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Abstract

Dual item response theory (IRT) models in which items and individuals have different amounts of
measurement error have been proposed in the literature. Any developments in these models,
however, are feasible only for continuous responses. This article discusses a comprehensive dual
modeling approach, based on underlying latent response variables, from which specific models
for continuous, graded, and binary responses are obtained. Procedures for (a) calibrating the
items, (b) scoring individuals, (c) assessing model appropriateness, and (d) assessing measurement
precision are discussed for all the resulting models. Simulation results suggest that the proposal is
quite feasible. A practical illustration is given with an empirical example in the personality domain.
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In the psychometric models commonly used in typical-response (personality and attitude) mea-

surement, such as linear factor analysis (FA), the graded-response model (GRM), and the two-

parameter model (2PM), items are characterized by two types of parameter: location and dis-

crimination. Individuals, however, are only characterized by one location parameter (position

on the trait continuum). Theory and evidence, however, suggests that this modeling is insuffi-

cient (Tellegen, 1988). Just as items generally differ in their sensitivity at differentiating

between individuals with different trait levels, individuals also generally differ in the sensitivity

of their responses to the different item locations. Some respondents are largely insensitive, and

their response patterns are almost random. At the opposite extreme, some individuals respond

with high consistency, leading to response patterns that approach Guttman patterns (Ferrando,

2004, 2013; Fiske, 1968). If this scenario is accepted, then a ‘‘dual’’ modeling (see Fiske,

1968) in which both items and persons differ in terms of discriminating power seems to be the

most plausible approach to fitting typical responses.[AQ: 2]
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Dual models of the type discussed above have been discussed in the literature since the

1940s (Mosier, 1942), although the purposes of these discussions and the terminology used are

often quite different (see, for example, Ferrando, 2004). A review, however, suggests that these

models can be divided into two main families. The models in the first family are Thurstonian

(TMs), which model individual discrimination (or individual error) as random fluctuation

around a central trait level (Ferrando, 2004, 2007, 2009; Levine & Rubin, 1979; Lumsden,

1980)[AQ: 3]. Models in the second family are multiplicative models (MMs), which model

individual discrimination as a person slope that functions multiplicatively with the item slope

(Ferrando, 2014, 2016; Lubbe & Schuster, 2016, 2017; Strandmark & Linn, 1987).

Both TMs and MMs were initially considered only for binary responses, and, in this format,

both lead to very similar outcomes and interpretations. Extension to more continuous formats,

however, is more complex. Although the person discrimination parameter in TMs has the same

interpretation in any format (as discussed below), the person slope in the MMs can also be

thought to model individual differences in response scale usage (Ferrando, 2014) or proneness

to extreme responding (Lubbe & Schuster, 2016, 2017) in the case of continuous or graded for-

mats. In this sense, MMs are less specific and more difficult to interpret than TMs (e.g., van

der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011).

From an applied point of view, there are feasible procedures for fitting dual MMs for binary

(Ferrando, 2016), graded (Lubbe & Schuster, 2017), and continuous (Ferrando, 2014; Lubbe &

Schuster, 2016) responses. However, to date this is not the case for dual TMs, for which a full

feasible procedure has only been proposed for continuous responses (Ferrando, 2013). Dual

TMs for binary and graded responses have been considered intractable in practice (Lumsden,

1980; Torgerson, 1958), and only restricted versions in which item discrimination is constant

appear to exist at present (Ferrando, 2004, 2007, 2009).

The main purpose of this article is to propose a comprehensive, item response theory (IRT)-

based, dual TM approach that can be used with binary, graded, and continuous typical-response

items. The resulting specific models are denoted as DTCRM (continuous responses; the already

existing model), DTGRM (graded responses), and DTBRM (binary responses). For the

DTGRM and DTBRM, the practical limitations mentioned above are overcome by using an

underlying variables approach (UVA, Muthén, 1984), which makes the processes of fitting and

scoring these models quite feasible in practice. So, the present proposal is mainly applied, and

practical procedures are proposed for (a) calibrating the items and assessing model-data fit and

appropriateness, (b) estimating the person parameters (scoring), and (c) assessing the precision

with which the individual parameters are estimated. To the best of the author’s knowledge, the

UVA-based developments that lead to the DTGRM and DTBRM are new contributions, and so

are the specific procedures that are proposed for calibrating the items and scoring the individu-

als (although they are indeed specific applications of more general, well-known procedures).

Finally, the analytical results concerning the precision of the individual parameter estimates

also seem to be new.

The DTCRM: A Review

Consider a test made up of j = 1 . . . n items with an approximately continuous format that is

administered to a sample of i = 1 . . . N individuals. The test aims to measure a trait u, assumed

to have zero mean and unit variance in the population, and, for interpretative purposes, the item

scores are scaled to have values between 0 and 1. Let Xij be the score of individual i in item j.

The structural model for this score is

Xij = 0:5 + lj Ti � bj

� �
, ð1Þ
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where Ti is the momentary trait (or perceived trait) value of respondent i when answering item j,

and bj is the momentary (perceived) location of item j on the trait continuum.

Ti = ui + vi; bj = bj + ej: ð2Þ

For a given respondent i, consider first the distribution of Ti over the test items. This distribu-

tion is assumed to be normal with mean ui and variance s2
i , which are the parameters that char-

acterize respondent i, and that remain constant across items. Now, ui and s2
i generally take on

different values for different individuals, and they are assumed to be independent random vari-

ables over respondents. As for item j, the distribution of bj, over respondents is assumed to be

normal, with mean bj, and variance s2
ej. Finally, the item and person residuals are assumed to

be independent (e.g., Torgerson, 1958). Regarding terminology and interpretation, ui, denoted

here as person location, is Mosier’s (1942)‘‘respondent characteristic value,’’ the single value

that best summarizes the standing of individual i on the trait. For its part, bj, denoted here as

item location, can be interpreted as a conventional IRT difficulty index, as discussed below. As

for the error variance terms, Thurstonian terminology is used, and s2
i is referred to as the person

discriminal dispersion (PDD) and s2
e as the item discriminal dispersion (IDD). The PDD is a

direct measure of trait variability. As for the IDD, it is usually related to the degree of item

ambiguity, but it might also depend on general characteristics such as type of stem and average

length (e.g., DeFleur & Catton, 1957; Ferrando, 2013; Lumsden, 1980; Taylor, 1977).

