
Picart-Armada et al. BMC Bioinformatics          (2018) 19:538 
https://doi.org/10.1186/s12859-018-2487-5

SOFTWARE Open Access

FELLA: an R package to enrich
metabolomics data
Sergio Picart-Armada1,2,3* , Francesc Fernández-Albert1,2,6, Maria Vinaixa4,5, Oscar Yanes4,5

and Alexandre Perera-Lluna1,2,3

Abstract

Background: Pathway enrichment techniques are useful for understanding experimental metabolomics data. Their
purpose is to give context to the affected metabolites in terms of the prior knowledge contained in metabolic
pathways. However, the interpretation of a prioritized pathway list is still challenging, as pathways show overlap and
cross talk effects.

Results: We introduce FELLA, an R package to perform a network-based enrichment of a list of affected metabolites.
FELLA builds a hierarchical representation of an organism biochemistry from the Kyoto Encyclopedia of Genes and
Genomes (KEGG), containing pathways, modules, enzymes, reactions and metabolites. In addition to providing a list of
pathways, FELLA reports intermediate entities (modules, enzymes, reactions) that link the input metabolites to them.
This sheds light on pathway cross talk and potential enzymes or metabolites as targets for the condition under study.
FELLA has been applied to six public datasets –three from Homo sapiens, two from Danio rerio and one fromMus
musculus– and has reproduced findings from the original studies and from independent literature.

Conclusions: The R package FELLA offers an innovative enrichment concept starting from a list of metabolites, based
on a knowledge graph representation of the KEGG database that focuses on interpretability. Besides reporting a list of
pathways, FELLA suggests intermediate entities that are of interest per se. Its usefulness has been shown at several
molecular levels on six public datasets, including human and animal models. The user can run the enrichment analysis
through a simple interactive graphical interface or programmatically. FELLA is publicly available in Bioconductor
under the GPL-3 license.
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Background
Metabolomics is the science that measures lightweight
molecules in living organisms and stands as a valu-
able source of biomarkers and biological knowledge [1].
The preprocessing of such data can be achieved through
pipelines like MeltDB [2] or MAIT [3]. Once metabo-
lite abundances are available, pathway analysis tools ease
data interpretation [4] by framing the affected metabo-
lites in terms of contextual knowledge. Databases like the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [5]

*Correspondence: sergi.picart@upc.edu
1B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica
Industrial, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
2Networking Biomedical Research Centre in the subject area of Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
Full list of author information is available at the end of the article

are sources of curated pathway data. The classification of
enrichment techniques used here follows the review in [4].
Over representation analysis (ORA) approaches are

based on testing the proportion of a list of affected
metabolites inside a pathway. ORA is available in tools like
the web server MetaboAnalyst [6] and the R package clus-
terProfiler [7]. Functional class scoring (FCS) approaches
use quantitative data instead and seek subtle but coordi-
nated changes in the metabolites belonging to a pathway.
MSEA in MetaboAnalyst and IMPaLA [8] contain imple-
mentations of FCS for metabolomics. Pathway topology-
based (PT) approaches further include topological
measures of the metabolites in the statistic, accounting for
their inequivalence within the pathway. PT analyses can
be performed using MetaboAnalyst.
Here, we introduce the R package FELLA, available in

Bioconductor [9], for metabolomics data interpretation
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that combines pathway enrichment with network analysis.
The list of affected metabolites and the reported pathways
are connected through intermediate entities -reactions,
enzymes, modules- in a heterogeneous network layout.
This suggests how the perturbation spreads at the path-
way level and how pathways cross talk, enhancing the
interpretability of the output.

Implementation
FELLA is an R package that performs metabolomics data
enrichment starting from (I) a network derived from
KEGG and (II) a list of KEGG compounds (Fig. 1). A sub-
network relevant to the input is extracted from (I) using
network propagation algorithms that start from the labels
in (II), providing a data enrichment that goes beyond a

Fig. 1 Design of the R package FELLA. (I) creation of a graph object from an organism code and its database, (II) ID mapping and propagation
algorithms (diffusion, PageRank) to score all the nodes, (III) node prioritisation and results exporting
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pathway list. The purpose of FELLA is to elaborate a bio-
logical explanation that justifies how the inputmetabolites
can reach the reported pathways, as well as perspective
on pathway cross talk. Two user guides illustrate the prin-
ciples and the usage of FELLA: a quickstart (Additional
file 1) and an in-depth vignette with implementations
details and three real examples (Additional file 2). Two
additional vignettes (Additional files 3 and 4) serve as case
studies for non-human organisms.

