This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Trends in the Bond Multiplicity of $\mathrm{Cr}_{2}, \mathrm{Cr}_{3}$ and $\mathrm{Cr}_{2} \mathbf{M}$ ($\mathbf{M}=\mathbf{Z n}$, Ni, Fe, Mn) Complexes Extracted from Multiconfigurational Wave Functions

Journal:	The Journal of Physical Chemistry
Manuscript ID	jp-2018-10124r.R2
Manuscript Type:	Article
Author: Submitted by the	n/a
Complete List of Authors:	Spivak, Mariano; Universitat Rovira i Virgili, Departament de Química Física i Inorgànica López, Xavier; Universitat Rovira i Virgili, Departament de Química Física i Inorgànica de Graaf, Coen; Universitat Rovira i Virgili, Departmentament de Química Física i Inorgànica; ICREA

Trends in the Bond Multiplicity of $\mathrm{Cr}_{2}, \mathrm{Cr}_{3}$ and $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{M}=\mathrm{Zn}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Mn})$ Complexes Extracted from Multiconfigurational Wave Functions

Mariano Spivak, ${ }^{\dagger}$ Xavier López, ${ }^{*, \dagger}$ and Coen de Graaf ${ }^{\dagger}, \ddagger$
\dagger Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Marcel•lí
Domingo 1, 43007 Tarragona, Spain
\ddagger ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

E-mail: javier.lopez@urv.cat

Abstract

Extended metal atom chains constitute an interesting class of molecules both from theoretical and applied points of view. In the chromium-based series $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa})_{4} \mathrm{X}_{2}$ (with $\mathrm{M}=\mathrm{Zn}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr}$), the direct metal-metal interactions span a wide range of possibilities, and so do their associated properties. The multiplicity and symmetry components of the metal-metal bond are herein analyzed via the Effective Bond Order (EBO) concept using Complete Active Space Self-Consistent Field wave functions and compared with similar bimetallic $\mathrm{Cr}_{2} \mathrm{~L}_{4} \mathrm{X}_{2}$ systems. The bond multiplicity follows a trend dominated by the $\mathrm{Cr}-\mathrm{Cr}$ distance which, in turn, depends on the nature of the axial ligand (X). $\mathrm{Cr}_{2} \mathrm{M}$ compounds present asymmetric structures with virtually no interaction between the Cr_{2} unit and M , whereas fully symmetric structures with delocalized bonding among the three metals are also possible in Cr_{3} complexes. In such cases, a strategy that involves localization of the molecular orbitals into each $\mathrm{Cr}-\mathrm{Cr}$ pair is applied to quantify the contribution of each pair to the overall metal-metal bond multiplicity.

Introduction

Metal-metal interactions in transition metal complexes have attracted the interest of the inorganic and physical chemistry community for many years. ${ }^{1}$ A complete understanding can be helpful to describe topics as diverse (and intrinsically complex) as electron transport, catalysis and magnetism. A very recent example is the exceptionally high ferromagnetic interaction found in the heterometallic $\mathrm{Mo}_{2}-\mathrm{Ni}$ chain. ${ }^{2}$ A starting point for the explanation of the different types of magnetic behaviour can be formulated in terms of one-electron functions (orbitals) and the electron count of the metals involved in the bonding bimetallic species. A high count of d-electrons $(\mathrm{Ni}, \mathrm{Cu})$ creates no metal-metal formal bond but just weak magnetic interactions. On the other hand, partially filled d-shells (Cr, Co) promote a net metal-metal bonding due to the prevalence of occupied metallic orbitals of bonding
character.
From a theoretical viewpoint, the accurate treatment of electron correlation, both static and dynamic, is required for a qualitative quantum chemical description that goes beyond this simple one-electron reasoning. A notoriously difficult example is the description of the bonding properties of the bare chromium dimer, $\mathrm{Cr}_{2},{ }^{3-10}$ which still is a typical prototype molecule for testing new methods. ${ }^{11-20}$ The ligated chromium dimer $\mathrm{Cr}_{2} \mathrm{~L}_{n}$ has also been extensively studied. It is well established that compounds with tetra-bridging ligands $\left(\mathrm{Cr}_{2} \mathrm{~L}_{4}\right)$ exhibit short $\mathrm{Cr}-\mathrm{Cr}$ distances $(1.7-2.0 \AA)^{21}$ and that the axial coordination of donor ligands (X) to $\mathrm{Cr}_{2} \mathrm{~L}_{4}$ leads to elongation of the $\mathrm{Cr}-\mathrm{Cr}$ distance. Values of 2.2 to $2.7 \AA$ have been documented in a variety of $\mathrm{Cr}_{2} \mathrm{~L}_{4} \mathrm{X}_{2}$ complexes. ${ }^{1}$ Several theoretical studies have focused on the bonding trends of $\mathrm{Cr}_{2} \mathrm{~L}_{4}$ for different L , as well as varying the charge of the metal ions. Neutral Cr^{0} species are characterized by the shortest $\mathrm{Cr}-\mathrm{Cr}$ distances (around $1.7 \AA$) and the bond has been identified to be of quintuple nature based on the observation that the $\sigma^{2} \pi^{4} \delta^{4}$ electronic configuration dominates the electronic structure. ${ }^{22-25}$ On the other hand, compounds that present Cr (II) ions exhibit a more elongated $\mathrm{Cr}-\mathrm{Cr}$ bond, with a less dominant $\sigma^{2} \pi^{4} \delta^{2}$ configuration and a lower bond order. ${ }^{25}$ The studies of $\mathrm{Cr}_{2} \mathrm{~L}_{4} \mathrm{X}_{2}$ compounds with $\mathrm{Cr}(\mathrm{II})$ ions are less numerous. Multiconfigurational Self-consistent Field (MCSCF) methods were previously used for model systems ${ }^{26-28}$ but recent bonding analysis has been limited to DFT-based methods like natural bond order (NBO) ${ }^{29,30}$ or extended transition state natural orbital for chemical valence (ETS-NOCV). ${ }^{31}$

A unique class of compounds containing direct metal-metal contacts are Extended Metal Atom Chains (EMACs), made of 3 up to 11 transition metal atoms surrounded by organic ligands that keep them into a linear arrangement. The molecular formulae for the trimetallic EMACs herein discussed are $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa})_{4} \mathrm{X}_{2}$ and $\mathrm{Cr}_{3}(\mathrm{dpa})_{4} \mathrm{X}_{2}\left(\mathrm{Cr}_{2} \mathrm{M}\right.$ and Cr_{3} in short, respectively), with dpa: di-2,2'-pyridylamide anion (see Fig. 1, compounds 5-12). EMACs offer the opportunity to study multi-metallic complexes with various degrees of metal-metal interaction. ${ }^{32-37}$ In trimetallic chromium-based EMACs the Cr_{2} unit discussed above is part
of a larger structure, coupled with at least one other transition metal (M). ${ }^{38-42}$ In such cases, the $\mathrm{Cr}-\mathrm{Cr}$ distance varies from short to long depending both on M and the axial ligand X , the homometallic Cr_{3} case being indeed one of the most challenging ones because of the dramatic influence of the axial ligands on the structure and properties of the molecule. We recently studied the structural effects of different axial ligands on Cr_{3} compounds and proposed a strategy to make explicit the differences in the inherently very complex multiconfigurational wave functions. ${ }^{43}$ We now extend the study of the electronic structure of chromium complexes with the complete active space self-consistent field (CASSCF) method ${ }^{44}$ focusing on the metal-metal bonding multiplicity and the σ, π and δ contributions to it, connecting the results with the nature of the axial ligands. We use the effective bond order (EBO) analysis:

$$
\begin{equation*}
\mathrm{EBO}=\frac{\eta_{b}-\eta_{a}}{2} \tag{1}
\end{equation*}
$$

introduced by Gagliardi and co-workers, ${ }^{23}$ where η_{b} is the sum of the natural occupation numbers of the bonding active orbitals and η_{a} is the sum of the natural occupation numbers of the anti-bonding active orbitals, and the electron density at the bond critical point $\left(\rho_{B C P}\right)^{45,46}$ to quantify the effect of geometry distortion and changes in the axial ligand on the bond character. To calibrate the EBO analysis, we compare the outcomes of the Cr_{2} complexes with the analysis of the bond in terms of Mayer Bond Index (MBI) ${ }^{46-48}$ and the electron density at the bond critical points $\left(\rho_{B C P}\right) .{ }^{45,46}$ The MBI is obtained by summing the off-diagonal elements of the density matrix weighted by the overlap of the basis functions and has shown to give valuable information in some complexes with transition metals. ${ }^{49}$ Its exact definition can be found in the supporting information. The second index, $\rho_{B C P}$, is taken from the atoms-in-molecules theory of Bader. ${ }^{45}$ Larger values of the electron density at the point between two nuclei where the second derivative of the density has one negative eigenvalue (saddle point) can in general be connected with a stronger bonding character of these two atoms.