From the conditions discussed so far, it follows that the conditional distribution of Xj for

fixed ui and s2
i is normal, with expectation and variance given by

E Xijjui, s2
i

� �
= 0:5 + lj ui � bj

� �
; Var Xijjui, s2

i

� �
= lj

2 s2
i + s2

ej

� �
: ð3Þ

The expressions in Equation 3 can be interpreted, respectively, as the expected mean and

variance of Xj across all respondents with person location ui and PDD s2
i . An alternative inter-

pretation is to view them as the expected mean and variance of the scores of respondent i across

items with the same parameters as item j.

The conditional expected score in Equation 3 is a direct function of the weighted person-item

distance lj(ui–bj). When ui . bj, the expected score is above the 0.5 response scale midpoint

(i.e., 0.5), and when the person location matches the item location, the expected item score is

the midpoint. So, as proposed above, bj can be interpreted as a standard IRT difficulty index: It

is the point on the trait continuum that marks the transition from the tendency to disagree/not

endorse the item to the tendency to agree/endorse it.

At this point, it might be of interest to compare the expectations in Equation 3 to the expecta-

tion derived from the linear MM for continuous responses (Ferrando, 2014; Lubbe & Schuster,

2016).

E Xjjui, vi

� �
= 0:5 + jilj ui � bj

� �
: ð4Þ

As in the DTCRM, the expected response in the MM Equation 4 is also a direct function of

the person-item distance. However, the person parameter ji in Equation 4 (assumed to be posi-

tive) acts as a moderator that amplifies or reduces the impact of this distance on the expected

item response. So, for large ji, a small positive distance leads to an expected response that goes

toward the upper end of the item response scale. This functioning was initially intended to

model individual discrimination (in terms of sensitivity to the person-item distance). However,

it might also well reflect idiosyncratic responding (proneness to extreme responding) or lack of

cognitive effort. In contrast, in the DTCRM modeling, the PDD does not affect the extremeness
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of the expected response but does affect its consistency. Thus, when both PDD and IDD are

small, so is the conditional variance in Equation 3, which means that the observed score is close

to the expected score.

By recalling now that the marginal mean and variance of u are assumed to be 0 and 1, respec-

tively, it follows that the marginal mean and variance of Xj over the entire population of respon-

dents are

E Xij

� �
= 0:5� ljbj = mj; Var Xij

� �
= l2

j Var uð Þ+ E s2
i

� �
+ s2

ej

h i
= l2

j 1 + E(s2
i ) + s2

ej

h i
: ð5Þ

And the product-moment correlation between the scores on items j and k is

r Xj, Xk

� �
= ajak , ð6Þ

where

aj =
ljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Xj

� �q =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + E s2
ið Þ+ s2

ej

q ð7Þ

is the correlation between the scores on item j and u (standardized loading in FA terminology).

The simple linear model reviewed in this section assumes that Xij is bounded whereas Ti and

bj are not. So, the model cannot be strictly correct and must necessarily be considered as an

approximation. More in detail, the assumptions above imply that (a) the item response function

is nonlinear rather than linear, and (b) the conditional distributions become more asymmetrical

and with decreased variance toward the ends of the scale. In most practical applications, how-

ever, especially in personality measurement, the linear model as an approximation is expected

to work reasonably well (see Ferrando, 2002, for a discussion).

The DTGRM and DTBRM

Consider now that the observed item score Xj is a categorical variable, and assume that (a) there

is a latent response variable Yj that underlies Xj, and (b) the following model holds for Yj

Yij = aj Ti � bj

� �
, ð8Þ

where Ti and bj behave as in Equation 2. Equation 8 is the same model as Equation 1 without

the midpoint intercept term and with the variance of Yj fixed to 1, which means that the scale

parameter lj is now a standardized loading aj (see Equation 7). This variance restriction is

because, in contrast to Equation 1, the origin and scale for Yj are now undetermined. In the stan-

dard UVA modeling (e.g., Muthén, 1984), this indeterminacy is usually solved by assuming that

the marginal distribution of Yj is normal with zero mean and unit variance. In the present model-

ing, the unit variance assumption has already been adopted. As for the normality assumption,

the marginal distribution of Equation 8 for a fixed item is that of the sum of three independent

variables (u, e, and v; see Equation 2), of which u and e are normal, and v follows a Pearson

type-VII distribution (see Ferrando, 2007). For practical purposes, the resulting distribution is

close enough to normal for this assumption also to be used. The mean of Yj, however, cannot be

assumed to be generally zero. In effect, the marginal mean and variance are given by

E Yj

� �
= � ajbj = mj; Var Yj

� �
= 1 = a2

j 1 + E(s2
i ) + s2

ej

h i
: ð9Þ
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And the product-moment correlation between the latent scores on items j and k is

r Yj, Yk

� �
= ajak , ð10Þ

where aj is the product-moment correlation between the latent scores on item j and the central

trait level u.

The relation between Yj and the observed score Xj is now assumed to be a step function gov-

erned by a threshold mechanism. The most usual scoring schemas for categorical variables are

considered here: 0 and 1 for the binary case, and integer values 1, 2, . . . for the graded-response

case. With this schema, the mechanism is

X = 0 if Y\t

X = 1 otherwise
ð11Þ

for the binary case, and

X = 1 if Y\t1

X = 2 if t1 � Y\t2

X = 3 if t2 � Y\t3

..

.