Methodology
The cornerstone of FELLA is its knowledge graph repre-
sentation of the biochemistry in KEGG at several molecu-
lar levels. The network is hierarchical and connects KEGG
compounds (metabolites) to KEGG pathways through
intermediate entities, namely reactions, enzymes and
KEGG modules, see Fig. 2. Such connections (edges) are
obtained directly from KEGG annotations. The presence
of intermediate levels allows inference at their level, mean-
ing that relevant reactions, enzymes and KEGG modules
can be suggested just by starting from a list of affected
metabolites. This feature is evaluated in several case
studies, by linking the suggested enzymatic families and
reactions to literature and to original findings within the
studies.
In order to report a sub-network, nodes are ranked

according to a scoring function –based on network
propagation– and only the top scoring nodes are returned.
Two algorithms are supported for propagating the labels
from the affected metabolites: a classical heat diffusion
approach [10] and the PageRank web ranking algorithm
[11]. Further details on the network propagation settings
can be found in [12] and in Additional file 2. The main
difference between both algorithms is that heat diffu-
sion is undirected whereas PageRank is directed upwards.
In practice, contrary to PageRank, heat diffusion will

frequently report newmetabolites because heat is allowed
to propagate back to compounds from the upper levels
[12]. This behaviour can ease the discovery of intermedi-
ate metabolites that lay close to the input metabolites and
tend to connect them. An example of its usefulness can be
found in the gilt-head bream study.
As exposed in [12], ranking nodes according to their

raw diffusion scores suffers from a strong bias, related to
the node level and topological features. This is addressed
by normalising the diffusion score of every node using its
background distribution under input permutations. Per-
mutations can be simulated through Monte Carlo trials to
obtain an empirical p-value, labelled as p-score. Alter-
natively, a parametric z-score can be obtained without
requiring Monte Carlo trials. The p-score is obtained
by transforming the z-score to lie in the [ 0, 1] interval
through the cumulative distribution function of a stan-
dard normal distribution. Under both statistical approxi-
mations, nodes with the lowest p-scores are reported as
the suggested sub-network. Note that p-scores are used as
a ranker rather than for testing hypotheses.
An optional filter allows the removal of small connected

components from the reported sub-network.When build-
ing the database, a number of random sub-networks are
sampled to characterise how infrequent a connected com-
ponent of order at least r is when k nodes are uniformly
sampled. The assumption behind this filter is that mean-
ingful inputs encompass metabolites relatively close to
each other within the knowledge graph, prone to be
reported in large connected components involving most
of them.

Classes
FELLA relies on two classes: FELLA.DATA for the internal
knowledge representation, based on the igraph R package
[13], and FELLA.USER for the user analysis, see Fig. 1.

Fig. 2 Node arrangement for the knowledge model used by FELLA. Entities are organised in a hierarchical manner, from bottom to top: KEGG
compounds or metabolites, reactions, enzymes, KEGG modules and pathways. Binary labels at the level of metabolites are propagated to the rest of
the network and a relevant, small sub-network is automatically reported. Nodes are ranked using the network propagation algorithms a heat
diffusion and b PageRank. The affected metabolites are highlighted with a black ring. For heat diffusion (a), affected metabolites are forced to
generate unitary flow. Every pathway is highlighted with a blue ring, representing its connection to a cool boundary node. In equilibrium, the
highest temperature pathways (and nodes) will have the greatest heat flow, suggesting a relevant role in the experiment. For PageRank (b), affected
metabolites are the start of random walks. PageRank scores, represented by the intensity of the blue colour, will attain higher values in the
frequently reached random walk nodes. Figure extracted from [12]
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These classes contain subclasses, invisible to the user and
described in the Additional file 2. The functions to manip-
ulate both classes are described below, following the three
blocks from Fig. 1.

Block I: local database
The function buildGraphFromKEGGREST() retrieves
the tabular KEGG data for the desired organism and
builds the knowledge graph as described in [12]. Then, a
database can be built from the graph and stored in a local
folder using buildDataFromGraph(). Databases are
needed for the enrichment and should be loaded through
the function loadKEGGdata().

Block II: enrichment analysis
Once the database is loaded, i.e. the FELLA.DATA object
is in memory, defineCompounds() maps the list of
input metabolites, in the form of KEGG identifiers, to
the internal representation, providing a FELLA.USER
object. Then, the propagation algorithms in [12] are
run to score the graph nodes. runDiffusion()
uses the undirected heat diffusion model [10] whereas
runPagerank() runs the directed PageRank algorithm
[11]. Both approaches are automatically followed by the
statistical normalisation, either as a parametric z-score
(approx = "normality") or as a simulated permuta-
tion analysis (approx = "simulation"), see Table 1.
The wrapper enrich() performs the metabolite map-
ping and the desired propagation algorithm (argument
method) and statistical normalisation with a single call.