Figure 1 shows the bimetallic (1-4 and 13) and trimetallic (5-12) structures discussed in

$\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}(5-8)$

$\mathrm{Cr}_{3}(\mathrm{dpa})_{4}(\mathrm{NCS})_{2}(11)$

Figure 1: Ball-and-stick representation, labelling and molecular formula for the studied compounds. Colored atoms constitute the metal chain and the axial ligands, whereas the atoms of equatorial ligands are white.
this article. Our analysis starts with dichromium species $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathbf{1})$ and $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (2). ${ }^{1}$ These molecules feature short $(1.966 \AA)$ and long $(2.362 \AA) \mathrm{Cr}-\mathrm{Cr}$ distances, respectively, and can be used as simple models to understand the effect of the axial ligand on the wavefunction and the EBO. Then, we study $\mathrm{Cr}_{2}(\mathrm{dpa})_{4}(3),{ }^{50}$ precursor in the synthesis of many-chromium EMACs. Paired with a transition metal complex, several $\mathrm{Cr}_{2} \mathrm{M}$ units can be formed, resembling a $\mathrm{Cr}_{2}{ }^{4+}$ dimer with an apparently non-interacting pentacoordinated M^{2+}. We analyze different $\mathrm{Cr}_{2} \mathrm{M}$ EMACs $(\mathrm{M}=\mathrm{Zn}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Mn})$ with Cl^{-}as axial ligand (compounds 5-8, respectively). ${ }^{39-41}$ Then, we explore the $\mathrm{Cr}_{3}(\mathrm{dpa})_{4} \mathrm{X}_{2}$ compounds with X $=\mathrm{NO}_{3}{ }^{-}(\mathbf{9}),{ }^{38} \mathrm{Cl}^{-}(\mathbf{1 0}), \mathrm{NCS}^{-}(\mathbf{1 1})$ and $\mathrm{CN}^{-}(\mathbf{1 2})$, presenting a strategy to identify the pair contributions for the cases where the bonding is delocalized over more than two centers. Finally, $\mathrm{X}=\mathrm{H}_{2} \mathrm{O}$ and CH_{3} are used to discuss the effect of axial ligands on the $\mathrm{Cr}-\mathrm{Cr}$ bonding features.

Computational details

Given the large number of unpaired electrons of the $\mathrm{Cr}(\mathrm{II}) \mathrm{d}^{4}$ ion, a substantial multiconfigurational (MC) character can be expected for the wavefunction of all the compounds. In this sense, we used the CASSCF approach to obtain reliable wave functions and natural orbitals that accurately reflect the bonding properties of the metal chain. For the systems with only two Cr atoms, the active space contained eight electrons and eight orbitals, $\operatorname{CAS}(8,8)$ and the spin singlet ground state was computed. For the $\mathrm{Cr}_{2} \mathrm{M}$ systems, the active space includes also the M-3d orbitals that hold unpaired electrons. Since the Cr_{2} unit has a singlet ground state, the spin multiplicity of the $\mathrm{Cr}_{2} \mathrm{M}$ complexes are given by the spin moment of the quasi-octahedral $\mathrm{M}(\mathrm{II})$ ion. Table 1 summarizes the ground state spin multiplicity and the active space, $\operatorname{CAS}(n, m)$, of the different $\mathrm{Cr}_{2} \mathrm{M}$ systems. We performed single point CASSCF calculations using the MOLCAS 8 package. ${ }^{51}$ Molecular orbitals were expanded using atomic natural orbitals optimized for relativistic corrections and core correlation (ANO-RCC) basis
sets of triple- $\zeta+$ polarization (TZP) quality for the metals and double- $\zeta+$ polarization (DZP) quality for the other atoms. ${ }^{52,53}$ Scalar relativistic effects were included using the Douglas-Kroll-Hess Hamiltonian. The computational cost was reduced in two different ways. First by applying the Cholesky decomposition technique for the two-electron integrals with the threshold set to $10^{-8} E_{h},{ }^{54-56}$ and second, by imposing the restrictions of the spatial symmetry of the complexes on the molecular orbitals. The largest Abelian point group symmetry $C_{2 h}$ was applied to all molecules except for the $\mathrm{Cr}_{2} \mathrm{M}$ complexes that have a reduced symmetry C_{2}.

The validity of the $\operatorname{CAS}(8,8)$ SCF results discussed in this paper is based on a benchmark Restricted Active Space SCF (RASSCF) calculation carried out for 2 with 16 electrons in 24 active orbitals: 4 formally doubly occupied ligand orbitals in RAS1; $10 \mathrm{Cr}-3 \mathrm{~d}$ orbitals in RAS2; and 10 Cr-3d' orbitals (the double shell effect) in RAS3. Two holes are allowed in RAS1 and two electrons in RAS3. The outcomes of this RASSCF calculations are virtually the same as the results of the simpler CAS $(8,8) \mathrm{SCF}$, as shown in Table S1 of the Supporting Information. The CASSCF (and even the RASSCF) wave function is not flexible enough to account for the dynamic correlation, which has a large impact on the relative energies as shown in our previous study. ${ }^{43}$ However, the present study does not focus on the relative stability of the different forms of the EMACs (symmetric versus asymmetric), but rather on the differences in the bondig characteristics. For this goal we only need a reasonable electron distribution, which is already provided by the CASSCF wave function, as dynamic correlation has less impact on the wave function.

Table 1: Valence shell electronic configuration and ground state spin multiplicity of $\mathrm{M}(\mathrm{II})$, and active space for the $\mathrm{Cr}_{2} \mathrm{M}$ systems studied.

$\mathrm{M}(\mathrm{II})$	d^{n}	S	Active space
Zn	d^{10}	0	CAS $(8,8)$
Ni	d^{8}	1	CAS $(10,10)$
Fe	d^{6}	2	CAS $(14,13)$
Mn	d^{5}	$5 / 2$	CAS $(13,13)$
Cr	d^{4}	2	CAS $(12,12)$

ACS Paragon Plus Environment

Calculations were done on experimental structures obtained from the cited references. In addition, structures with different $\mathrm{Cr}-\mathrm{Cr}$ distances (longer for Cr_{2} compounds, whereas for Cr_{3} compounds we vary the position of the central Cr atom leading to one shorter and one longer Cr-Cr distance) were constructed by a constrained DFT geometry optimization with the ADF program, ${ }^{57-59}$ using the BLYP ${ }^{60,61}$ functional with a TZP Slater-type basis for Cr and M and DZP basis for $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$ and Cl . These forced structures are useful for the analysis of the $\mathrm{Cr}-\mathrm{Cr}$ bond. The coordinates of the optimized structures can be found in the supporting information. More detailed information on the calculations can be consulted online. ${ }^{62,63}$

Results and discussion

Metal-metal bonding in $\mathrm{Cr}_{2} \mathrm{~L}_{4}$ and $\mathrm{Cr}_{2} \mathrm{~L}_{4} \mathrm{X}_{2}$

The tetra-acetate bridged chromium dimer $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathbf{1})$ has a short $\mathrm{Cr}-\mathrm{Cr}$ distance of $1.97 \AA .{ }^{1}$ Figure 2 shows the molecular orbitals and natural occupation numbers obtained in the $\operatorname{CASSCF}(8,8)$ calculation on $\mathbf{1}$. Using the natural orbital occupation numbers, the total EBO of 1.96 (Table 2) apparently indicates the existence of a $\mathrm{Cr}=\mathrm{Cr}$ double bond. However, the different contributions to the EBO show the presence of nearly a single σ bond, two slightly weaker contributions of the π_{x} and π_{y} manifold, and a smaller participation (0.20) of the δ orbitals in the $\mathrm{Cr}-\mathrm{Cr}$ bond. The $\mathrm{Cr}-\mathrm{Cr}$ bond is then more accurately described as a (weak) quadruple bond.