X = c if tc�1\Y

ð12Þ

for the graded-response case with c response categories. From this modeling, it follows that the

product-moment correlation between Yj and Yk is the tetrachoric correlation between Xj and Xk

in the binary case, and the polychoric correlation between Xj and Xk in the graded-response

case.

We turn now to the IRT modeling implied by the UVA described so far. In the DTBRM, the

probability of endorsing item j for fixed ui and s2
i is

P Xij = 1jui, s2
i

� �
=F

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i + s2
ej

q ui � bj +
tj

aj

� �� �0
B@

1
CA=F gij ui � dj

� �� �
, ð13Þ

where F is the cumulative distribution function (CDF) of the standard normal

distribution[AQ: 4]. To see the role of the person parameters in Equation 13, note that ui deter-

mines which score (0 or 1) is the most probable for this respondent. As for the PDD, when s2
i

decreases, the responding becomes more deterministic and sensitive to the item location: The

respondent tends to endorse the item if its location is below ui (‘‘easy’’ item for him or her)

and reject the item if it is above ui (‘‘difficult’’ item).

In the DTGRM, the probability of scoring k in item j for fixed ui and s2
i is

P Xij = kjui, s2
i

� �
=F

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i + s2
ej

q ui � bj +
tjk�1

aj

� �� �0
B@

1
CA� F

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i + s2
ej

q ui � bj +
tjk

aj

� �� �0
B@

1
CA

=F gij ui � djk�1

� �� �
� F gij(ui � djk)

� �
:

ð14Þ
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In Equation 14, the person location ui determines the response category that has the greatest

probability of being endorsed by respondent i. As for the role of PDD, consider a respondent

whose person location is between djk– 1 and djk. As the PDD approaches zero, the probability of

endorsing category k increases, whereas the probability of endorsing the remaining categories

decreases. So, the process of responding becomes more deterministic. At the opposite extreme,

as the PDD increases, the probability of responding in different categories becomes progres-

sively more undifferentiated. This way of working contrasts with that of MM for graded

responses (Lubbe & Schuster, 2017). As in the linear case, the person slope parameter in the

MM modifies the expected response, so that low slope values imply that the response is more

likely to lie in the middle categories whereas with large values it is more likely to be in the

outer categories (see Lubbe & Schuster, 2017, for details). Again, this might reflect either per-

son discrimination or idiosyncratic responding.

In the literature, the DTBRM in Equation 13 is Lumsden’s (1980)‘‘Two-parameter 3

model,’’ which he considered to be the most general model intended for binary items. If the

PDDs are equal for all respondents (i.e., s2
i = s2) while the IDDs are allowed to vary, Equation

13 becomes equivalent to the standard 2P normal-ogive model. And, if the IDDs are equal for

all the items but the PDDs are different for different individuals, Equation 13 reduces to

Lumsden’s (1980)‘‘Pseudo-Rasch 2 model’’ or Torgerson’s (1958) Condition C, which is the

model considered by Ferrando (2004, 2007). In the graded-response case, the DTGRM in

Equation 14 reduces to the normal-ogive version of Samejima’s (1969) GRM under the first

restriction, and to Ferrando’s (2009) graded model under the second. It is noted finally that all

the normal-ogive models discussed so far are obtained by using a formulation other than the

standard one in IRT (e.g., Lord & Novick, 1968). Torgerson (1958) called this formulation the

‘‘alternative general normal-ogive model.’’

Fitting the DTMs[AQ: 5]

The general approach proposed for all the models considered is a conventional two-stage condi-

tioned procedure (McDonald, 1982) with a first calibration stage in which the item parameters

are estimated, and a second scoring stage in which estimates of the person locations and the

PDDs are obtained for all the individuals. In addition, a multifaceted approach is proposed for

assessing the appropriateness of the fitted model.

Item Calibration

The three models can be fitted by using a limited-information FA approach with additional iden-

tification restrictions. A unified approach is proposed in which items are calibrated by fitting the

unidimensional FA model to the appropriate inter-item correlation matrix: Product-moment

(DTCRM), tetrachoric (DTBRM), and polychoric (DTGRM). The basic approach is standard,

so specific estimation procedures and discrepancy functions will not be discussed here, although

some discussion is provided in the example.

The main estimates obtained by fitting the FA model are the standardized loadings a and the

corresponding standardized residual variances. Now, for all three models, the following result is

obtained (see Equations 7 and 9).

1� a2
j

a2
j

= E s2
i

� �
+ s2

ej: ð15Þ
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Equation 15 means that the inter-item correlation matrix does not contain sufficient informa-

tion to separately identify the average PDD and the IDDs. In the dual MMs, this problem is set-

tled by fixing the mean person slope to 1 (Ferrando, 2014). This constraint, however, cannot be

used here, because all the IDDs must be greater than 0. So, the identification approach proposed

in this case is based on the use of a marker variable. The ‘‘best’’ item (i.e., the item with the

largest standardized loading) is chosen as a marker and so treated as if its IDD was zero. Then,

relative to this scaling, the average PDD is estimated as

1� â2
( max )

â2
max

= Ê s2
i

� �
, ð16Þ

where â( max ) is the largest estimated standardized loading. The remaining IDDs are obtained

from Equation 15.

We turn now to the item location parameters. In the case of continuous scores, they can be

estimated directly from the marginal means (see Equation 5). In the case of binary scores, con-

ventional fitting of the 2PM using the UVA approach will provide estimates of the transformed

location parameters dj in Equation 13. However, bj cannot be identified separately from dj

because the origin of Yj is undetermined. Now, in principle, bj does not need to be identified

separately to obtain individual PDD estimates at the scoring stage. However, it can be by assum-

ing that items are categorized at a common threshold of 0 in Equation 11. This fixes the origin

of Yj and provides a plausible interpretation (see Lubbe & Schuster, 2017): negative values of Yj

lead to denial while positive values lead to item endorsement.

