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Abstract. We consider analytic or polynomial vector fields of the form

X = (−y + X)
∂

∂x
+ (x + Y )

∂

∂y
,

where X = X(x, y)) and Y = Y (x, y)) start at least with terms of second
order. It is well–known that X has a center at the origin if and only if X has a

Liapunov-Poincaré local analytic first integral of the form H =
1

2
(x2 + y2) +

∞∑

j=3

Hj , where Hj = Hj(x, y) is a homogenous polynomial of degree j.

The classical center-focus problem already studied by Poincaré consists in
distinguishing when the origin of X is either a center or a focus. In this paper
we study the inverse center problem, i.e. for a given analytic function H of

the previous form defined in a neighborhood of the origin, we determine the
analytic or polynomial vector field X for which H is a first integral. Moreover,

given an analytic function V = 1 +

∞∑

j=1

Vj in a neighborhood of the origin,

where Vj is a homogenous polynomial of degree j, we determine the analytic
or polynomial vector field X for which V is a Reeb inverse integrating factor.

We study the particular case of centers which have a local analytic first

integral of the form H =
1

2
(x2 + y2)


1 +

∞∑

j=1

Υj


 , in a neighborhood of the

origin, where Υj is a homogenous polynomial of degree j for j ≥ 1. These

centers are called weak centers, they contain the uniform isochronous centers
and the isochronous holomorphic centers, but they do not coincide with the
class of isochronous centers.

We extended to analytic or polynomial differential systems the weak con-

ditions of a center given by Alwash and Lloyd for linear centers with homo-
geneous polynomial nonlinearities. Furthermore the centers satisfying these
weak conditions are weak centers. Finally as an application we obtain the

necessary and sufficient conditions for the existence of a weak center in a class
of polynomial differential systems of degree four.

1. Introduction

Let

(1) X = P
∂

∂x
+ Q

∂

∂y
,
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be the real planar polynomial vector field associated to the real planar polynomial
differential system

(2) ẋ = P (x, y), ẏ = Q(x, y),

where the dot denotes derivative with respect to an independent variable here called
the time t, and P and Q are real coprime polynomials in R[x, y]. We say that the
polynomial differential system (2) has degree m = max {degP, degQ}.

In what follows we assume that origin O := (0, 0) is a singular point, i.e.
P (0, 0) = Q(0, 0) = 0.

The singular point O is a center if there exists an open neighborhood U of O
where all the orbits contained in U \ {O} are periodic.

The study of the centers of analytical or polynomial differential systems (2) has
a long history. The first works are due to Poincaré [23] and Dulac [11] . Later on
were developed by Bendixson [4], Frommer [12], Liapunov [20] and many others.

Assume that the origin of the analytic or polynomial differential system (2) is
a center. It is well–known that, after a linear change of variables and a constant
scaling of the time variable (if necessary), system (2) can be written in one of the
next three forms:

(3)
ẋ = −y + X(x, y), ẏ = x + Y (x, y),
ẋ = y + X(x, y), ẏ = Y (x, y),
ẋ = X(x, y), ẏ = Y (x, y),

where X(x, y) and Y (x, y) are analytic or polynomials without constant and linear
terms defined in a neighborhood of the origin. Then the origin O of the analytical
or polynomial differential system (2) is called linear type, nilpotent or degenerate if
after a linear change of variables and a scaling of the time it can be written as the
first, second and third system of (3), respectively.

In this paper we shall study the differential system of the linear type

(4) ẋ = −y + X, ẏ = x + Y,

where X = X(x, y) and Y = Y (x, y) are real analytic functions in an open neigh-
borhood of O whose Taylor expansions at O do not contain constant and linear
terms. For X, Y polynomials of a given degree, the Poincaré center-focus problem
asks about conditions on the coefficients of X and Y under which O is a center.

In the study of the center-focus problem the following theorems play a very
important role (see for instance [20, 23, 25])

Theorem 1. For the analytic differential system (4) there exists a formal power
series

W =
∞∑

n=2

Wn :=
1

2
(x2 + y2) +

∞∑

n=3

Wn(x, y),
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where Wj = Wj(x, y) is a homogenous polynomial of degree j such that

dW

dt
=

(
x +

∂W3

∂x
+

∂W4

∂x
+ . . .