When two axial aqua ligands are added to $\mathbf{1}$, one obtains $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathbf{2})$. At equilibrium, this complex is characterized by a longer $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})=2.36 \AA$ and an associated total $\mathrm{EBO}=0.87$. These values reveal the effect of axial ligation, primarily entailing some electronic donation from $\mathrm{H}_{2} \mathrm{O}$ to the $\mathrm{Cr}-\mathrm{Cr} \sigma^{*}$ orbital, as Table 2 shows. The donation appears in the wave function as a small contribution of the basis functions on the oxygen atom of the water molecule in the active orbitals. The explicit inclusion of the oxygen

(1.54)

Figure 2: $\operatorname{CASSCF}(8,8)$ molecular orbitals of bonding (bottom) and antibonding (top) character and natural occupation numbers, in parentheses, for compound 1. Symmetry of the orbitals from left to right is: σ, δ, π_{x} and π_{y}.

Table 2: $\operatorname{CASSCF}(8,8)$ natural orbital occupation numbers, partial and total $\mathrm{Cr}-\mathrm{Cr} \mathrm{EBO}, \mathrm{MBI}$ and $\rho_{B C P}$ for Cr_{2} systems 1-4. ${ }^{a}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}^{\boldsymbol{*}}$	$\mathbf{4}$	$\mathbf{4}^{\boldsymbol{*}}$
$\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})^{b}$	1.97	2.36	1.94	2.30	2.02	2.40
σ	1.68	1.43	1.69	1.49	1.63	1.41
π	3.08	2.33	3.20	2.47	2.93	2.29
δ	1.20	1.05	1.25	1.06	1.16	1.06
σ^{*}	0.32	0.56	0.31	0.51	0.37	0.59
π^{*}	0.92	1.66	0.80	1.58	1.07	1.71
δ^{*}	0.80	0.94	0.75	0.94	0.84	0.94
EBO	σ	0.68	0.43	0.69	0.49	0.63
	π	1.08	0.33	1.20	0.45	0.93
	δ	0.20	0.11	0.25	0.06	0.16
Total^{*}		1.96	0.87	2.14	1.00	1.73
MBI^{c}						0.29
$\rho_{B C P}$	1.140	0.273	1.275	0.313	0.918	0.244
Ca^{2}	0.147	0.061	0.156	0.067	0.129	0.053

${ }^{a}$ Cartesian coordinates can be found in Table S3 of the supporting information. ${ }^{b}$ Distances in \AA.
${ }^{c}$ Computed with the MultiWFN program. ${ }^{46}$
σ-orbital to the active space turned out to be impossible as these change into σ-orbitals located on the equatorial ligands, giving rise to a larger energy lowering but less relevant for the bonding along the Cr chain, because the equatorial ligands only interact with the δ-orbitals.

Alongside of the $\mathrm{Cr}-\mathrm{Cr}$ bond elongation due to the increased σ^{*} population, the electrostatic repulsion between the Cr atoms reduces when these gain electron density. As an immediate consequence of the weakening (elongation) of the $\mathrm{Cr}-\mathrm{Cr}$ bond, the π^{*} orbitals lower their energy, favouring a higher natural occupation that, concomitantly, reduces significantly the π contribution to the EBO from 1.08 to 0.33 upon axial coordination. The same effect in the π manifold is observed in a computational experiment when the $\mathrm{Cr}-\mathrm{Cr}$ distance is elongated from 3 to 3^{*} and from 4 to 4^{*}. Thus, while the Cr atoms feature a multiple $\mathrm{Cr}-\mathrm{Cr}$ bond to share electron density and stabilize the backbone of the structure in compound 1, the presence of axial $\mathrm{H}_{2} \mathrm{O}$ in $\mathbf{2}$ accumulates some electron density in the $\mathrm{Cr}-\mathrm{OH}_{2}$ region, with computed values of $\rho_{B C P}=0.040$ and $\mathrm{MBI}=0.403$ (not shown in the table). Our calculations establish how the Cr-Cr bonding adapts to axial coordination, decreasing the $\mathrm{Cr}-\mathrm{Cr}$ bond order from 2 to 1 . The trends of acetate-containing compounds $\mathbf{1}$ and $\mathbf{2}$ for varying $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})$ are also seen for $\mathrm{Cr}_{2}(\mathrm{dpa})_{4}\left(\mathbf{3}\right.$ and $\mathbf{3}^{*}$ for two $\mathrm{Cr}-\mathrm{Cr}$ distances) regarding EBO, MBI and $\rho_{B C P}$ parameters. Overall, elongating the $\mathrm{Cr}-\mathrm{Cr}$ distance either by addition of an axial ligand or by forcing the structure in a constrained calculation results in a decrease of all indices of $\mathrm{Cr}-\mathrm{Cr}$ bonding. These results are in agreement with previous GMO-CI calculations on $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{4},{ }^{26-28}$ herein recalculated with different $\mathrm{Cr}-\mathrm{Cr}$ distances (4 and 4^{*}, Table 2). The similarity in the tendencies apparent from the EBO and those extracted from the other bond indices (MBI and $\rho_{B C P}$) points out that the EBO analysis, simple as it is, can be used to extract information about the bonding properties in the trimetallic systems studied in the next section.

Metal-metal Bonding in Cr_{2} M EMACs

As mentioned before, $\mathrm{Cr}_{2}(\mathrm{dpa})_{4}$ is the synthetic precursor of several $\mathrm{Cr}_{2} \mathrm{M}$ EMACs. In this section, we examine the trends in the $\mathrm{Cr}-\mathrm{Cr}$ bond by computing the natural orbital occupation numbers and EBO values for experimental structures of $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}$ ($\mathrm{M}=$ $\mathrm{Zn}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Mn})$. The active space used for the Zn case contains 8 electrons and 8 orbitals from the Cr_{2} unit because of the diamagnetic nature of $\mathrm{Zn}(\mathrm{II})\left(\mathrm{d}^{10}\right)$. Compounds with paramagnetic $\mathrm{M}(\mathrm{II})$ require an expansion of the active space. We took into account the high spin configuration of the octahedral M ion and after some test calculations the active spaces listed in Table 1 were found to be the most adequate. Ideally, one would use the same active space for all complexes, but this introduces severe imbalances in the description. The formally unoccupied M-3d orbitals will not stay in the active space during the process of energy minimization, but will convert to M-4d (also known as M-3d') orbitals that account for radial correlation of the d-shell. It is worth mentioning that in the cases where M orbitals were added to the active space, the molecular orbitals presented almost no mixture between the Cr_{2} and M units, making the EBO analysis straightforward. Figure 3 shows the three σ orbitals; the bonding and antibonding pair of orbitals located on the Cr_{2} unit, and the atomic ('non-bonding') orbital on the M-atom. The π and δ orbitals shows a similar distribution over the complex.

Figure 3: Sigma molecular orbitals for $\mathbf{7}$ in its experimental geometry, $d(\mathrm{Cr}-\mathrm{Cr})=2.02 \AA$.

In addition to the experimental structures, we analyzed DFT optimized structures with

Table 3: $\operatorname{CASSCF}(n, m)$ natural orbital occupation numbers and EBO for $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa}){ }_{4} \mathrm{Cl}_{2}$ systems for different geometries. ${ }^{a}$

	$\mathrm{Cr}_{2} \mathrm{Zn}$		$\mathrm{Cr}_{2} \mathrm{Ni}$		$\mathrm{Cr}_{2} \mathrm{Fe}$		$\mathrm{Cr}_{2} \mathrm{Mn}$	
	$\mathbf{5}$		$\mathbf{6}$		$\mathbf{7}$	$\mathbf{8}$		
$\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})^{b}$	2.00	2.30	2.03	2.30	2.02	2.30	2.04	2.30
$\mathrm{~d}(\mathrm{Cr}-\mathrm{M})^{b}$	2.78	2.74	2.58	2.47	2.71	2.57	2.78	2.57
σ	1.65	1.45	1.63	1.46	1.64	1.46	1.64	1.51
π	3.02	2.40	2.92	2.40	2.95	2.40	2.92	2.44
δ	1.12	1.04	1.11	1.04	1.11	1.04	1.11	1.05
σ^{*}	0.34	0.55	0.37	0.54	0.36	0.54	0.36	0.49
π^{*}		0.98	1.60	1.08	1.60	1.04	1.60	1.08
δ^{*}		0.88	0.96	0.89	0.96	0.89	0.96	0.89
								0.95
EBO	σ	0.66	0.45	0.63	0.46	0.64	0.46	0.64
	π	1.02	0.40	0.92	0.40	0.96	0.40	0.92
	δ	0.12	0.04	0.11	0.04	0.11	0.04	0.11
Total	1.80	0.89	1.66	0.90	1.71	0.90	1.67	1.00
${ }^{a}$ Cartesian coordinates can be found in Table S4 of the supporting information. ${ }^{b}$ Distances in \AA.								