Table 1 Scoring methods offered in FELLA, chosen by the
enrich function arguments method and approx

Method Approx Notation in [12] Comment

Hypergeom N/A Hypergeometric test Included for
reference

Diffusion Normality HD norm Heat diffusion
scores followed
by z-scores

Diffusion Simulation HD sim Heat diffusion
scores followed
by permutations

Pagerank Normality PR norm PageRank scores
followed by
z-scores

Pagerank Simulation PR sim PageRank scores
followed by
permutations

Each row corresponds to a method mentioned in the original publication [12]. The
method hypergeom is Fisher’s exact test, included for reference. Method
diffusion scores the nodes using the heat diffusion model. Method pagerank
uses the PageRank algorithm on an upwards-directed version of the network. Both
scores undergo a statistical normalisation to remove structural biases, controlled
through the approx argument. The user can choose the fast, parametric z-scores
(normality) or the slower, non-parametric permutation analysis (simulation).
N/A: non-applicable

Block III: exporting results
Finally, the best scoring KEGG entries can be visu-
alised through plot(), exported as a sub-network with
generateResultsGraph(), or in tabular format with
generateResultsTable(). A dedicated table with
the reported enzymes and its associated genes can be
obtained with generateEnzymesTable(). Alterna-
tively, exportResults() allows writing such objects
directly to files.

User interface
FELLA includes an interactive graphical interface, based
on the R package shiny [14] and deployable through
launchApp(). The interface is divided with four tabs
that encompass most options from FELLA (Fig. 3). Cur-
rently, the database needs to be built outside the graphical
interface and prior to its usage.

Compounds upload
This tab contains a general description of the interface and
a handle to submit the input metabolite list as a text file.
Examples are provided as well. The right panel shows the
mapped and the mismatching compounds with regard to
the current database.

Advanced options
Widgets from this tab adjust the main function argu-
ments for customising the enrichment procedure. They
ease database choice from the internal package direc-
tory, method and approximation definition and parameter
tweaking. It also allows the semantic similarity analysis on
the reported enzymes, using the R package GOSemSim
[15] with the Gene Ontology annotations [16].

Results and discussion
The results section mainly consists of an interactive net-
work plot with the top k KEGG entries. Nodes can be
moved, selected, queried and hovered to reveal the orig-
inal KEGG entry. An interactive table lies below the plot
and expands the data on the nodes.

Export
The last tab offers several options to download the
reported sub-network (tabular format or R object) and
enzymes (tabular format).

Results
The algorithmic part of FELLA has already been dis-
cussed and validated in [12]. The usage of FELLA is hereby
demonstrated on three public human studies on epithe-
lial cells [17], ovarian cancer cells [18] and febrile illnesses
[19]. The examples guide the user on how to build the
database, format the input data, complete the enrichment
and export its results (see Additional file 2). FELLA repro-
duces findings from the original publications, not only
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Fig. 3 Perspective of the interactive app within FELLA. The app is composed by four tabs: a compounds upload, b advanced options, c results and d
export. The lay user can rapidly explore his or her data without knowing the details about the syntax in FELLA

in the form of pathway hits but also as newly suggested
enzymes and metabolites. The Additional file 5 shows
further details on the metabolites in each input and the
reported sub-networks.
To demonstrate its usefulness outside human studies,

FELLA is applied to two datasets from a gilt-head bream
study [20] and a mouse model of non-alcoholic fatty liver
disease [21]. The complete analyses can be respectively
found in Additional files 3 and 4, whereas their respective
R workspaces are saved in Additional files 6 and 7. Table 2

summarises the knowledge graphs in the FELLA.DATA
object for each organism.

Epithelial cells dataset
The epithelial cancer cells study [17] runs an in vitro
model of dry eye in which the human epithelial cells
IOBA-NHC are put under hyperosmotic stress. The list of
9 metabolites hereby used reflects metabolic changes in
“Treatment 1” (24 h in serum-free media at 380 mOsm)
against control (24 h at 280 mOsm). The metabolites have

Table 2 Summary of the FELLA.DATA objects used for the three human and the three non-human datasets