)
(−y + X(x, y))

+

(
y +

∂W3

∂y
+

∂W4

∂y
+ . . .

)
(x + Y (x, y))

=

∞∑

j=1

vj(x
2 + y2)j+1,

where vj are the Poincaré-Liapunov constants.

Assume that the formal power series W converges. If the constants vj = 0 for

j ∈ N then there exists a first integral H :=
1

2
(x2 + y2)+

∞∑

j=3

Wj , and consequently

the origin is a center. If there exists a first non–zero Liapunov constant vj , then
the origin is a stable focus if vj < 0 and unstable if vj > 0.

Poincaré and Liapunov proved the next two results, see for instance [23, 20, 13,
26].

Theorem 2. A planar polynomial differential system

(5) ẋ = −y +
m∑

j=2

Xj(x, y), ẏ = x +
m∑

j=2

Yj(x, y),

of degree m has a center at the origin if and only if it has a first integral of the
form

(6) H =
∞∑

j=2

Hj(x, y) =
1

2
(x2 + y2) +

∞∑

j=3

Hj(x, y),

where Xj, Yj and Hj are homogenous polynomials of degree j.

The analytic function (6) is called the Poincaré-Liapunov local first integral.

Theorem 3. An analytic planar differential system

(7) ẋ = −y +

∞∑

j=2

Xj(x, y), ẏ = x +

∞∑

j=2

Yj(x, y),

has a center at the origin if and only if it has a first integral of the form (6).

Theorem 2 is due to Poincaré, and Theorem 3 is due to Liapunov.

From Theorems 1, 2 and 3 it is clear that an analytic or polynomial differential
system (4) has a center at the origin if and only if the Poincaré-Liapunov constants
vk = 0 for k ≥ 1 (Poincaré’s criterion). Moreover, the vk’s are polynomials over Q
in the coefficients of the polynomial differential system. A necessary and sufficient
condition to have a center is then the annihilation of all these constants. In view of
the Hilbert’s basis theorem this occurs if and only if for a finite number of k, k < j
and j sufficiently large, vk = 0. Unfortunately, trying to solve the center problem
computing the Poincaré-Liapunov constants is in general not possible due to the
huge computations.
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Although we have an algorithm for computing the Poincaré-Liapunov constants
for linear type center, we have no algorithm to determine how many of them need
to be zero to imply that all of them are zero for cubic or higher degree polynomial
differential systems. Bautin [2] showed in 1939 that for a quadratic polynomial
differential system, to annihilate all vk’s it suffices to have vk = 0 for i = 1, 2, 3. So
the problem of the center is solved for quadratic systems. This problem was solved
for the cubic differential systems with homogenous nonlinearities (see for instance
[25, 31, 32]).

We recall the following definition. Let U be an open and dense set in R2. We
say that a non-constant Cr with r ≥ 1 function F : U → R is a first integral of
the analytic or polynomial vector field X on U , if F (x(t), y(t)) is constant for all
values of t for which the solution (x(t), y(t)) of X is defined on U . Clearly F is a
first integral of X on U if and only if XF = 0 on U .

Now we shall introduce another criterion for solving the center problem due to
Reeb.

We need the following definitions and notions. A function V = V (x, y) is an
inverse inverse integrating factor of system (2) in an open subset U ⊂ R2 if V ∈
C1(U), V ̸≡ 0 in U and

∂

(
P

V

)

∂x
+

∂

(
Q

V

)

∂y
= 0 ⇐⇒ P

∂V

∂x
+ Q

∂V

∂y
= V

(
∂P

∂x
+

∂Q

∂y

)
.

The first integral F associated to the inverse inverse integrating factor V is given
by the line integral or path integral

F (x, y) =

∫

γ

(
−P

V
dy +

Q

V
dx

)
,

We note that {V = 0} is formed by orbits of system (2). The function 1/V defines
an inverse integrating factor in U\{V = 0} of system (2) which allows to compute
a first integral for (2) in U\{V = 0}.

We consider now the relation between the existence of a center and that of an
inverse integrating factor for analytic or polynomial vector fields. The main result
is given by the following theorem which is analogous to Theorems 2 and 3.

Theorem 4. [Reeb ’s criterion] (see for instance [29]). The analytic differential
system (7) has a center at the origin if and only if there is a local nonzero analytic
inverse integrating factor of the form V = 1+h.o.t. in a neighborhood of the origin.