In the graded-response case, the bjs can be identified by extending the above rationale in the

way proposed by Lubbe and Schuster (2017). If the number of categories is even, the middle

threshold is fixed to 0 for all the items. If it is odd, the sum of the two central thresholds is

fixed to 0. Again, bj does not need to be identified to obtain PDD estimates in the DTGRM.

However, identification is useful for interpretative purposes because, as occurs with the

DTBRM and the DTCRM, it also provides a single item location in the graded response case.

Scoring

In the original linear model, Ferrando (2013) proposed using maximum likelihood (ML) to esti-

mate the person parameters. Experience suggests that ML estimation is not only feasible but

also prone to giving some very large PDD estimates if the test is short or the item locations are

not evenly distributed. This problem becomes worse in the DTGRM, and more so in the

DTBRM.

To overcome the problem above, the approach proposed here is to use Bayes expected a pos-

teriori (EAP, Bock & Mislevy, 1982) estimation for all the models considered. This procedure

has two main advantages. First, it uses the mean PDD estimate obtained in the calibration stage

to center the prior distribution. So, the ‘‘ensemble biases’’ (Mislevy, 1986) phenomenon of

shrinkage toward an inappropriate central value is avoided. Second, it ensures that the person

estimates (especially s2
i ) fall within reasonable values. EAP estimation of u and s2

i in all the

models is conventional and is detailed in the appendix.

From a modeling point of view, the most important issue in the EAP estimation process is

the choice of the prior distributions. In our proposal, the prior for u is set as standard normal by

default, but estimated distributions via quadrature can also be used as input (Mislevy, 1986). As

for the PDDs, they are variances, so their most appropriate prior is the scaled inverse x2 distri-

bution (Novick & Jackson, 1974). Because only the prior mean is estimated at the calibration

stage, the prior variance for s2
i is indeterminate. So, a prior distribution for s2

i needs to be
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specified so that plausible estimates can be obtained for all the respondents but, at the same

time, it should not be so tight that it produces excessive regression toward the prior mean. This

point is also discussed in the appendix.

For each individual, the output of the EAP procedure consists of the ui and s2
i point estimates

and the corresponding posterior standard deviations (PSDs) which serve as standard errors (e.g.,

Bock & Mislevy, 1982). For both ui and s2
i , a conditional PSD-based reliability estimate can

further be obtained as

r ûi

� �
= 1�

PSD ûi

� �2

Var uð Þ ,

r ŝ2
i

� �
= 1�

PSD ŝ2
i

� �2

Var s2ð Þ :
ð17Þ

Finally, an empirical marginal reliability estimate can be obtained by averaging the squared

PSDs in the sample of N individuals (Brown & Croudace, 2015):

r û
� �

= 1�

PN
i

PSD ûi

� �	 
2
NVar uð Þ ,

r ŝ2
� �

= 1�

PN
i

PSD ŝ2
i

� �	 
2
NVar s2ð Þ :

ð18Þ

Provided that the PSDs remain relatively uniform, the marginal reliabilities in Equation 18

are representative of the overall precision of the estimates in the population of respondents.

Assessing Model Appropriateness

In all the models proposed here, calibration consists of fitting a unidimensional FA model. So,

model-data fit and appropriateness at this level can be assessed by using standard procedures.

Appropriate fit of the FA model, however, is necessary but not sufficient, because the DTMs

cannot be distinguished from the corresponding normative (i.e., constant PDD) models in terms

of their implied inter-item correlation matrices. So, further procedures are needed to decide

whether the more flexible but also more parameterized dual TM provides a non-negligibly bet-

ter fit than the corresponding model with constant PDD.

The approach proposed has been systematically used in previous related models, and is based

on a likelihood ratio (LR) statistic. For a single respondent i, let L0
i (ûi, ŝ2) be the value of the

likelihood function evaluated by using the person location estimate that is obtained under the

restriction that all the PDDs have a constant value. Now, let L1
i (ûi, ŝ2

i ) be the corresponding

value using both the person location and the PDD estimate (see the appendix for further details).

The LR statistic and the transformed value proposed are

Li =
L0

i ûi, ŝ2
� �

L1
i ûi, ŝ2

i

� � ; si = � 2 ln (Li): ð19Þ

Statistic Li is a descriptive normed index with values in the range 0 to 1. Values close to 0 indi-

cate that the dual TM provides a substantially better fit than the corresponding standard model.

As for si, under very restrictive conditions, it could be considered to be a value randomly drawn
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from a x2 distribution with one degree of freedom. And, by further assuming experimental inde-

pendence between respondents, the sum Q = Ssi asymptotically approaches a x2 distribution

with N degrees of freedom (see Ferrando, 2013). However, for this being so, the likelihoods

must be evaluated at their ML estimates whereas here they are evaluated at their EAP estimates.

To sum up, Q has been proposed as the overall index for assessing whether the DTM fits better

than its standard counterpart but acknowledge that it cannot be used as a strict inferential mea-

sure and that the reference distribution is at best only an approximate guide. The behavior of

the statistic is assessed below via simulation.

Substantive and Practical Considerations

The DTMs are not only more flexible than their normative counterparts but also more complex

and potentially prone to producing unstable parameter estimates. Therefore, the conditions in

which the proposed models are appropriate and expected to work well in practice need to be

discussed.

Analytical expressions for the ui and s2
i PSDs in the three models are provided in the appen-

dix (Equations 30 to 32). For both parameters, accuracy of the estimates increases with test

length and (in the DTGRM) with the number of categories (see Ferrando, 2009). However,

accurate estimation of ui requires items whose locations are close to the parameter value,

whereas accurate estimation of s2
i requires items with locations that are far removed from ui.

So, the ‘‘ideal’’ scenario is a long test with item locations that are widely spread and evenly

distributed around the mean person location value (zero in the present scaling). These are also

the ‘‘ideal’’ conditions of any broad-bandwidth personality test. Extensive simulation is needed

before any recommendations are given, but for the moment, it is important to inspect the PSDs

and reliabilities of the individual estimates to check that they are accurate for most of the

respondents.