Organism KEGG release Nodes Pathways Modules Enzymes Reactions Compounds

Homo sapiens 85.0+/02-16 9899 314 182 1110 4829 3464

Danio rerio 87.0+/09-14 9637 162 179 995 4843 3458

Musmusculus 87.0+/09-14 9909 316 185 1107 4843 3458

Generalist and overview pathways are excluded from the models, see Additional files 2, 3 and 4 for further details on each organism
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Fig. 4 Results of the node prioritisation by FELLA in the epithelial cells dataset. The user is given a list of positive entities, after a score threshold
described in [12], with information on how the input metabolites reach the suggested pathways and on how these pathways cross talk. Plots of the
ovarian and malaria datasets can be found in the Additional file 5

been extracted from “Table 1” in the original manuscript
and mapped to 9 KEGG ids, from which 8 map to
the FELLA.DATA object. The enrichment (sub-network
in Fig. 4) is obtained by leaving the default parame-
ters in FELLA: method = "diffusion", approx =
"normality" and threshold = 0.05. The amount
of nodes has been limited to nlimit = 150.
The activation of the “glycerophosphocholine synthesis”

rather than the “carnitine” response is a main result in the
original work [17]. FELLA highlights the related pathway
“choline metabolism in cancer” and the “choline” metabo-
lite as well. Another key process is the “O-linked glycosi-
lation”, which is close to the KEGG module “O-glycan
biosynthesis, mucin type core” and to the KEGG pathway
“Mucin typeO-glycan biosynthesis”. Finally, FELLA repro-
duces the finding of “UAP1” by reporting the enzyme
“2.7.7.23”, named “UDP-N-acetylglucosamine diphospho-
rylase”. “UAP1” is a key protein in the study, pinpointed by
iTRAQ (Isobaric Tags for Relative and Absolute Quanti-
tation) and validated via western blot.

Ovarian cancer cells dataset
The second dataset has been extracted from the study
on metabolic responses of ovarian cancer cells [18].
OCSCs are isogenic ovarian cancer stem cells derived
from the OVCAR-3 ovarian cancer cells. The abundances
of 6 metabolites are affected by the exposure to several
environmental conditions: glucose deprivation, hypoxia
and ischemia. From those, 5 metabolites map to the
FELLA.DATA object. The sub-network is obtained by
leaving the default parameters and setting a limit of
nlimit = 150 nodes.
Several “TCA cycle”-related entities are highlighted,

also found by the authors and by previous work [22]. It also
mentions “sphingosine degradation”, closely related to the
reported “sphingosine metabolism” in the original work.
Enzymes that have been formerly related to cancer are
suggested within the TCA cycle, like “fumarate hydratase”
[22–24], “succinate dehydrogenase” [22, 25] and “aconi-
tase” [26]. Another suggestion is “lysosome”(s), known to
suffer changes in cancer cells and directly affect apoptosis
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[27]. Finally, the graph contains several “hexokinases”,
potential targets to disrupt glycolysis, a fundamental need
in cancer cells [28].

Malaria dataset
The metabolites in this example are related to the dis-
tinction between malaria and other febrile illnesses [19].
Specifically, the list of 11 KEGG identifiers (9 in the
FELLA.DATA object) has been extracted from the origi-
nal supplementary data spreadsheet, using all the possible
KEGG matches for the “non malaria” patient group. The
sub-network is obtained by leaving the default parameters
and setting a limit of nlimit = 50 nodes.
In this case, the depicted subnetwork contains the mod-

ules “C21-Steroid hormone biosynthesis, progesterone
=>corticosterone/aldosterone” and “C21-Steroid hor-
mone biosynthesis, progesterone =>cortisol/cortisone”,
related to the “corticosteroids” as amain pathway reported
in the original text. This is part of the also reported “Aldos-
terone synthesis and secretion”; aldosterone is known to
show changes related to fever as a metabolic response to
infection [29]. Another plausible hit in the sub-network
is “linoleic acid metabolism”, as erythrocytes infected by
various malaria parasytes can be enriched in linoleic acid
[30]. In addition, the pathway “sphingolipid metabolism”
can play a role in the immune response [31, 32]. As for the
enzymes, “3alpha-hydroxysteroid 3-dehydrogenase (Si-
specific)” and “Delta4-3-oxosteroid 5beta-reductase” are
related to three input metabolites each and might be
candidates for further examination.

Oxybenzone exposition on gilt-head bream datasets
A study of the consequences of the oxybenzone con-
taminant on gilt-head bream [20] found five dysregu-
lated KEGG metabolites in their liver and eleven in
their plasma. The study justified its findings through
literature and complemented them with insights pro-
vided by FELLA. Here, both metabolite lists are used to
build suggested sub-networks with the default param-
eters and fixing nlimit = 250. The FELLA.DATA
object is built for the Danio Rerio organism, a com-
mon approximation when annotations specific to gilt-
head bream are not available. Further details can be
found in the vignette (Additional file 3) and its workspace
(Additional file 6).
The enrichment on the liver-derived metabolites links

all of them within a connected component of roughly 100
nodes. It points to “Phenylalanine metabolism” as one of
the key metabolic pathways, in accordance with the main
results from the article. Among the suggestedmetabolites,
“Tyrosine” is of particular help to explain the connection
between the affected metabolites (see Fig. 2 from [20]).
Plasma metabolites involve a more complex scenario.