An analytic inverse integrating factor having the Taylor expansion at the origin
V = 1 + h.o.t. is called a Reeb inverse integrating factor.

Darboux gave his geometric method of integration in his seminal work [8] of
1878. The geometric method of Darboux uses algebraic invariant curves of a poly-
nomial differential system for computing a first integral of the system. There were
numerous publications on the problem of the center using the Darboux method
during the last part of the 20th century and the beginning of the 21st century (see
for instance [6, 16, 34]). In fact there is the following conjecture due to Zoladek
[34], see also [6]. See these papers for more details on this conjecture.
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Conjecture 5. Suppose that the polynomial differential system (4) has a center at
the origin. Then this system has a Darboux first integral or an algebraic symmetry.

To show that a singular point is a center for system (4) we have two basic
mechanisms: we either apply Poincaré–Liapunov Theorem and we show that we
have a local analytic first integral, or we apply the Reeb inverse integrating factor.
Another mechanism for detecting centers has been given by Mikonenko see [28].

The main objective of the present paper is to analyze the center problem from
the inverse point of view (see for instance [17, 30]). Indeed, either given an analytic
function H of the form (6) we shall determine the analytic functions X and Y in
(4) in such a way that the function H is a first integral of the differential system

(4), or given an analytic function 1+
∞∑

j=1

Vj in a neighborhood of the origin we shall

determine the analytic functions X and Y in (4) in such a way that the analytic
differential system (4) has the function V as a Reeb inverse integrating factor.

We say that a center at the origin of an analytic differential system is a weak
center if in a neighborhood of the origin it has an analytic first integral of the form

H =
1

2
(x2 + y2)


1 +

∞∑

j=1

Υj


 , where Υj is a homogenous polynomial of degree

j. We have characterized the expression of an analytic or polynomial differential
system having a weak center at the origin, see Theorem 15. Moreover we prove
that the uniform isochronous centers and isochronous holomorphic centers are weak
centers.

We have extended the weak conditions of a center given by Alwash and Lloyd
in [1] for linear center with homogenous polynomial nonlinearities (see Proposition
10), to a general analytic and polynomial differential system see Theorem 25. Fur-
thermore the centers satisfying the generalized weak conditions of a centers are weak
centers. Finally as an application we obtain the necessary and sufficient conditions
for the existence of a weak center in a class of polynomial differential systems of
degree four.

2. Preliminary concepts and results

In the proofs of the results that we provide in this paper it plays an important
role the following results.

As usual the Poisson bracket of the functions f(x, y) and g(x, y) is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

We will need the following result.

Proposition 6. The next relation holds
∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt = 0

for arbitrary C1 function Ψ = Ψ(x, y) defined in the interval [0, 2π].
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Proof. Indeed, if we change x = cos t, y = sin t then it is easy to show that

{H2,Ψ}|x=cos t, y=sin t = x
∂ Ψ

∂ y
− y

∂ Ψ

∂ x

∣∣∣∣
x=cos t, y=sin t

=
dΨ(cos t, sin t)

dt
.

Hence, ∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt = Ψ(cos t, sin t)|t=2π
t=0 = 0.

�

The following result is due to Liapunov (see Theorem 1, page 276 of [20]).

Theorem 7. If all the roots λ1, . . . , λn of the equation∣∣∣∣∣∣∣∣

p11 − λ p21 . . . pn1

p12 p22 − λ . . . pn2

. . . . . . . . . . . .
p1n p2n . . . pnn − λ

∣∣∣∣∣∣∣∣
are such that the relation λ = m1λ1 + . . .+mnλn, is not vanishing for an arbitrary
non-negative integers m1, . . . ,mn linked by the expression m = m1 + . . . + mn ̸= 0.
Then for an arbitrary given homogenous polynomial U = U(x1, . . . , xn) of degree m
there exists a unique homogenous polynomial V = V (x1, . . . , xn) of degree m which
is a solution of the equation

n∑

j=1

(pj1x1 + . . . + pjnxn)
∂V

∂xj
= U.

In particular, for n = 2 the partial differential equation

(8) x
∂ V

∂ y
− y

∂ V

∂ x
:= {H2, V } = U,

has a unique solution V if and only if

λ1m1 + λ2m2 = i(m1 − m2) ̸= 0 with m = m1 + m2 ̸= 0.