Figure 4: Effective Bond Order and its contributions as a function of the $\mathrm{Cr}-\mathrm{Cr}$ distance (\AA) for the Cr_{2} and $\mathrm{Cr}_{2} \mathrm{M}$ combined. Data taken from Tables 2 and 3 .
fixed $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})=2.30 \AA$. Table 3 shows the EBO values for the $\mathrm{Cr}-\mathrm{Cr}$ unit in $\mathrm{Cr}_{2} \mathrm{M}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}$. The trends are virtually identical to the Cr_{2} results of Table 2 indicating that for these systems there is (not unexpectedly) virtually no electronic interaction between the Cr_{2} and M units. It is remarkable that the total EBO for all the $\mathrm{Cr}-\mathrm{Cr}$ pairs in Table 3 is very similar (0.89-1.00) to that for compound $\mathbf{3}^{*}$ (1.00, Table 2). This suggests that the Cr-M EBO at the distances listed must be close to zero. Figure 4 collects the calculations for all the systems studied so far. Clear trends arise by analysis of the relationship between EBO and $\mathrm{Cr}-\mathrm{Cr}$ distance. First, the EBO decreases with the Cr-Cr distance, an expected trend since it is a measure of the bonding between two atoms. Also, the $\delta \mathrm{EBO}$ is residual along the range of $\mathrm{Cr}-\mathrm{Cr}$ distances analyzed. More interesting is the fact that the dominant components of the EBO have different slopes, the π EBO being larger than σ at short distances due to the fact that there are twice as many π orbitals, but the bonding contributions decaying with $\mathrm{Cr}-\mathrm{Cr}$ distance at a different rate due to the different overlap of the orbitals. The σ contribution to the EBO is steadier than the π one because the overlap of σ molecular orbitals is less dependent on the $\mathrm{Cr}-\mathrm{Cr}$ distance compared to π orbitals, as illustrated in Table S 2 of the supporting information.

So far the EBO has been helpful to analyze the $\mathrm{Cr}-\mathrm{Cr}$ bond given the localized nature of the molecular orbitals. However, any case that presents delocalized CASSCF natural molecular orbitals along the whole $\mathrm{Cr}_{2} \mathrm{M}$ chain would in principle make the analysis more complicated. In that scenario, the EBO would reflect the total bonding of the chain, relevant to analyze the characteristics of the 3-center bond. However, localization techniques, consisting of unitary transformations of the natural orbitals, can be used to create a new set of orbitals where the bonding and non-bonding orbitals are localized either on the leftmost or the rightmost pair of atoms of the chain to extract information about the bonding of the individual metal pairs. Such unitary transformations do not change the overall N-electron wave function; any change in the orbitals is 'compensated' by changes in the configuration interaction expansion coefficients. We follow the localization scheme based on the projection
of model vectors on the active space developed earlier in our group: ${ }^{64,65}$

$$
\begin{equation*}
\phi=\left[\sum_{i}^{n}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right] \tilde{\phi} \tag{2}
\end{equation*}
$$

where ψ_{i} is one of the n natural active orbitals, $\tilde{\phi}$ a model vector and ϕ the transformed orbital. We opt for this localization scheme instead of other more standard schemes such as Pipek-Mezey or Boys localization ${ }^{66,67}$ because it gives us full control on the region where the active orbitals will be localized after the unitary transformation.

As an example, we used this technique in the $\mathrm{Cr}_{2} \mathrm{Fe}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}$ case to obtain bonding and anti-bonding molecular orbitals localized on the CrFe unit. Figure 5 shows how the orbitals resulting from the unitary transformation of the CASSCF wave function of $\mathbf{7}$, for which the natural orbitals are depicted in Figure 3. Now, the bonding and antibonding orbitals are located on the Cr-Fe pair, while the atomic orbital is on the leftmost Cr. This makes it possible to estimate the Cr-Fe bond order, anitcipated to be small from the previous analysis. The bond order analysis for this new set of molecular orbitals shows that the Cr-Fe EBO is indeed close to 0 , since there is almost no interaction between these two atoms. Nevertheless, this presents an opportunity to study more complicated systems like Cr_{3} EMACs, where the bonding is more delocalized over the 3 centers, and to obtain specific contributions to the total bond from each $\mathrm{Cr}-\mathrm{Cr}$ pair.

Figure 5: Sigma molecular orbitals after the unitary transformation of the CASSCF wave function for $\mathbf{7}$ in its experimental geometry, $d(\mathrm{Cr}-\mathrm{Cr})=2.02 \AA$.

Metal-metal Bonding in Cr_{3} EMACs

In this section we analyze the $\mathrm{Cr}-\mathrm{Cr}$ bond in trichromium chains. The general formula $\mathrm{Cr}_{3}(\mathrm{dpa})_{4} \mathrm{X}_{2}$ suggests two equivalent terminal Cr atoms with identical $\mathrm{Cr}-\mathrm{Cr}$ bonds and a symmetric chain as depicted in Figure 1, structures 9-12. However, it is generally accepted that weak σ-donor axial ligands influence the shape of the metal backbone favouring asymmetric chains. This is the case of the $\mathrm{Cr}_{3}(\mathrm{dpa})_{4}\left(\mathrm{NO}_{3}\right)_{2}$ structure, experimentally characterized with two different Cr-Cr distances of 1.93 and $2.64 \AA .{ }^{38}$ In a recent study, we found an asymmetric minimum with $\mathrm{Cr}-\mathrm{Cr}$ distances of 1.95 and $2.64 \AA$. The molecular orbitals are localized in the short Cr-Cr pair, ${ }^{43}$ similar to those depicted in Figure 3. Table 4 presents the natural occupation numbers and the EBO for the Cr_{3} compounds. Values for $\mathrm{X}=\mathrm{NO}_{3}{ }^{-}$ are in agreement with the results for the $\mathrm{Cr}_{2} \mathrm{M}$ complexes reported in Table 3 as well as Cr_{2} (dpa) $)_{4}$ (complex $\mathbf{3}$ in Table 2), where it has to be noted that the weak donor character of the $\mathrm{NO}_{3}{ }^{-}$group makes the complexes with and without axial ligands comparable.

Table 4: CASSCF $(12,12)$ natural orbital occupation numbers and EBO for $\mathrm{Cr}_{3}(\mathrm{dpa}){ }_{4} \mathrm{X}_{2}$ systems. ${ }^{a}$ Non-bonding orbitals are omitted.

X	$\mathrm{NO}_{3}-$	Cl^{-}	NCS^{-}		CN^{-}
	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$		$\mathbf{1 2}$
$\mathrm{d}\left(\mathrm{Cr}_{1}-\mathrm{Cr}_{2}\right)^{b}$	1.93	2.23	2.23	2.33	2.37
$\mathrm{~d}\left(\mathrm{Cr}_{2}-\mathrm{Cr}_{3}\right)^{b}$	2.64	2.48	2.48	2.33	2.37
σ	1.69	1.52	1.52	1.51	1.50
π	3.20	2.48	2.50	2.44	2.39
δ	1.19	1.05	1.05	1.04	1.04
σ^{*}	0.31	0.48	0.48	0.49	0.50
π^{*}	0.80	1.52	1.50	1.56	1.61
δ^{*}	0.81	0.95	0.95	0.96	0.96
EBO	σ	0.69	0.52	0.52	0.51
	1.20	0.48	0.50	0.44	0.50
	π	0.19	0.05	0.05	0.04
Total	δ	2.08	1.05	1.07	0.99

${ }^{a}$ Cartesian coordinates can be found in Table S5 of the supporting information. ${ }^{b}$ Distances in \AA.