FELLA reports ten out of the eleven metabolites in

a connected component involving around 120 nodes.
Seven pathways are suggested, from which “Linoleic
acid metabolism”, “Biosynthesis of unsaturated fatty
acids”, “alpha-Linolenic acid metabolism”, “Glycerophos-
pholipid metabolism” and “Glycine, serine and threonine
metabolism” were used to build a comprehensive picture
of the metabolic changes in the original manuscript (Fig. 3
from [20]). Such figure brings a structured overview that
narrows down the core processes, also backed up by prior
publications. Likewise, by drawing intermediate metabo-
lites found through FELLA, like “Linoleic acid” and “Phos-
phatidylcholine”, it achieves a cohesive representation of
the input metabolites.

Non-alcoholic fatty liver disease mouse model
This dataset exemplifies how FELLA can also be applied
on an animal disease model. Metabolites in liver tissue
from leptin-deficient ob/obmice and wild-type were com-
pared usingNuclearMagnetic Resonance, whereas several
candidate genes were further investigated for differences
in expression [21]. Six affected metabolites are introduced
in FELLA, leaving the default parameters and nlimit =
250. The FELLA.DATA object is built for the Mus mus-
culus organism. The vignette with the whole analysis is
provided provided as Additional file 4, whereas its R
workspace can be found in Additional file 7.
The sub-network found by FELLA involves “N,N-

Dimethylglycine”, a marginally significant metabolite
in the experimental data but with a relevant role
within the findings from the study. Regarding the
genes, FELLA is able to find the enzyme associated
to Bhmt, validated and discussed in the study. The
enzyme associated to Cbs, another central hit, is not
directly found. However, its ranking (top 17% among
enzymes) and especially that of its reaction (top 3%
among reactions) are highly suggestive. We also show
how other (1) related metabolites, found by leverag-
ing the expression data, and (2) differentially expressed
genes, taken from an external study [33], tend to
have top p-scores in the prioritisation provided by
FELLA.

Conclusions
We present FELLA, an R package for enriching
metabolomics data, focused on interpretability. It can be
used either programmatically or through a simple user
interface. FELLA offers a comprehensive enrichment
by depicting the intermediate reactions, enzymes and
modules that link the input metabolites to the relevant
pathways. This layout gives a biological picture with
information of the pathway overlap and the connections
between the entities of interest, while suggesting enzymes
and possibly other metabolites for further study. The
utility of FELLA has been demonstrated on six public
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datasets, both with human and non-human organisms,
where reported entities include several original findings
in addition to results from third studies. FELLA is publicly
available in the Bioconductor public repository under the
GPL-3 license.

Availability and requirements
Project name: FELLA
Project home page: https://doi.org/doi:10.18129/B9.
bioc.FELLA, https://github.com/b2slab/FELLA
Operating system(s): platform independent
Programming language: R
Other requirements: none
License: GPL-3
Restrictions to use by non-academics: those derived by
the GPL-3 license

Additional files

Additional file 1: User guide within FELLA showing fast and concise toy
examples of its application. (HTML 2587 kb)

Additional file 2: User guide within the R package FELLAwith background,
implementation details and three real examples on its usage. (PDF 1096 kb)

Additional file 3: Case study with FELLA: two datasets on the effect of
oxybenzone exposition on gilt-head bream. (PDF 221 kb)

Additional file 4: Case study with FELLA: a multi-omic mouse model of
non-alcoholic fatty liver disease. (PDF 235 kb)

Additional file 5: Descriptive files on the three human datasets: a
summary of the inputs (descriptive_input.csv), input and reported
subgraph in each dataset (dataset_input.csv, dataset_subgraph.csv and
dataset_subgraph.pdf), hits discussed in the results section
(descriptive_hits.csv). Also contains the database object (fella_data.RData)
and metadata about the database (info_fella_data.txt), the KEGG version
(info_kegg.txt) and the R session (info_session.txt). (ZIP 525 kb)

Additional file 6: R workspace from the gilt-head bream datasets.
(ZIP 590 kb)

Additional file 7: R workspace from the mouse model study. (ZIP 829 kb)
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