As a simple consequence of Theorem 7 we have the next result.

Corollary 8. Let U = U(x, y) be a homogenous polynomial of degree m. The linear
partial differential equation (8) has a unique homogenous polynomial solution V of
degree m if m is odd; and if V is a homogenous polynomial solution when m is
even then any other homogenous polynomial solution is of the form V + c(x2 +
y2)m/2 with c ∈ R. Moreover, for m even these solutions exist if and only if∫ 2π

0

U(x, y)|x=cos t, y=sin t dt = 0.

In what follows some examples of planar vector fields having a center are studied.

2.1. Hamiltonian system. When system (4) is Hamiltonian, i.e. there exists a
function F = F (x, y) such that

−y + X(x, y) = −∂F (x, y)

∂y
, x + Y (x, y) =

∂F (x, y)

∂x
.

Hence F =
1

2
(x2 + y2) + h.o.t. is a first integral.
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2.2. Reversible system. Besides Hamiltonian systems there is another class of
systems (4) for which the origin is a center, namely the reversible systems satisfying
the following definition.

We say that system (4) is reversible with respect to the straight line l through
the origin if it is invariant with respect to reversion about l and a reversion of time
t (see for instance [7]).

The following criterion goes back to Poincaré see for instance [24], p.122.

Theorem 9. The origin of system (4) is a center if the system is reversible.

In particular this theorem is applied for the case when (4) is invariant under the
transformations (x, y, t) −→ (−x, y, −t) or (x, y, t) −→ (x,−y, −t).

2.3. Weak condition for a center. The following condition weak condition for
a center was due to Alwash and Lloyd [1, 18], see also [18].

Proposition 10. The origin is a center of a polynomial differential system of the
form

(9) ẋ = −y + Xm, ẏ = x + Ym,

where Xm and Ym are homogenous polynomial of degree m, if there exists µ ∈ R
such that

(x2 + y2)

(
∂Xm

∂x
+

∂Ym

∂y

)
= µ (xXm + yYm) ,

and either m = 2k is even; or m = 2k − 1 is odd and µ ̸= 2k; or m = 2k − 1 is odd,
µ = 2k and ∫ 2π

0

(
∂Xm

∂x
+

∂Ym

∂y

)
|x=cos t, y=sin tdt = 0.

In [9] the author proved that if µ = 2m then system (9) has the rational first
integral

x2 + y2 − 2 (xYm − yXm)

(x2 + y2)m
.

2.4. Cauchy-Riemann condition for a center. Another particular case of dif-
ferential systems with a center are the systems satisfing the Cauchy–Riemann con-
ditions (see for instance [7]).

Proposition 11. (Cauchy-Riemann condition for a center) Let O be a center of
(2). Then O is isochronous center if P and Q satisfy the Cauchy-Riemann equations

(10)
∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x

A center of system (4) for which (10) holds is called a holomorphic center, which
is also an isochronous center, see for more details [21] and [22]. We recall that a
center of system (4) located at the origin is an isochronous center if all the periodic
solutions in a neighborhood of the origin have the same period.
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3. Statement of the main results

The main results are stated in the following four subsections.

3.1. Analytic and polynomial vector fields with a linear type center. We
state and solve the following inverse problems for the centers of analytic and poly-
nomial vector fields.

Inverse Poincaré-Liapunov’s Problem Determine the analytic (polynomial)
planar vector fields

(11) X = (−y +

k∑

j=2

Xj)
∂

∂x
+ (x +

k∑

j=2

Yj)
∂

∂y
, for k ≤ ∞,

for which the given function (6) is a local analytic first integral where Xj = Xj(x, y),
Yj = Yj(x, y) for j ≥ 2 are homogenous polynomials of degree j.

Inverse Reeb Problem Determine the analytic (polynomial) planar vector fields

(11) for which the V = 1 +
∞∑

j=1

Vj is the Reeb inverse integrating factor, i.e.

(12) X (x)
∂ V

∂ x
+ X (y)

∂ V

∂ y
= V

(
∂ X (x)

∂ x
+

∂ X (y)

∂ y

)

The inverse Poincaré-Liapunov’s problem and inverse Reeb problem for the an-
alytic (k = ∞) planar vector fields has been solved in the following theorem which
provides the expressions of the analytic differential systems (7) in function of its
first integral (6) or in function of its Reeb inverse integrating factor.