On the other hand, the strong σ-donor character of CN^{-}favors a symmetric structure,
experimentally characterized by two equal $\mathrm{Cr}-\mathrm{Cr}$ distances $(2.37 \AA)$. Our DFT/CASPT2 calculations featured a symmetric minimum with a value of $2.42 \AA,{ }^{43}$ in reasonable agreement with experiment. For this symmetric chain, the molecular orbitals are delocalized with contributions from the three Cr-3d atomic orbitals. In this case, the values reported in Table 4 correspond to these delocalized orbitals, and the $\mathrm{EBO}=0.93$ indicates a single bond shared by the 3 centers. This is an example of a 3 -center $/ 2$-electron bond, a term adopted from the organic chemistry literature. It is worth remarking that, in spite of the general belief that this kind of delocalized bonds is of σ nature exclusively, the present results indicate that the total EBO has also significant contributions from the π orbitals. The sum of the two π contributions is equal to the EBO associated with the σ-orbitals.

In between the previous two cases, the Cr_{3} chains with Cl^{-}and NCS^{-}axial ligands appear, characterized as intermediate structures by virtue of their similar, though not equal, Cr-Cr distances (2.23 and $2.48 \AA$). The molecular orbitals are delocalized over the whole chain and the occupation numbers and EBO values are close to the CN^{-}case. For the NCS^{-}, we also present the results for the structure corresponding to the minimum CASPT2 energy, a symmetric chain with two $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})=2.33 \AA$ showing an EBO close to one, comparable to those obtained with the experimental structure and nearly identical to those calculated for the system with the CN^{-}axial ligand. Interestingly enough, this $\mathrm{EBO}=1$ was also found for 3^{*}, the Cr_{2} molecule with nearly the same $\mathrm{Cr}-\mathrm{Cr}$ distance, but obviously less $\mathrm{Cr}-\mathrm{Cr}$ contacts and less electrons that can play a role in the $\mathrm{Cr}-\mathrm{Cr}$ bonding. The MO diagrams in Figure S1 (see the Supporting Information) gives a rationale for this observation. In the dimer, the eight metal electrons occupy bonding orbitals (left column of Figure S1). When a third Cr^{2+} ion is added to the chain, four non-bonding molecular orbitals appear in between the bonding and anti-bonding orbitals present in the dimer (right column of Figure S1). The four extra electrons occupy the non-bonding orbitals, and hence, the bond order remains unaltered. Notice that in this simple, one-electron reasoning, the bond order is much larger than the EBO of two, determined from the multiconfigurational electronic structure.

At this point it is worth answering the following question: Does the asymmetric Cr_{3} chain resemble the $\mathrm{Cr}_{2} \mathrm{M}$ system with one Cr_{2} unit and a non-interacting $\mathrm{Cr}(\mathrm{II})$ ion? Or, instead, does still exist (residual) bonding between Cr_{2} and the third Cr atom? Applying the previously mentioned localization techniques we obtained molecular orbitals with contributions from specific atomic Cr-3d orbitals and then calculated the occupation numbers and EBOs for each case. For NCS^{-}, we use the symmetric ($2.33 \AA$) and experimental (2.23 and $2.48 \AA$) structures to obtain molecular orbitals localized on the $\mathrm{Cr}-\mathrm{Cr}$ pairs at either side of the chain. Table 5 shows the occupation numbers and EBOs from both $\mathrm{Cr}-\mathrm{Cr}$ pairs. For the symmetric chain, the left (1-2) and right (2-3) localizations produce the same result, namely a total EBO of 0.61 for the $\mathrm{Cr}-\mathrm{Cr}$ bond, with important contributions from the σ and π electrons. The delocalized EBO for this structure is 0.99 (see Table 4), and we reiterate that the partial/localized EBOs cannot be added to obtain the delocalized one, since in the former we are double counting the contributions from the central atom. These partial EBOs can be used to quantify the relative strength of each $\mathrm{Cr}-\mathrm{Cr}$ bond, (1-2) and (2-3). In the symmetric case this is trivial, since both distances are equal and so are their EBOs. The left-right comparison is valuable in the case of asymmetric chains, the difference between the short $(2.23 \AA)$ and long $(2.48 \AA)$ distances for the experimental structure being already apparent. The former has a larger EBO (0.92 compared to 0.28) and the ratio short:long is larger than $3: 1$. This means that more than 75% of the total bonding character of the delocalized chain comes from the short distance $\mathrm{Cr}-\mathrm{Cr}$ pair. Hence, the complex is not to be fully considered as of the $\mathrm{Cr}_{2} \mathrm{M}$ type reported in Table 3, but even with this relatively small difference in the Cr-Cr bond lengths, a rather large part of the total bond character must be ascribed to only one of the $\mathrm{Cr}-\mathrm{Cr}$ pairs.

Next, we extend this analysis to more $\mathrm{Cr}-\mathrm{Cr}$ distances to identify the EBO contributions and to know if we can define different bond multiplicities and their threshold distances. To do this we generated a set of $\mathrm{Cr}_{3}(\mathrm{dpa})_{4}(\mathrm{NCS})_{2}$ structures with the same end-to-end Cr \cdots Cr experimental distance, namely $4.71 \AA(2.23+2.48 \AA)$ but varying the position of

Table 5: CASSCF $(12,12)$ occupation numbers and EBO for localized orbitals of $\mathrm{Cr}_{3}(\mathrm{dpa})_{4}(\mathrm{NCS})_{2} \cdot{ }^{a}$ Non-bonding orbitals are omitted.

Pair of Cr ions	(1-2)	(2-3)	(1-2)/(2-3)
$\mathrm{d}\left(\mathrm{Cr}_{1}-\mathrm{Cr}_{2}\right)^{b}$	2.23	2.23	2.33
$\mathrm{d}\left(\mathrm{Cr}_{2}-\mathrm{Cr}_{3}\right)^{b}$	2.48	2.48	2.33
σ	1.42	1.18	1.30
π	2.45	2.09	2.27
δ	1.04	1.01	1.03
σ^{*}	0.53	0.87	0.70
π^{*}	1.53	1.90	1.72
δ^{*}	0.95	0.98	0.97
EBO $\quad \sigma$	0.42	0.16	0.30
π	0.46	0.10	0.28
δ	0.05	0.02	0.03
Total	0.92	0.28	0.61

the central Cr. Constrained DFT optimizations with frozen Cr-Cr distances were followed by CASSCF single point energy calculations, combined with the localization of the active orbitals on the left or right pair of Cr ions. Figure 6 presents the EBO values obtained for this set of structures both from the natural orbitals (delocalized, full lines) and after the localization process (dotted lines for the short $\mathrm{Cr}-\mathrm{Cr}$ distance and dashed lines for the long Cr-Cr distance). The δ contribution is omitted because it is small in all cases. The figure shows a total EBO close to 2 for highly asymmetric structures (left end, blue full line), with practically all the contribution coming from the short $\mathrm{Cr}-\mathrm{Cr}$ contact (dotted blue line). The EBO decreases to 1 in the symmetric case (right end), as observed in the previous examples and explaining the preference for the asymmetric form. Thus, in axially coordinated symmetrical Cr_{3} chains, each $\mathrm{Cr}-\mathrm{Cr}$ has an approximate and equal EBO of 0.6 (coincident dotted and dashed blue lines) and a total EBO for the whole chain close to 1 .

Moving along the curve from left to right towards the symmetric form, we observe that the total EBO from the natural orbitals (blue full line) detaches from the short pair localized

Figure 6: Natural (full line) and localized (dotted line: short $\mathrm{Cr}-\mathrm{Cr}$ contact, dashed line: long $\mathrm{Cr}-\mathrm{Cr}$ contact) EBO for $\mathrm{Cr}_{3}(\mathrm{dpa})_{4}(\mathrm{NCS})_{2}$ structures as function of the $\mathrm{Cr}-\mathrm{Cr}$ distance. The Cr-Cr-Cr backbone goes from highly asymmetric (left) to symmetric (right). The top and bottom horizontal scales correspond to the long and short $\mathrm{Cr}-\mathrm{Cr}$ distance, respectively. Color code: total EBO (blue), σ (orange) and π (green) contributions.