In comparative terms, the ui estimates are expected to be substantially more reliable than the

s2
i estimates. This result has been systematically obtained in the literature (Ferrando, 2004;

Mosier, 1942), and, in the present proposal, can be obtained by using Equations 30 to 32 in the

appendix. The situation is the same that occurs when estimating item slopes in the 2PM with the

role of the items and respondents reversed: In general, the location estimate is far more reliable

than the slope estimate (e.g., Lord & Novick, 1968). Even so, however, the results obtained in

the appendix for the s2
i estimates suggest that, in a well-designed test with a good spread of item

locations and medium to high item discriminating power, reliabilities of 0.70 can be reached

with about 25 items, and of 0.80 with about 40 items.

We turn now to the potential advantages of using the DTMs. To start with, they provide addi-

tional information about the consistency of the respondent’s answering behavior via the PDD

estimate. This information, in turn, can be of use in individual assessment or in exploratory

person-fit research (see Conijn et al., 2016). Furthermore, it has been hypothesized that the PDD

is related to the relevance and degree of clarity and strength with which the trait is internally

organized in the individual (Traitedness; for example, Markus, 1977; Reise & Waller, 1993;

Taylor, 1977; Tellegen, 1988). Evidence based on previous TM-based applications or related

indices suggests that the PDD estimates can be effectively used to reflect traitedness (LaHuis,

Barnes, Hakoyama, Blackmore, & Hartman, 2017; Reise & Waller, 1993).[AQ: 6]

As for the role of PDDs in individual assessment, the accuracy with which the person loca-

tions are estimated is better assessed with the DTMs (provided they are correct). Indeed, the

analytical expressions for the ui PSDs provided in the appendix are
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where f is the density of the standard normal distribution, Pijk = P(Xjk|ui,s
2
i ), and Q = 1 –P. In

the three models, the accuracy of the person location u estimate depends on the amount of PDD.

All other things being constant, the u estimates are more accurate for the most discriminating

and reliable individuals (see Equation 17). This result is particularly important when u is esti-

mated in clinical settings or in selection or classification processes.

Finally, for psychometric and conceptual reasons, the PDD are expected to have a moderat-

ing role in validity assessment. First, as discussed above, the person location estimates of the

less discriminating individuals are less reliable and, from basic attenuation theory, the unrelia-

bility of the score estimates attenuates the validity coefficient (e.g., Lord & Novick, 1968).

Second, those individuals for whom the trait is relevant are expected to be more likely to dis-

play a stronger correspondence between trait self-description and external trait-relevant vari-

ables (Markus, 1977; Paunonen, 1988). For both reasons, those individuals with smaller PDDs

would tend to be the most predictable although, in practice, the differential validity effects are

expected to be modest at best (Ferrando, 2004, 2013).

The relatively low degree of reliability of the s2
i estimates is admittedly a limiting factor for

their potential usefulness, especially if these estimates were to be used for accurate individual

assessment of the person discrimination levels. For the auxiliary roles discussed above or for

validity assessment, however, previous results (Ferrando, 2004, 2009, 2013) suggest that if

minimally acceptable reliabilities of about 0.70 can be obtained (which is reasonable in a good

designed study), then the s2
i estimates discrimination is already appropriate.

Simulation Studies

Experience with the DTCRM suggests that the limited-information procedure proposed in this

article works quite well in the simple linear case. For this reason, two simulation studies that

focused on the new approaches proposed here as well as on the main differences with the origi-

nal DTCRM proposal were undertaken. More specifically, the study considered only the

DTGRM, which is the most general of the two UVA-based models. Due to space limitations,

the complete studies as well as the tables of results (Tables A1(a), A1(b), and A2) are presented

in the appendix, and only a summary is provided here.

The first study assessed the extent to which the approaches proposed here provide appropri-

ate item calibration results and, above all, acceptable individual estimates of the two types of

person parameter. Thus, results are presented at two levels: calibration and scoring. In the first

calibration stage, the main aim was to check that data generated by the DTGRM did in fact

behave like an FA model at the correlational level and that items could be well calibrated by

fitting Spearman’s model to the inter-item polychoric correlation matrix.

10 Applied Psychological Measurement 00(0)



The scoring part of the study is of more interest because now Bayes EAP estimates are used

instead of the ML estimates originally proposed. The focus here was on the appropriate recov-

ery of the ‘‘true’’ individual parameters and on the accuracy of the individual estimates.

The calibration results suggested that the FA model provided a good fit in all cases and

appropriate recovery of the item parameters. The scoring results were also positive. For both ui

and s2
i the parameters were well recovered within the accuracy limits discussed in the section

above. Furthermore, the empirical and model-based accuracy results agreed reasonably well.

The second study aimed to assess the behavior of the LR Q statistic proposed above when

the likelihoods are evaluated at their EAP estimates. Two situations were considered: H0, in

which the correct model was the standard GRM with constant PDD, and H1 in which the correct

model was the DTGRM. The results suggested that (a) the statistic allowed the correct model to

be distinguished in all conditions and (b) power increased with test length, as expected.

However, the statistic was conservative, and, under H0 it provided values systematically smaller

than the chi-square expectations. This point is discussed further below.

Illustrative Example

Ferrando (2013) illustrated the functioning of the DTCRM with an instrument known as

CTAC, a Spanish acronym for ‘‘Anxiety Questionnaire for Blind People.’’ The CTAC (Pallero,

Ferrando, & Lorenzo-Seva, 1998) is a 35-item test that measures anxiety in situations related to

visual deficit and which is intended to be used in the general adult population with severe

visual impairment. The response format is 5-point Likert-type and, in the population for which

the test is intended, the distributions of the item scores are generally unimodal and not extreme.

This result suggests that, ‘‘a priori,’’ both the DTCRM and the DTGRM may be appropriate

(see Culpepper, 2013). So, the results they provide can be compared for illustrative purposes.

