analyses were performed right after 155 

sample collection. 156 

Multivariate Analysis  157 

The collected data consisted of a three‐way structure containing spectra (J = 899), batches 158 

or samples (I = 23), and sampling times (K = 17). Depending on the information we want 159 

to obtain, this data matrix can be treated as a multiway structure, unfolded into a two‐way 160 

structure or divided into several matrices, usually one for each sampling time. Unfolding 161 

can be performed in several ways, depending on the mode that is kept in common. If 162 

unfolding is performed sample-wise, the final matrix has dimensions (I×KJ), with each 163 

row containing the spectra of a given sample at the different time points. If the spectral 164 

mode is common, then the final unfolded matrix has dimensions (J×IK). In this last 165 

matrix, each row contains a spectrum of sample i at time point k. Finally, if unfolding is 166 

performed timewise, the final matrix has dimensions (K×JI), where each row contains the 167 

spectra of all samples at time point k. Once unfolded, the matrix structure can be 168 

processed also in different ways. Global approaches can be applied, which means that all 169 

the data collected throughout the process are used in a global model. Alternatively, local 170 

approaches refer to the use of data separately from each sampling time to build 171 

independent models.21 Principal component analysis (PCA), partial least squares 172 
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regression (PLSR), and PLS‐DA were used to process the data. The strategies used in this 173 

work are described in the following section. 174 

All the models were cross‐validated with random subsets (10 splits and five iterations). 175 

In PLSR and in PLSDA, the root mean square error of cross‐validation (RMSECV) error 176 

was used to estimate the optimum number of latent variables to be used in prediction. 177 

All multivariate data analyses were performed using the PLS Toolbox v8.6.1 178 

(Eigenvector Research Inc., Eaglerock, USA) with MATLAB R2015b (The MathWorks, 179 

Natick, USA). 180 

 181 

Results and discussion 182 

Spectroscopic Data  183 

Firstly, the signal quality was investigated. Several combinations of spectral resolution 184 

and number of acquisition scans were tested. An increase in the resolution (8‐4-2 cm−1 185 

was tested) did not add any relevant information to the spectra: peaks were well described, 186 

and this was confirmed by the chemometric modeling, which did not change in 187 

performances when using spectra recorded at higher resolution values. Regarding data 188 

acquisition, scan numbers from 32 to 512 were tested, but the final models did not change 189 

relevantly in their performances. For this reason, a more rapid solution (32 scans) was 190 

preferred as it allowed reaching satisfactory results. 191 

The evolution of the ATR-FTIR spectra throughout the whole fermentation process is 192 

shown in Figure 1. Due to the high absorbance of the O-H bond of water in the mid-193 

infrared region and the high amount of overlapping vibrational modes in similar 194 

molecules, single molecules peak assignment is quite difficult. The main changes in the 195 

spectra are found between 950-1500 cm-1 and 3000-3500 cm-1. The bonds in the 950-196 

1500 cm-1 region could be associated with sugars and organic acids. Peaks between 1500 197 
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and 1200 cm-1 correspond mainly to deformations of –CH2, deformations of C–C–H and 198 

H–C–O. On the other hand, peaks between 1200 and 950 cm-1 could be related to 199 

stretching modes of C–C and C–O. The broad band between 3000 and 3500 cm-1 could 200 

be ascribed to water and ethanol  O-H stretching vibrations These results are in agreement 201 

with the literature, both in ATR and transmission IR modes22. 202 

 203 

 204 

Data preprocessing  205 

After calculation of the mean of the sample replicates, different preprocessing methods 206 

were tested to overcome baseline drifts and noise observed in the raw spectra. The 207 

following combination of preprocessing methods gave the best results:   208 

- Smoothing (Savitzky-Golay) filter: window size 11pts, polynomial order 2. 209 

- Standard Normal Variate (SNV) normalization 210 

- Mean Centering 211 

Because the objective of the work was to detect deviations from the NOC, the average 212 

trajectory of each variable was subtracted in the batches. In this way, models focused the 213 

attention on the variability around these trajectories. 214 

Figure 1.  FTIR full spectra for all the fermenting samples (including all time points). 
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 Fermentation control parameters 215 

Density, sugars (glucose and fructose) and acetic acid values during fermentation are 216 

depicted in Figure 2, in which NOC samples are described by circles and YAN samples 217 

are indicated with stars. Density vary between 1,09 g/mL at the beginning of the 218 

fermentation and 0,99 at the end of the process, showing typical values for white wine 219 

fermentations. NOC samples reached sugar depletion sooner than nitrogen-deficient 220 

samples. This behaviour could be explained considering that a lack of nutrients causes a 221 

decrease in yeast’s enzymatic activity, which results in sluggish fermentations2. A higher 222 

production of acetic acid could be observed in the nutrient deficient samples. Acetic acid 223 

is a by-product of yeast metabolism, which is generated from acetyl-coenzyme A derived 224 

from oxidative decarboxylation of pyruvate23. An increase of its values could be often 225 

observed in stuck fermentations, where conditions for yeast development are not 226 

optimal.24  227 

Global PCA model 228 

First, we decided to explore the whole data set following a global approach. Data 229 

collected from NOC experiments were arranged in a two‐way unfolded matrix with 230 

samples × times in the rows and spectra (wavenumbers) in the columns, with the aim to 231 

Figure 2. Evolution of chemical parameters: A: Density; B: Sugars (Glucose+Fructose); and C: Acetic acid. 