Theorem 12. Consider the analytic vector field X . Then this vector field has a
Poincaré-Liapunov local first integral if and only if it has a Reeb inverse integrating
factor. Moreover,

(i) the analytic differential system associated to the vector field X∞ for which
H = (x2 + y2)/2 + h.o.t. is a local first integral can be written as

(13)

ẋ = −y +

∞∑

j=2

Xj = −y +

∞∑

j=1

({Hj+1, x} + g1{Hj , x} + . . . + gj−1{H2, x}) ,

=


1 +

∞∑

j=1

gj


 {H, x}

ẏ = x +
∞∑

j=2

Yj = x +
∞∑

j=1

({Hj+1, y} + g1{Hj , y} + . . . + gj−1{H2, y}) ,

=


1 +

∞∑

j=1

gj


 {H, y}
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where gj = gj(x, y) is an arbitrary homogenous polynomial of degree j which

we choose in such a way that the series
∞∑

j=1

gj converge in the neighborhood

of the origin.
(ii) The differential system associated to the vector field X∞ for which V =

1 +

∞∑

j=1

Vj is a Reeb integrating factor can be written as

ẋ =


1 +

∞∑

j=1

Vj


 {F, x}, ẏ =


1 +

∞∑

j=1

Vj


 {F, y},

where F =
∞∑

j=2

Fj and F2 = (x2 + y2)/2, Fj = Fj(x, y) for j > 2 is an

arbitrary homogenous polynomial of degree j which we choose in such a

way that
∞∑

j=2

Fj converges, i.e. F is an arbitrary Poincaré-Liapunov local

first integral.

In fact, in the proof of Theorem 12 we provide the expression of the vector
fields having a given Poincaré-Liapunov local first integral and the expression of
the vector fields having a given Reeb inverse integrating factor.

The inverse Poincaré-Liapunov’s problem and inverse Reeb problem for the poly-
nomial planar vector fields (k = m < ∞) has been solved in the following theorem
which provides the expressions of the analytic differential systems (7) in function
of its first integral (6) or in function of its Reeb integrating factor.

Theorem 13. Consider the polynomial vector field Xm. Then this polynomial vec-
tor field has a Poincaré-Liapunov local first integral if and only if it has a Reeb
inverse integrating factor. Moreover, the differential system associated to the vec-
tor field Xm for which H = (x2 +y2)/2+h.o.t. is a local first integral can be written
as

(14)

ẋ =


1 +

∞∑

j=1

gj


 {H, x}

= {Hm+1, x} + (1 + g1){Hm, x} + . . . + (1 + g1 + . . . + gm−1){H2, x},

ẏ =


1 +

∞∑

j=1

gj


 {H, y}

= {Hm+1, y} + (1 + g1){Hm, y} + . . . + (1 + g1 + . . . + gm−1){H2, y}.
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where

(15)

H =
1

2
(x2 + y2) +

∞∑

j=2

Hj = τ1Hm+1 + τ2Hm + . . . + τmH2

=

∫

γ

Ω
(
dHm+1 + (1 + g1)dHm + . . . + (1 + g1 + . . . + gm−1)dH2

)

where Ω :=


1 +

∞∑

j=1

gj




−1

, γ is an oriented curve (see for instance [33]), τj =

τj(x, y) is a convenient analytic function in the neighborhood of the origin such that
τj(0, 0) = 1, and gj = gj(x, y) is an arbitrary homogenous polynomial of degree j
which we choose in such a way that Ω is the inverse Reeb inverse integrating factor
which satisfies the first order partial differential equation

(16) {Hm+1, Ω} + {Hm, (1 + g1)Ω} + . . . + {H2, (1 + g1 + . . . + gm−1)Ω} = 0.

Remark 14. From the proof of Theorem 13 it follows that (16) is equivalent to the
infinite number of first order partial differential equations

(17)

0 = {Hm+1, g1} + {Hm, g2} + . . . + {H3, gm−1} + {H2, gm},

0 = {Hm+1, g
2
1 − g2} + {Hm, g1g2 − g3} + . . . + {H3, g1gm−1 − gm}

+{H2, g1gm − gm+1},

...
...