In Ferrando’s (2013) example, the CTAC was fitted in a sample of 352 respondents. Here a far

larger sample of 760 adults collected from various centers belonging to the Spanish National

Organization of the Blind (ONCE) is used.

The unidimensional FA model was fitted to the product-moment (DTCRM) and polychoric

(DTGRM) inter-item correlation matrices by using robust unweighted least squares (ULS) esti-

mation as implemented in the FACTOR program (Lorenzo-Seva & Ferrando, 2013).

Appropriateness and goodness of fit were assessed at this stage by using a multifaceted

approach that includes (a) conventional goodness-of-fit assessment, (b) equivalence testing as

proposed by Yuan, Chan, Marcoulides, and Bentler (2016) (only available at present for the

continuous model), and (c) measures of strength and replicability of the solution as well as clo-

seness to unidimensionality. For both models, the results are in Table 1. They are clear and can

be summarized as follows: The fit is quite acceptable by all standards, the solutions are strong

and replicable, and the data are essentially unidimensional. As expected, the results for the con-

tinuous and the graded models at this stage are very similar[AQ: 7]

The results for the LR test are at the bottom of Table 1. Even with the limitations of the Q

statistic discussed above, they are quite clear, and more so given the conservative behavior of

the test. In both the continuous and graded case, they suggest that the DTM is more appropriate

than the corresponding normative model.

The calibration results for both models are now summarized. The standardized weights (a)

ranged from 0.58 to 070 (DTCRM) and 0.62 to 0.74 (DTGRM), which are quite acceptable for

personality items. The product-moment correlation between the a estimates produced by both

models was .99. So, as expected, (a) the two sets of weights were in close agreement, and (b)

the as based on the polychoric correlations were slightly larger than those based on the product-

moment correlations. The most accurate item was the same in both cases (Item 15) with an
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estimated a of .70 (DTCRM) and .74 (DTGRM). By using this item as a marker, E(s2
i ) was esti-

mated at values of 1.06 (DTCRM) and 0.82 (DTGRM). Next, relative to this scaling, the IDDs

were estimated according to Equation 15.

As for the locations, the range of bj values was (–0.87, 1.40) in the DTCRM and (–0.72,

1.32) in the DTGRM. In both cases, they were evenly distributed around 0, with means of 0.14

(DTCRM) and 0.17 (DTGRM). The correlation between both sets of estimates was 0.995.

EAP person estimates for the DTCRM and the DTGRM were obtained next. In both cases,

the prior for u was standard normal and the prior for s2 was inverse x2 with Scaling Parameter

3, and five degrees of freedom (see the appendix). Table 2 shows a summary of the accuracy of

the estimates based on the marginal reliabilities in Equation 18 as well as on empirical split-half

estimates.

To sum up, there is a high degree of agreement between (a) the results obtained from the

DTCRM and the DTGRM, and (b) the PSD-based and the empirical split-half reliability esti-

mates. In both models, the reliabilities of the person locations are those expected in a good

Table 1. Calibration Results.[AQ: 8]

(a) Goodness of fit and appropriateness of the unidimensional factor analysis model.

Index
Continuous responses

value (95% confidence interval)
Graded responses

value (95% confidence interval)

RMSEA 0.0450 [0.0445, 0.0456] 0.0497 [0.0492, 0.0498]
Ts-RMSEA 0.072 (fair) —
CFI 0.984 [0.983, 0.987] 0.987 [0.986, 0.990]
Ts-CFI 0.958 (close) —
GFI 0.981 [0.980, 0.983] 0.980 [0.978, 0.983]
z-RMSR 0.054 [0.053, 0.055] 0.061 [0.060, 0.063]
ECV 0.90 [0.894, 0.913] 0.90 [0.894, 0.913]
G-H 0.95 0.96

(b) LRT results

average Li 0.20 0.43
Q (df) 3,262.3 (760) 2,945.9 (760)
Q-z 36.80 32.59

Note. RMSEA = root mean square error of approximation; Ts-RMSEA = T-size root mean square error of

approximation; CFI = comparative fit index; Ts-CFI = T-size comparative fit index; GFI = goodness of fit index;

z-RMSR = root mean square of residuals; ECV = explained common variance (ECV measures closeness to

unidimensionality); G-H = generalized H index (G-H measures strength and replicability of the solution); LRT =

likelihood ratio test.

Table 2. Reliability of the Person Estimates.

DTCRM DTGRM

Estimate r-PSD r-S-H r-PSD r-S-H

EAP (u) 0.95 0.95 0.94 0.94
EAP (s2) 0.80 0.81 0.82 0.80

Note.r-PSD = PSD-based marginal reliability; r-S-H = split-half reliability; EAP = expected a posteriori.
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personality test, whereas those of the individual s2 estimates are lower but would be acceptable

for many purposes. Finally, the product-moment correlations between the estimates produced

by both models were 0.98 for the central locations and 0.86 for the PDDs.

The results of two respondents based on the DTGRM are now compared to illustrate the role

of the PDD in individual assessment. The person location estimate of respondent no. 704 was

û704 = 0:14, whereas that of respondent no. 382 was û382 = 0:11. So, in both cases, their estimated

anxiety level was medium and about the same. However, the s2 estimate for respondent no. 704

was 5.51 while for respondent no. 382 it was 0.32, which shows that the second respondent

answered the CTAC items much more consistently and precisely than the first. In accordance

with this result, the PSD u estimates were 0.42 for respondent no. 704 and 0.15 for respondent

no. 382. The corresponding reliabilities in Equation 17 were 0.82 and 0.98. And, finally, the

resulting confidence bands or 68% confidence intervals (i.e., û6PSD(û)) were [–0.28, 0.56] for

respondent no. 704, and [–0.04, 0.26] for respondent no. 382. Clearly, stronger inferences can

be drawn on the basis of the person location estimate for the second respondent.