EBO (blue dotted line) around 2.080 (2.630) \AA. This is due to the incipient delocalization of the σ molecular orbitals (orange) into the third Cr atom, already apparent at 2.080 (2.630) \AA in the natural orbitals atomic contributions. At this point, the π molecular orbitals (green) are still localized into the short pair and, due to the smaller overlap, it continues to be localized until 2.205 (2.505) \AA. For this structure, the total natural EBO (blue full line) starts to show a quadratic behaviour compared to the total localized EBO (blue dotted line), which continues in a straight line. It is worth noting that, for the longer $\mathrm{Cr}-\mathrm{Cr}$ distances, the σ contribution to the EBO (orange dashed line) still amounts a non-zero value. This is associated to the wave function nature at the boundaries of covalency and also appears in the analysis of the bond in the H_{2} molecule. A series of FCI and CASSCF wave function calculations with H-H distances in the range 0.7-10.0 \AA were performed. We observe that at a distance of $3.0 \AA$ there is still a residual bonding, $\mathrm{EBO}=0.15$. The computed EBO values and a discussion can be found in Table S8.

Adding other ligands to the analysis of Cr_{2} compounds in a computational experiment will help us better understand the connection between the nature of the axial ligand, the $\mathrm{X}-\mathrm{Cr}-\mathrm{Cr}-\mathrm{X}$ geometries and the $\mathrm{Cr}-\mathrm{Cr}$ bonding. Table 6 collects additional results for two X ligands with a markedly different σ-donor character, $\mathrm{H}_{2} \mathrm{O}$ and CH_{3}. We select the methyl radical instead of the $\mathrm{CH}_{3}{ }^{-}$carbanion because of the more different electronic nature of the former with respect to $\mathrm{H}_{2} \mathrm{O}$. The chosen $\mathrm{Cr}-\mathrm{Cr}$ and $\mathrm{Cr}-\mathrm{X}$ distances are convenient for discussing the $\mathrm{Cr}-\mathrm{Cr}$ bonding features. The complete analysis can be found in Tables S8S10 (see supporting information). As we vary the $\mathrm{Cr}-\mathrm{Cr}$ distance from 2.36 to $1.96 \AA$ the total EBO increases from 0.84 to $2.08\left(X=\mathrm{H}_{2} \mathrm{O}\right)$. The same trend but substantially smaller values, $0.43-1.45$, is observed for $\mathrm{X}=\mathrm{CH}_{3}$. In the rightmost column of Table 6, the $\rho_{B C P}$ parameter increases as $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})$ is shortened and also for poorer axial σ-donors, in parallel with EBO values. Recalling Table 2, it was shown that the lack/presence of axial $\mathrm{H}_{2} \mathrm{O}$ ligands in Cr_{2} compounds substantially changes the $\mathrm{Cr}-\mathrm{Cr}$ distance and the EBO. These facts are connected and confirm two facts: the $\mathrm{Cr}-\mathrm{Cr}$ total EBO is distance-dependent and
the axial ligand is an important modulating factor of the $\mathrm{Cr}-\mathrm{Cr}$ bond order.
Table 6: Total Cr-Cr EBO, MBI and $\rho_{B C P}$ for $\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4} \mathrm{X}_{2}$ with different $\mathrm{Cr}-\mathrm{Cr}$ and $\mathrm{Cr}-\mathrm{X}$ distances. ${ }^{a}$

X	$\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})^{\text {b }}$	$\mathrm{d}(\mathrm{Cr}-\mathrm{X})^{\text {b }}$	Total EBO	MBI	$\rho_{B C P}$
$\mathrm{H}_{2} \mathrm{O}(\mathbf{2})$	2.36	2.28	0.840	0.276	0.062
		2.10	0.861	0.285	0.063
		1.90	0.894	0.300	0.066
	2.16	2.28	1.321	0.565	0.098
		2.10	1.351	0.581	0.100
		1.90	1.405	0.609	0.104
	1.96	2.28	2.026	1.178	0.154
		2.10	2.049	1.189	0.155
		1.90	2.084	1.200	0.158
$\mathrm{CH}_{3}(\mathbf{1 3})$	2.36	2.20	0.515	0.136	0.046
		2.10	0.472	0.124	0.044
		1.90	0.431	0.113	0.041
	2.16	2.20	0.846	0.301	0.075
		2.10	0.786	0.280	0.071
		1.90	0.731	0.260	0.067
	1.96	2.20	1.451	0.777	0.126
		2.10	1.363	0.728	0.120
		1.90	1.285	0.684	0.112

Table 6 also underpins the facts presented in Tables 3 and 4 and some of the conclusions outlined in previous theoretical works, ${ }^{43,68}$ namely strong σ-donor ligands favour symmetric EMAC structures with weaker metal-metal bonds as a consequence of more electron populated Cr atoms, which do not tend to form covalent bonds to stabilize the structure. On the other hand, when weak σ-donor X ligands are present, formation of metal-metal covalent bonds is a mechanism to accumulate electron density between metal centers that compensates the destabilizing electrostatic interaction between them. Concomitantly, two metal atoms of the chain move apart and an asymmetric structure is formed. The CH_{3} ligand perfectly symbolizes this situation, giving smaller Cr-Cr EBO values compared to the analogous geometries with $\mathrm{H}_{2} \mathrm{O}$. For instance, for $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})=2.36 \AA$ and $\mathrm{d}(\mathrm{Cr}-\mathrm{X}) \approx 2.1 \AA$,
the total EBO for $\mathrm{X}=\mathrm{H}_{2} \mathrm{O}$ and CH_{3} are 0.86 and 0.47 , respectively, and for $\mathrm{d}(\mathrm{Cr}-\mathrm{Cr})=$ $1.96 \AA$, these are 2.05 and 1.36. Furthermore, if a strong σ-donor axial ligand is considered $\left(\mathrm{CH}_{3}\right)$, stretching of the terminal $\mathrm{Cr}-\mathrm{CH}_{3}$ bonds produces an increase of the $\mathrm{Cr}-\mathrm{Cr}$ EBO to compensate for the loss of electron density on the Cr centers and an increased $\mathrm{Cr}-\mathrm{Cr}$ electrostatic repulsion. However, for $\mathrm{X}=\mathrm{H}_{2} \mathrm{O}$, this effect is not observed, in fact a slight opposite trend is obtained attributed to a high EBO (>2.0). This result suggests that, because of the poor σ-donor character of $\mathrm{H}_{2} \mathrm{O}$ as a ligand (even at short $\mathrm{Cr}-\mathrm{H}_{2} \mathrm{O}$ distances), pulling it out from the terminal position do not help increasing the $\mathrm{Cr}-\mathrm{Cr}$ bond order any further. To finalize, it is worth mentioning that the Mayer Bond Index and the $\rho_{B C P}$ are consistent with this particular discussion since both indices increase as $\mathrm{d}\left(\mathrm{Cr}-\mathrm{CH}_{3}\right)$ is stretched out, whereas they slightly decrease when $\mathrm{d}\left(\mathrm{Cr}-\mathrm{H}_{2} \mathrm{O}\right)$ is shortened.

Conclusions

By means of the Effective Bond Order (EBO) concept applied to CASSCF electronic structure calculations we have tracked the metal-metal bond multiplicity trends and their different orbital symmetry contributions (σ, π and δ) for Cr_{2} and $\mathrm{Cr}_{2} \mathrm{M}$ chain compounds. The bimetallic Cr_{2} complexes feature EBO values in the range 1.0-2.0, showing a linear tendency with respect to the metal-metal distance which, in turn, depends on the σ-donor character of the axial ligands. The most relevant contributions to the EBO are assigned to the σ and π manifolds, the latter being the most $\mathrm{Cr}-\mathrm{Cr}$ distance dependent. For medium $\mathrm{Cr}-\mathrm{Cr}$ distances (2.3-2.4 \AA), the π-bond contribution is not negligible and similar to the σ one. The results for heterometallic $\mathrm{Cr}_{2} \mathrm{M}$ EMACs follow similar trends, with total EBO coming almost exclusively from the contribution of the Cr_{2} unit. Exploring the homometallic Cr_{3} EMACs we have shown how determinant the axial ligand is for the nature of the chain. CN^{-}and NCS^{-} ligands favour delocalized molecular orbitals where the EBO reflects the global bonding of the $\mathrm{Cr}-\mathrm{Cr}-\mathrm{Cr}$ chain. For such cases we used localization techniques to quantify the contributions
from each $\mathrm{Cr}-\mathrm{Cr}$ pair and to link the prevalence of asymmetric structures with associated larger EBOs compared to symmetric forms. Further analysis of $\mathrm{Cr}-\mathrm{Cr}$ bonding indices as a function of the nature of X and the $\mathrm{Cr}-\mathrm{X}$ distance has helped establishing that multiple metal-metal bonding is ultimately favored when the $\mathrm{X} \sigma$-donation is poor, either due to the chemical nature of X or to a Cr- X distance lengthening. Oppositely, poor metal-metal bonding (e.g. symmetric structures) is a consequence of more electron populated metal atoms coming from strong σ-donation from X . The present results, combined with previous works recently developed in our group, ${ }^{43,68}$ elucidate the complete picture of the complex $\mathrm{Cr}-\mathrm{Cr}$ bonding features of Cr_{3} EMACs, including the puzzling symmetry-asymmetry behaviour.