...

with unknowns the homogenous polynomials gj of degree j ≥ m. Hence by Corollary
6 we obtain the conditions∫ 2π

0

({Hm+1, g1} + {Hm, g2} + . . . + {H3, gm−1})|x=cos t,y=sin t dt = 0,

∫ 2π

0

(
{Hm+1, g

2
1 − g2} + {Hm, g1g2 − g3} + . . . + {H3, g1gm−1 − gm}

)∣∣
x=cos t,y=sin t

dt = 0,

...
...

...

The first condition, by Corollary 8 guarantees the existence of the solution gm of
first equation of (17), the second condition, again by Corollary 8, guarantees the
existence of the solution gm+1 of the second equation of (17), and so on.

3.2. Analytic and polynomial vector fields with local analytic first inte-

gral of the form H =
1

2
(x2 + y2) (1 + h.o.t.). We say that a differential system

(4) has a weak center at the origin if it has a local analytic first integral of the form

H =
1

2
(x2 + y2)


1 +

∞∑

j=1

Υj(x, y)


 := H2Φ(x, y),

where Υj is a convenient homogenous polynomial of degree j.

The aim of this section is to study the weak centers for analytic and polynomial
differential systems.
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In the study of the weak centers plays a fundamental role the differential systems
of the form

(18) ẋ = −y(1 + Λ) + xφ, ẏ = x(1 + Λ) + yφ,

where Λ = Λ(x, y) and φ = φ(x, y) are convenient analytic functions, as we can
show from the following theorem.

Theorem 15. An analytic differential system (7) has a weak center at the origin
if and only if this system can be written as

(19)

ẋ = −y


1 +

∞∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)


+
x

2

∞∑

j=2

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)

:= −y(1 + Λ) + xφ

ẏ = x


1 +

∞∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)


+
y

2

∞∑

j=2

(
{Υj−1,H2} + g1{Υj−2, H2} + . . . + gj−2{Υ1,H2}

)

:= x(1 + Λ) + yφ,

where Υ0 = 1, g0 = 1, gj and Υj are homogenous polynomial of degree j for j ≥ 1

and has the first integral H = H2


1 +

∞∑

j=2

Υj


 . Moreover assuming that

j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1 = 0,

{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2} = 0,

for j ≥ m + 1, we obtain necessary and sufficient conditions under which the poly-
nomial differential system (19) of degree m and has the first integral

(20) H = H2Φ = H2(1 + µ1Υ1 + . . . + µm−1Υm−1),

where µj = µj(x, y) is a convenient analytic function in the neighborhood of the
origin for j = 1, . . . ,m − 1.

The singular point of system (4) located at the origin is an isochronous center if
all the periodic solutions in a neighborhood of it has the same period.

Corollary 16. The weak center of a polynomial differential system (18) is an
isochronous center if and only if

(21)

∫ 2π

0

dθ

1 + Λ(r cos θ, r sin θ)
= 2π,
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where (r, θ) are the polar coordinates, and r satisfies that

H(r cos θ, r sin θ) = r2/2


1 +

∞∑

j=1

rjΥj(cos θ, sin θ)




is a constant on any periodic solution surrounding the isochronous center.

A center O of system (2) is a uniform isochronous center if the equality xẏ−yẋ =
κ(x2 +y2) holds for a nonzero constant κ; or equivalently in polar coordinates (r, θ)

such that x = r cos θ, y = r sin θ, we have that θ̇ = κ.

Corollary 17. The weak center of an analytic differential system (18) is a uniform
isochronous center if and only if

(22)

ẋ = −y + x
∞∑

j=2

1

j + 1

(
{Hj , g1} + . . . + {H2, gj−1}

)
,

ẏ = x + y
∞∑

j=2

1

j + 1

(
{Hj , g1} + . . . + {H2, gj−1}

)
.

Moreover the weak center of polynomial differential system of degree m (18) is a
uniform isochronous center if and only if (22) holds and

{Hj , g1} + . . . + {H2, gj−1} = 0,

holds for j ≥ m + 1. In particular for quasi-homogenous differential system (9) we
have that (22) becomes

ẋ = −y +
x

m + 1
{H2, gm−1},

ẏ = x +
y

m + 1
{H2, gm−1},

and has the Poincaré-Liapunov first integral F = H2

(
1 +

m − 1

m + 1
gm−1

)2/(1−m)

.