Finally, the role of PDD is illustrated as a moderator in prediction. Because no external vari-

able was available, the ‘‘internal’’ split-half schema mentioned above was used: The raw scores

in the first half were taken as the ‘‘predictor’’ and the raw scores in the second half as the ‘‘cri-

terion.’’ Moderated Multiple Regression (e.g., Baron & Kenny, 1986) results showed that the

moderating effects of the PDDs were significant: The F statistic value used to judge the incre-

ment of R2 was 26.98 with df values of 1 and 757. The post hoc analysis was as follows: two

subgroups were formed using Cureton’s (1957) 27% rule. The upper group contained the 205

respondents with the lowest PDDs (i.e., the most discriminating respondents), and the lower

group contained the 205 with the highest (i.e., the least discriminating respondents). For the

upper group, the split-half correlation was r = .94. For the lower group it was r = .75. Overall,

the results suggest that the PDD estimates are useful in moderate prediction and are in the

expected direction: The validity relations are stronger in the subgroups with the most discrimi-

nating respondents.

Discussion

Conventional psychometric modeling of typical-response measures considers lack of item dis-

crimination as the sole source of measurement error. An alternative view stated by Lumsden

(1978) was that items ‘‘are perfectly reliable’’ and that within-person variability (i.e., PDD) is

the sole source of error. The view taken here is that both items and persons are sources of error

and that the amount of error generally varies over persons and over items. This flexible scenario

is thought to be the most plausible one for measurement in this domain. The problem, however,

is that an analytically tractable modeling of this type does not exist at present for the most com-

mon item formats.

This article proposes a comprehensive approach to fitting dual models to continuous, graded,

and binary item scores. The UVA on which it is based allows for a unified treatment of the mod-

els, so in all cases item calibration is performed via a FA of the inter-item correlation matrix

with some additional restrictions. Simplicity and feasibility are possibly the main advantages of

the proposal, as calibration is only slightly more complex than in standard models, whereas

EAP scoring is quite similar to scoring a bidimensional model with independent factors.

The present proposal is a new, wide-scope development, and, as such, there are many points

that require further research. At the methodological level, further simulation studies are needed

mainly to establish the minimal conditions under which the dual models are expected to work

well and provide reasonably accurate estimates for most of the individuals. Furthermore, future

improvements in the approach proposed could be envisaged. For example, standard errors for
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the parameter estimates obtained under constraints, mainly E(s2
i ), could be obtained by using

the delta method or resampling procedures. Also, given the limitations of the LR statistic pro-

posed, appropriate cutoff values should be determined, and the best option in future develop-

ments may be to obtain them via simulation. Finally, and more generally, theoretically superior

procedures such as full-information estimation could be considered in the future for the pro-

posed models. These procedures are far more complex than those proposed here and require the

numerical integration of high dimensional integrals. Furthermore, it is not clear that in practice

they will be clearly superior to the present proposal. However, the additional information they

use from the data might avoid some of the constraints required in the limited-information case.

In any case, the present proposal is fully open to improvements in the future.

Experience suggests that proposals such as the present can be used in practice only if they

are implemented in widely available (and preferably free) programs. At present, work is on

progress on an R program that will implement all the procedures proposed here, and which,

hopefully, will soon be available for interested readers.

Appendix

Technical Details

Consider a test made up of j = 1, 2, . . . n items, and let xi be the full vector of responses given

by individual i. The generic expression P(Xj|ui, s2
i ) is used to denote the conditional probability

(discrete case) or conditional density (continuous case) assigned to a specific item score for

fixed ui and s2
i . For the DTCRM, the conditional density is normal, with mean and variance

given in Equation 3. For the DTBRM and the DTGRM, the conditional probabilities are those

given in Equations 13 and 14, respectively.

The likelihood of xi can then be written generically as

L xiju, s2
� �

=
Yn

j = 1

P Xijju, s2
� �

: ð21Þ

For a person parameter j (j = u or s2), the expected a posteriori (EAP) point estimate is the

mean of the posterior distribution of j given the respondent’s item response pattern

EAP = ĵi = E jjxið Þ=

Ð
u

Ð
s2

jL xiju, s2ð Þg uð Þh s2ð Þds2duÐ
u

Ð
s2

L xiju, s2ð Þg uð Þh s2ð Þds2du
: ð22Þ

In all the models considered here, ui and s2
i are assumed to be independent. So their joint

distribution is the product g(u)h(s2). As stated in the article, by default, g(u) is taken as stan-

dard normal while s2
i is scaled inverse x2 with d degrees of freedom and scaling parameter t.

The mean and variance of this latter distribution are (Novick & Jackson, 1974)

E s2
i

� �
=

t

d � 2
; Var s2

i

� �
=

2t2

d � 2ð Þ2 d � 4ð Þ
: ð23Þ

The expectation in Equation 23 is obtained at the calibration stage according to Equation 15.

To determine the parameters d and t, the simplest approach is to use a normal approximation

and set a credibility interval (e.g., Swaminathan & Gifford, 1985). More specifically, experi-

ence with ML estimation in the DTCRM suggests that the expectations in Equation 23 are
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usually close to 1, and that 0 to 5 is a reasonable range of values for the s2
i estimates in most

cases. Setting 1 as the mean and 5 as the upper end of a 95% credibility interval results in d = 5

and t = 3, which are the prior values chosen in the empirical study.

The double integral in Equation 22 can be approximated as accurately as required using

numerical quadrature. More specifically, the applications described in the article used rectangu-

lar quadrature over q = 40 equally spaced points:

EAP ffi

Pq
k1 = 1

Pq
k2 = 1

XkmL xijXk1, Xk2, b, að ÞW Xk1ð ÞW Xk2ð Þ

Pq
k1 = 1

Pq
k2 = 1

L xijXk1, Xk2, b, að ÞW Xk1ð ÞW Xk2ð Þ
, ð24Þ

where m = 1 or 2, Xk1 and Xk2 are the nodes and W(Xk1) and W(Xk2) are the weights for the one

dimensional quadratures that approximate the distributions of u and s2, respectively.