Acknowledgement

Financial support has been provided by the Spanish Administration (Project CTQ2017-83566-P) and the Generalitat de Catalunya (Project 2017SGR629). We thank John E. McGrady and Vaida Arcisauskaite for drawing our attention to the hetero-trimetallic EMACs and for the stimulating discussions.

Supporting Information Available

The following files are available free of charge.

- EBOSI.pdf: results of RASSCF calculation on compound 2, definition of the Mayer bond index, overlap of the atomic orbitals as function of the $\mathrm{Cr}-\mathrm{Cr}$ distance, $x y z$ coordinates of all the compounds, molecular orbitals scheme for Cr_{2} and Cr_{3} systems, complete bonding analysis of 2 and 13.

References

(1) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds between Metal Atoms, 3rd ed.; Clarendon Press: Oxford, 2005.
(2) Chipman, J. A.; Berry, J. F. Extraordinarily Large Ferromagnetic Coupling ($J \geq 150$ cm^{-1}) by Electron Delocalization in a Heterometallic Mo-Mo-Ni Chain Complex. Chem. Eur. J. 2018, 24, 1494-1499.
(3) Roos, B. O.; Andersson, K. Multiconfigurational Perturbation Theory with Level Shift - the Cr_{2} Potential Revisited. Chem. Phys. Lett. 1995, 245, 215-223.
(4) Schultz, N. E.; Zhao, Y.; Truhlar, D. G. Databases for Transition Element Bonding: Metal-Metal Bond Energies and Bond Lengths and Their Use To Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations. J. Phys. Chem. A 2005, 109, 4388-4403.
(5) Goodgame, M. M.; Goddard III, W. A. Modified Generalized Valence-Bond Method: A Simple Correction for the Electron Correlation Missing in Generalized Valence-Bond Wave Functions; Prediction of Double-Well States for Cr_{2} and Mo_{2}. Phys. Rev. Lett. 1985, 54, 661-664.
(6) Bauschlicher, C. W.; Partridge, H. Cr 2 Revisited. Chem. Phys. Lett. 1994, 231, 277282.
(7) Würdemann, R.; Kristoffersen, H. H.; Moseler, M.; Walter, M. Density Functional Theory and Chromium: Insights from the Dimers. J. Chem. Phys. 2005, 142, 124316.
(8) Desmarais, N.; Reuse, F. A.; Khanna, S. N. Magnetic Coupling in Neutral and Charged $\mathrm{Cr}_{2}, \mathrm{Mn}_{2}$, and CrMn Dimers. J. Chem. Phys. 2000, 112, 5576-5584.
(9) Landis, C. R.; Weinhold, F. Origin of Trans-Bent Geometries in Maximally Bonded