11 
 

study the sample evolution throughout the fermentation process. The final matrix had size 232 

391 × 899. The score plot for the first two PCs (90.16% of the total variance) is reported 233 

in Figure 3. A trend in the samples position clearly emerges from the graph: samples are 234 

located along the first PC, from positive to negative values, according to the sampling 235 

time. All the NOC experiments and the YAN experiments showed a similar trend. While 236 

the PC1 accounted for the spectra variation in time, the second PC seemed to account for 237 

an experimental variability that could be possibly related to small differences between the 238 

evolving of samples during the fermentation process. Focusing the attention on PC1, the 239 

scores showed a tendency very similar to the one described for density and sugar values, 240 

confirming that this component mainly explains the fermentation evolution in time. 241 

Moreover, it is possible to distinguish the NOC and YAN fermentations that show a 242 

similar but not identical behavior. This model was able to detect the main changes in the 243 

samples at the different sampling times. This first promising result motivated us to further 244 

investigate the possibility to use the portable ATR-FTIR instrument to monitor the wine 245 

fermentation process. 246 

 247 

 248 

A 249 
Figure 3. Scores plot for the global  PCA model (left), samples are marked according to their sampling time.  PC1 scores for NOC and YAN batches (right). 
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A partial least squares (PLS) regression model was then built on the same unfolded data 250 

matrix to predict the total sugars (glucose and fructose) concentration values from the 251 

recorded ATR‐FTIR spectra along the fermentation. The values obtained with the 252 

reference analytical method were used as the Y data. The aim of this model was to prove 253 

the suitability of the portable ATR‐FTIR spectrometer to monitor the wine fermentation 254 

through the prediction of one of the most important parameters, that is, the change in the 255 

total sugar content along fermentation. The statistical parameters of the regression model 256 

(two factors accounting the 98.68% of the Y variability) were RMSEC = 10.6 g/L, 257 

RMESCV = 10.9 g/L, R2 = 0.987, and bias = −0.02 g/L  258 

Figure 4 shows the measured vs PLSR predicted total sugar. There is a good agreement 259 

between measured and predicted values, confirming that coupling ATR-FTIR portable 260 

spectroscopy and multivariate analysis allowed to successfully monitor one of the major 261 

changes in fermenting wine samples and possibly the whole fermentation process. 262 

  263 

 264 

Global PLS-DA model 265 

Figure 4. Measured vs Predicted concentrations of sugars (glucose+fructose). 
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The global data analysis strategy was then employed with the aim of evaluate the 266 

possibility to distinguish NOC fermentation from YAN fermentation using the spectra 267 

collected with the portable device during the whole fermentation process. In this case, the 268 

original three-way data matrix was unfolded in a time-wise manner so that sample 269 

direction was maintained. The unfolded matrix size was 23x15283 (23 samples x (899 270 

variables x 17 time points)). A PLS-DA strategy was chosen due to the small number of 271 

samples and a PLS-DA model was built in order to classify fermentation experiments in 272 

NOC and YAN classes (in the Y vector, zeros were attributed to the NOC class samples, 273 

and ones were attributed to YAN class samples) 274 

Figure 5 depicts the classification between normal and nitrogen deficient fermentations. 275 

As emerged from the graph, the two classes are well separated and no overlapping 276 

between them could be observed. The threshold used to discriminate between the classes 277 

was calculated as the value that best splits the classes with the least probability of both 278 

false positives and false negatives (assuming that the predicted values for each class are 279 

approximately normally distributed). The algorithm is implemented in the PLS‐Toolbox. 280 

Even if the number of YAN fermentation experiments is quite small with respect to the 281 

NOC fermentation, these results are really promising, showing the possibility to 282 

distinguish the different types of fermentation when spectra collected along all the 283 

fermentation process are available. 284 
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  285 

 286 

k-PCA (Local Models) 287 

A local strategy to early predict deviations from NOC was then developed. Local k‐PCA models 288 

were built using the two‐way matrices (samples × wavelengths [23 × 899]) obtained separately 289 

for each sampling time collected (a total of 17 data matrices, one for each time). A very 290 

satisfactory result was obtained, as the model built with spectra recorded after 49 hours 291 

(time point 4) was able to distinguish between NOC and YAN fermentations processes. 292 

Figure 6 shows the influence plot for PC1. The same result was obtained with the PLS‐293 

DA modeling strategy as expected. Several PLS‐DA models were built, one for each 294 

sampling time. The PLS‐DA model built after 49 hours (time point 4) gave the 100% of 295 

correct classification with no overlap between the classes (0 was attributed to NOC class, 296 