The posterior standard deviation (PSD) is

PSD ĵi

� �
= sqrt E j2jxi

� �
� ĵ2

i

� �
: ð25Þ

The expectation of the squares in Equation 25 can be approximated by quadrature in the

same form as in Equation 22.

As the number of items increases, the distribution of the u EAP estimates approaches normal-

ity and the PSDs become equivalent to asymptotic standard errors (Bock & Mislevy, 1982). So,

for a test of reasonable length, a normal-based confidence interval approach (strictly speaking, a

credibility interval) for the EAP person location estimate of individual i can be constructed as

ûi6zcPSD ûi

� �
: ð26Þ

For both u and s2, explicit, approximate expression for the PSD can be obtained by consider-

ing that the information provided by the prior is numerically equivalent to an additional item to

which all of the members of the population respond identically. For a test of reasonable length,

it then follows that (see Wainer & Mislevy, 2000)

1

PSD2 jð Þ
ffi I jð Þ � ∂2 log f jð Þ

∂j2
, ð27Þ

where I(j) is in this case the corresponding diagonal element of the expected information

matrix, obtained as (e.g., Kendall & Stuart, 1977)

I jð Þ= � E
∂2 log L u, s2ð Þ

∂j2

� �
: ð28Þ

The second term in Equation 27 is the amount of information contributed by the prior. For the

case of u, the contribution is simply 1. As for s2, if the prior is inverse x2(d, t), then it follows that

� ∂2 log f s2ð Þ
∂ s2ð Þ2

" #
=

1

s2ð Þ2
t

s2
� d + 2

2

� �
: ð29Þ

The approximate analytical expressions are then
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For the DTBRM, were f is the density of the standard normal distribution, Pij = P(Xj|ui, s2
i ),

and Q = 1 –P. And, finally,
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For the DTGRM[AQ: 9]

Simulation Studies

Study 1: Item calibration and individual scoring with the DTGRM

Random samples of N = 200, N = 500, and N = 1,000 simulated responses were generated

according to the DTGRM for (a) two test lengths, n = 20 and n = 40; and (b) two levels of

IDDs, s2
e = 1.55 (which implies a common a value of 0.55) and s2

e = 0.29 (which implies a

common a value of 0.70) by using MATLAB programs written by the author. In all cases, 50

replicas per condition were used, the distribution of u was standard normal, and the distribution

of s2 was inverse chi-square with t = 3 and d = 5. The b item locations were uniformly distrib-

uted between 21.5 and 1.5, and items were discretized into five response categories using

Muthén and Kaplan’s (1985) thresholds for obtaining centered distributions. It should be noted,

however, that the combination of the chosen b values with the standard thresholds gave rise in

some cases to quite skewed item distributions[AQ: 10]
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First, the simulated responses were calibrated by fitting the unidimensional factor analysis

(FA) model to the polychoric inter-item correlation matrices using unweighted least squares

(ULS) estimation. The recovery of the generating parameters was assessed with the mean, bias,

and root mean squared error (RMSE) of the standardized loadings. Goodness of fit was assessed

with two statistics: the root mean squared residual (RMSR) and the goodness of fit index (GFI)

(see McDonald, 1999). The results are in the upper panel of Table A1.

Results in Table A1(a) can be summarized as follows: In all cases, the goodness of fit statis-

tics agree with the expectations derived from the null hypothesis of model-data fit, and the item

parameters are reasonably well recovered. With small to medium sample sizes, the loading esti-

mates are slightly attenuated, and the bias approaches zero as the sample size increases, which

is reasonable.

The second part of the study is the scoring stage. For each simulee, EAP estimates of both u

and s2 were obtained by using rectangular quadrature over 40 equally spaced points and the

correct prior distributions above. Thus, in this respect, the EAP-based results must be consid-

ered to have been obtained under ‘‘ideal’’ conditions. In addition to the bias and RMSE of both

person parameters, the measures of accuracy in this case were (a) the product-moment correla-

tion between the individual estimates and the corresponding true values, and (b) the marginal

reliability estimates in Equation 18. Measure (a) can be interpreted as an index of reliability.

So, if both types of measure agree, the marginal reliabilities must be approximately equal to the

square of the reliability indices. The results are shown in the lower panel of Table A1.

Results in Table A1(b) generally behave according to the theoretical expectations. For both

u and s2, the accuracy increases with test length and item discriminating power. Also for both

parameters, the relations between both measures of accuracy agree reasonably well and the

increases in the marginal reliabilities with test length tend to agree with the predictions obtained

by using the Spearman–Brown formula.

In the conditions used in the study, the accuracy of the u estimates is quite good in all cases.

The accuracy of the s2 estimates, however, is clearly lower, as expected. Even so, the present

results suggest that individual estimates of s2, which are accurate enough for practical purposes,

might be obtained in tests of only 20 items provided that the IDDs are reasonably low.

Study 2: Behavior of the likelihood ratio test (LRT) Q statistic with the DTGRM and EAP
estimates

The simulated data used in H1 were the same as in Study 1 above, but only the condition a =

.70 was used. Under H0, random samples were generated with the same characteristics as those

in H1 except that all the simulees had the same constant PDD value which was the mean of s2

in H1. To avoid dependency of the results on sample size, the ratio Q/N was reported instead of

Q. Results are in Table A2.

Results in Table A2 show that the statistic allows the correct model to be distinguished in all

conditions and that power increases with test length, as expected. However, the statistic is con-

servative, and, under H0, it provides values systematically smaller than the chi-square expecta-

tions, especially in small samples.

New References Used in the Appendix

Kendall, M. G., & Stuart, A. (1977). The advanced theory of statistics (Vol. 2). London, England: Charles

Griffin.

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Lawrence Erlbaum.
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