Transition Metal and Main Group Molecules. J. Am. Chem. Soc. 2006, 128, 73357345.
(10) Wu, L.-C.; Hsu, C.-W.; Chuang, Y.-C.; Lee, G.-H.; Tsai, Y.-C.; Wang, Y. Bond Characterization on a $\mathrm{Cr}-\mathrm{Cr}$ Quintuple Bond: A Combined Experimental and Theoretical Study. J. Phys. Chem. A 2011, 115, 12602-12615.
(11) Li Manni, G.; Ma, D.; Aquilante, F.; Olsen, J.; Gagliardi, L. SplitGAS Method for Strong Correlation and the Challenging Case of Cr_{2}. J. Chem. Theory Comput. 2013, 9, 3375-3384.
(12) Garza, A. J.; Jiménez-Hoyos, C. A.; Scuseria, G. E. Capturing Static and Dynamic Correlations by a Combination of Projected Hartree-Fock and Density Functional Theories. J. Chem. Phys. 2013, 138, 134102.
(13) Ruipérez, F.; Piris, M.; Ugalde, J. M.; Matxain, J. M. The Natural Orbital Functional Theory of the Bonding in $\mathrm{Cr}_{2}, \mathrm{Mo}_{2}$ and W_{2}. Phys. Chem. Chem. Phys. 2013, 15, 2055-2062.
(14) Purwanto, W.; Zhang, S.; Krakauer, H. An Auxiliary-Field Quantum Monte Carlo Study of the Chromium Dimer. J. Chem. Phys. 2015, 142, 064302.
(15) Guo, S.; Watson, M. A.; Hu, W.; Sun, Q.; Chan, G. K.-L. N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(pPhenylenevinylene). J. Chem. Theory Comput. 2016, 12, 1583-1591.
(16) Vancoillie, S.; Malmqvist, P.-A.; Veryazov, V. Potential Energy Surface of the Chromium Dimer Re-re-revisited with Multiconfigurational Perturbation Theory. J. Chem. Theory Comput. 2016, 12, 1647-1655.
(17) Watson Jr., T. J.; Chan, G. K.-L. Correct Quantum Chemistry in a Minimal Basis from Effective Hamiltonians. J. Chem. Theory Comput. 2016, 12, 512-522.
(18) Kähler, S.; Olsen, J. Non-orthogonal Internally Contracted Multi-Configurational Perturbation Theory (NICPT): Dynamic Electron Correlation for Large, Compact Active Spaces. J. Chem. Phys. 2017, 147, 174106.
(19) Ma, Y.; Knecht, S.; Keller, S.; Reiher, M. Second-Order Self-Consistent-Field DensityMatrix Renormalization Group. J. Chem. Theory Comput. 2017, 13, 2533-2549.
(20) Tsuchimochi, T.; Ten-no, S. Bridging Single- and Multireference Domains for Electron Correlation: Spin-Extended Coupled Electron Pair Approximation. J. Chem. Theory Comput. 2017, 13, 1667-1681.
(21) Cotton, F. A.; Koch, S. A.; Millar, M. Tetrakis(2-methoxy-5-methylphenyl)dichromium. Inorg. Chem. 1978, 17, 2084-2086.
(22) Brynda, M.; Gagliardi, L.; Widmark, P.-O.; Power, P. P.; Roos, B. O. A Quantum Chemical Study of the Quintuple Bond between Two Chromium Centers in [PhCrCrPh]: trans-Bent versus Linear Geometry. Angew. Chem. Int. Ed. 2006, 46, 3804-3807.
(23) Brynda, M.; Gagliardi, L.; Roos, B. O. Analysing the Chromium-Chromium Multiple Bonds using Multiconfigurational Quantum Chemistry. Chem. Phys. Lett. 2009, 471, 1-10.
(24) Brogden, D. W.; Turov, Y.; Nippe, M.; Li Manni, G.; Hillard, E. A.; Clérac, R.; Gagliardi, L.; Berry, J. F. Oxidative Stretching of Metal-Metal Bonds to Their Limits. Inorg. Chem. 2014, 53, 4777-4790.
(25) Li Manni, G.; Dzubak, A. L.; Mulla, A.; Brogden, D. W.; Berry, J. F.; Gagliardi, L. Assessing Metal-Metal Multiple Bonds in $\mathrm{Cr}-\mathrm{Cr}, \mathrm{Mo}-\mathrm{Mo}$, and $\mathrm{W}-\mathrm{W}$ Compounds and
a Hypothetical U-U Compound: A Quantum Chemical Study Comparing DFT and Multireference Methods. Chem. Eur. J. 2012, 18, 1737-1749.
(26) Kok, R. A.; Hall, M. B. Bridging Ligand Effects in Quadruply Bonded Dichromium(II) Compounds. J. Am. Chem. Soc. 1983, 105, 676-677.
(27) Kok, R. A.; Hall, M. B. Theoretical Studies of Bridging-Ligand Effects in Quadruply Bonded Dichromium(II) Compounds. Inorg. Chem. 1985, 24, 1542-1546.
(28) Davy, R. D.; Hall, M. B. Theoretical Studies of Bridging-Ligand Effects in Quadruply Bonded Dichromium(II) Compounds. 3. The First Complete Geometry Optimizations of Transition-Metal Dimer Complexes. J. Am. Chem. Soc. 1989, 111, 1268-1275.
(29) Glendering, E. D.; Weinhold, F. Natural Resonance Theory: II. Natural Bond Order and Valency. J. Comput. Chem. 1998, 19, 610-627.
(30) Glendering, E. D.; Landis, C. R.; Weinhold, F. Natural bond Orbital Methods. WIREs Comput. Mol. Sci. 2012, 2, 1-42.
(31) Ndambuki, S.; Ziegler, T. A Theoretical Analysis of Supported Quintuple and Quadruple Chromium-Chromium Bonds. Inorg. Chem. 2013, 52, 3860-3869.
(32) Peng, S.-M.; Wang, C.-C.; Jang, Y.-L.; Chen, Y.-H.; Li, F.-Y.; Mou, C.-Y.; Leung, M.K. One-dimensional Metal String Complexes. J. Magn. Magn. Mater. 2000, 209, 80-83.
(33) Wu, L.-C.; Thomson, M. K.; Madsen, S. R.; Schmoekel, M.; Jørgensen, M. R. V.; Cheng, M.-C.; Peng, S.-M.; Chen, Y.-S.; Overgaard, J.; Iversen, B. B. Chemical Bonding in a Linear Chromium Metal String Complex. Inorg. Chem. 2014, 53, 12489-12498.
(34) Hua, S.-A.; Cheng, M.-C.; Chen, C.-h.; Peng, S.-M. From Homonuclear Metal String Complexes to Heteronuclear Metal String Complexes. Eur. J. Inorg. Chem. 2015, 25102523.
(35) Rohmer, M.-M.; Liu, I. P.-C.; Lin, J.-C.; Chiu, M.-J.; Lee, C.-H.; Lee, G.-H.; Bénard, M.; López, X.; Peng, S.-M. Structural, Magnetic, and Theoretical Characterization of a Heterometallic Polypyridylamide Complex. Angew. Chem. Int. Ed. 2007, 46, 3533-3536.
(36) Tabookht, Z.; López, X.; de Graaf, C. Analysis of the Magnetic Coupling in $\mathrm{M}_{3}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}$ Systems $(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Cu}, \mathrm{Ag})$ by Ab Initio Calculations. J. Phys. Chem. A 2010, 114, 2028-2037.
(37) Tabookht, Z.; de Graaf, C.; López, X. Towards a Low-Spin Configuration in Extended Metal Atom Chains. Theoretical Study of Trimetallic Systems with 22 Metal Electrons. Dalton Trans. 2012, 41, 498-504.
(38) Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. Molecular and Electronic Structures by Design: Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. J. Am. Chem. Soc. 2004, 126, 7082-7096.
(39) Nippe, M.; Berry, J. F. Introducing a Metal-Metal Multiply Bonded Group as an "Axial Ligand" to Iron: Synthetic Design of a Linear Cr-Cr...Fe Framework. J. Am. Chem. Soc. 2007, 129, 12684-12685.
(40) Nippe, M.; Wang, J.; Bill, E.; Hope, H.; Dalal, N. S.; Berry, J. F. Crystals in Which Some Metal Atoms are More Equal Than Others: Inequalities From Crystal Packing and Their Spectroscopic/Magnetic Consequences. J. Am. Chem. Soc. 2010, 132, 14261-14272.
(41) Nippe, M.; Bill, E.; Berry, J. F. Group 6 Complexes with Iron and Zinc Heterometals: Understanding the Structural, Spectroscopic, and Electrochemical Properties of a Complete Series of M-M \cdots M Compounds. Inorg. Chem. 2011, 50, 7650-7661.
(42) Arcisauskaite, V.; Spivak, M.; McGrady, J. E. Structure and Bonding in Trimetallic Ar-
rays Containing a Cr-Cr Quadruple Bond: A Challenge to Density Functional Theory. Inorg. Chim. Acta 2015, 424, 293-299.
(43) Spivak, M.; Arcisauskaite, V.; López, X.; McGrady, J. E.; de Graaf, C. A Multiconfigurational Approach to the Electronic Structure of Trichromium Extended Metal Atom Chains. Dalton Trans. 2017, 46, 6202-6211.
(44) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. A Complete Active Space SCF Method (CASSCF) using a Density Matrix Formulated Super-CI Approach. Chem. Phys. 1980, 48, 157-173.
(45) Bader, R. F. W. A Bond Path: A Universal Indicator of Bonded Interactions. J. Phys. Chem. A 1998, 102, 7314-7323.
(46) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580-592.
(47) Mayer, I. Charge, Bond Order and Valence in the Ab Initio SCF Theory. Chem. Phys. Lett. 1983, 97, 270-274.
(48) Mayer, I. Bond Order and Valences from Ab Initio Wave Functions. Int. J. Quantum Chem. 1986, 24, 477-483.
(49) Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. The Mayer Bond Order as a Tool in Inorganic Chemistry. J. Chem. Soc., Dalton Trans. 2001, 2095-2108.
(50) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I.; Zhou, H.-C. Remarkable Effects of Axial π^{*} Coordination on the Cr-Cr Quadruple Bond in Dichromium Paddlewheel Complexes. J. Am. Chem. Soc. 1999, 121, 6856-6861.
(51) Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L.; Delcey, M. G.; De Vico, L.; Fernández-Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L. et al. MOLCAS 8: New

Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. Chem. 2016, 37, 506-541.
(52) Roos, B. O.; Lindh, R.; Malmqvist, P.-A.; Veryazov, V.; Widmark, P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851-2858.
(53) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575-6579.
(54) Koch, H.; Sánchez de Merás, A.; Pedersen, T. B. Reduced Scaling in Electronic Structure Calculations using Cholesky decompositions. J. Chem. Phys. 2003, 118, 94819484.
(55) Aquilante, F.; Pedersen, T. B.; Lindh, R. Low-cost Evaluation of the Exchange Fock Matrix from Cholesky and Density Fitting Representations of the Electron Repulsion Integrals. J. Chem. Phys. 2007, 126, 194106.
(56) Aquilante, F.; Malmqvist, P.-Å.; Pedersen, T. B.; Ghosh, A.; Roos, B. O. Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-
 Chem. Theory Comput. 2008, 4, 694-702.
(57) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Towards an Order-N DFT Method. Theor. Chem. Acc. 1998, 99, 391-403.
(58) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
(59) ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com, last accessed January 30th, 2019.
(60) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098 - 3100.
(61) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti CorrelationEnergy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785.
(62) https://doi.org/10.19061/iochem-bd-2-30.
(63) Álvarez-Moreno, M.; de Graaf, C.; Lopez, N.; Maseras, F.; Poblet, J. M.; Bo, C. Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform. J. Chem. Inf. Model. 2015, 55, 95-103.
(64) Bordas, E.; Caballol, R.; de Graaf, C.; Malrieu, J.-P. Toward a Variational Treatment of the Magnetic Coupling between Centers with Elevated Spin Moments. Chem. Phys. 2005, 309, 259-269.
(65) de Graaf, C.; Caballol, R.; Romo, S.; Poblet, J. M. Ab Initio Study of the Singlet-Triplet Splitting in Reduced Polyoxometalates. Theor. Chem. Acc. 2009, 123, 3-10.
(66) Pipek, J.; Mezey, P. G. A Fast Intrinsic Localization Procedure Applicable for Ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions. J. Chem. Phys. 1989, 90, 4916-4926.
(67) Foster, J. M.; Boys, S. F. Canonical Configurational Interaction Procedure. Rev. Mod. Phys. 1960, 32, 300-302.
(68) Spivak, M.; Arcisauskaite, V.; López, X.; de Graaf, C. Backbone Flexibility of Extended Metal Atom Chains. Ab initio Molecular Dynamics for $\mathrm{Cr}_{3}(\mathrm{dpa})_{4} \mathrm{X}_{2}(\mathrm{X}=\mathrm{NCS}, \mathrm{CN}$, NO_{3}) in Gas and Crystalline phases. Dalton Trans. 2017, 46, 15487-15493.

Graphical TOC Entry