1 was attributed to YAN class). 297 

Using a moving window approach (see the article by Camacho et al and references 298 

therein21) to try to perform an earlier prediction of the deviation from NOC did not 299 

provide better results. A possible explanation to this behavior could be the quite small 300 

number of sampling points analyzed at the beginning of the fermentation, which is 301 

Figure 5. PLS-DA model for control (CON) and nutrient deficient samples (YAN). Zero was 

assigned to CON samples whereas ones was used for YAN samples.  
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clearly the moment of the whole process in which the main changes (especially in 302 

abnormal fermentations) occurred. For this reason, any other evolving modeling 303 

approach was not considered in this first step of the research project 304 

 305 

 306 

Biological process time 307 

To monitor the evolution of the abnormal YAN fermentation, the approach developed by 308 

Jørgensen et al. was applied25. The reasoning behind the method is that each fermentation, 309 

starting similar initial conditions, can evolve slower or faster, and this different behavior 310 

can be detected. The idea is that spectra of the NOC samples can be modelled against the 311 

evolving time, but if this relationship is different for the abnormal batches then it means 312 

the fermentation has a different speed or has followed another direction. The method 313 

operates as follows: 314 

1) The original data structure is unfolded keeping as common the spectral mode. 315 

Then, the relative times of all fermentations of all NOC samples are calculated, as 316 

the real time at time point k divided by the total time of the fermentation: 317 

 318 

Figure 6. Influence plot for the k-PCA model at time point 4.   
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The final time of a fermentation is assumed to have a relative time of 1, and the 319 

rest of relative times take values within 0 and 1. The relative time is also the % of 320 

evolution of the fermentation (relative time 0.6 means the fermentation is at 60%).  321 

Finally, a PLS regression model is built between the spectra of all NOC samples 322 

against the relative times. At this point, it is important to decide what the total 323 

time of a fermentation is. We decided to use the time where the sugar value was 324 

around the detection limit of the instrument, what coincided with the usual glucose 325 

value of a wine at the end of the fermentation process. 326 

 327 

2) The spectra of all NOC samples at all fermentation times are regressed onto the 328 

previous PLS model to estimate what is called the “biological” process time. This 329 

is done because the assumption is that the difference between relative and 330 

biological time is due to the fermentation process. 331 

3) A second PLS model is built between the NOC spectra and the “biological” time, 332 

that is, the predicted time of the first PLS model.  333 

4) From this second PLS model, the resulting scores are used to build control charts 334 

for future batches. In these control charts (one for each PLS factor) confidence 335 

limits are calculated from the NOC training set (±2 and 3± standard deviation 336 

curves) and represented vs “biological” time (see Fig 7). 337 

5) Finally, to monitor future batches, their spectra are used in the second PLS model 338 

to predict the scores and the biological process time. Both predicted biological 339 

process time and scores are used in the control chart evaluations (see Fig 7). This 340 

allows on-line monitoring of batch evolution. 341 

The approach was applied to monitor both normal control samples (NOC) and the YAN 342 

abnormal samples. Results areshown in Figure 7. It can be seen that YAN samples evolve 343 
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in a substantially slower way, but the relationship betweenthe spectra and time works. 344 

The prediction of the biological time for the YAN sample confirms that, when the NOC 345 

samples are 100% fermented, YAN samples are about 60% fermented.  346 

 347 

Conclusions  348 

Monitoring the fermentation process is a crucial step in order to obtain high-quality wines 349 

and avoid materials and money waste. Several analytical techniques measuring a variety 350 

of analytes and properties fit for the purpose and give good performances, but often they 351 

need intensive sample preparation, or highly specialized instruments and operators, 352 

besides costly and time-consuming analyses. This work was focused on the use of a 353 

portable, easy-to-use ATR-MIR device, coupled with multivariate analysis, as a rapid and 354 

economical strategy to monitor fermentation processes and to detect deviation from NOC.  355 

The results obtained were very satisfactory. The prediction of the sugar content in 356 

fermenting samples from the beginning to the end of fermentation was performed, 357 

demonstrating the possibility to use this portable device to rapidly monitor fermentations 358 

running under normal operation condition. Moreover, slower fermentations (YAN) could 359 

be detected at an early stage of fermentation (when NOC are well described), giving the 360 

possibility to the winemaker to eventually correct the process and to obtain a good quality 361 

product.  362 

Future work will be done increasing the number of samples both in NOC and in abnormal 363 

operation conditions, especially at the beginning of the fermentation, as it emerged from 364 

the models that the first 50 hours of fermentation are possibly the crucial ones to detect 365 

deviations from NOC conditions. We will take advantage of other strategies (eg, time 366 

evolving and moving average) to develop multivariate models. Moreover, a chemometric 367 

strategy will be developed to compare fermentations running in different times, for 368 
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different wine types and including other problems that may occur during the fermentation 369 

process.  370 
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