The inverse approach to study the uniform isochronous center was given in [19].

Theorem 15 has the following additional corollary.

Corollary 18. Assume that the planar differential system (5) has a center at the
origin. Then this center is a holomorphic isochronous center if and only if system
(5) can be written as (18), i.e. is a weak center, with the function Λ and φ satisfying
the Cauchy–Riemann conditions

∂φ

∂x
− ∂Λ

∂y
= 0,

∂φ

∂y
+

∂Λ

∂x
= 0.

Hence φ+i(1+Λ) = f(z) where z = x+iy, and f = f(z) is a holomorphic function
on C. Moreover, a polynomial differential system (18) with a holomorphic center at
the origin is Darboux integrable.

Remark 19. From Corollaries 18 and 17 it follows that all the uniform isochronous
centers and all the holomorphic isochronous centers for polynomial differential sys-
tems are always weak centers.
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It is important to observe that there is not a relation between isochronous centers
and weak centers, i.e. there exist isochronous centers which are not weak centers
and weak centers which are not isochronous centers. Then for instance the quadratic
isochronous center

ẋ = −y − 4x2

3
, ẏ = x(1 − 16y

3
),

is not a weak center because it has the first integral H = (9−24y+32x2)2/(3−16y)
for more details see [5]. On the other hand the quadratic system

ẋ = −y − x2 − 3y2, ẏ = x + 2xy,

has a weak center at the origin because it has the first integral H = (1+2y)(x2 +y2)
but it is not isochronous see [5]. In fact in [18] we provide all the quadratic system
with weak centers.

We observe that any linear type center after an analytic change of variables is
locally a weak center. This follows from the following theorem which goes back to
Poincaré and Liapunov, see [23, 20, 27].

Theorem 20 (Poincaré normal form of a nondegenerate center). For a polynomial
differential system (5) with a center at the origin, there exists a local analytic change
of coordinates

(23) u = x + h.o.t., v = y + h.o.t.,

and an analytic function Ψ = Ψ(u2 + v2) such that the coordinate change (23)
transforms system (5) into the form

u̇ = −∂H

∂v
, v̇ =

∂H

∂u
,

where H =
1

2

∫ (
1 + Ψ(u2 + v2)

)
d(u2 + v2). Without loss of generality we can

assume that Ψ(0, 0) = 0.

Now we introduce the following definitions and notations.

Let R[x, y] be the ring of all real polynomials in the variables x and y, and let X
be the polynomial vector field (2) of degree m. Let g = g(x, y) ∈ R[x, y]\R. Then
g = 0 is an invariant algebraic curve of X if

X g = P
∂g

∂x
+ Q

∂g

∂y
= Kg,

where K = K(x, y) is a polynomial of degree at most m − 1, which is called the
cofactor of g = 0. A function g = g(x, y) satisfying that g = 0 is an invariant
curve (i.e. formed by orbits of the vector field X ) is called partial integral. If
g ∈ R[x, y]\R then g is called a polynomial partial integral or a Darboux polynomial.
If the polynomial g is irreducible in R[x, y], then we say that the invariant algebraic
curve g = 0 is irreducible, and that its degree is the degree of the polynomial g. A
first integral F of the polynomial vector field (1) is called Darboux if

F = ek(x,y)/h(x,y)gλ1
1 (x, y) . . . gλr

r (x, y),

where k, h, g1, ..., gr are polynomials and λ1, . . . , λr are complex constants. For
more details on the so–called Darboux theory of integrability see for instance Chap-
ter 8 of [10].
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We introduce the following definition. We say that a polynomial vector field X
of degree m is quasi–Darboux integrable if there exist r polynomial partial integrals
g1, . . . , gr and s non-polynomial partial integrals f1, . . . , fs analytic in D ⊆ R2

satisfying

X (fj) = P
∂fj

∂x
+ Q

∂fj

∂y
= Kjfj ,

where Kj = Kj(x, y) is a convenient polynomials of degree m − 1, for j = 1, . . . , s
such that the function

F = ek(x,y)/h(x,y)gλ1
1 (x, y) . . . gλr

r (x, y)fκ1
1 (x, y) . . . fκs

s (x, y),

is a first integral, where k = k(x, y), h = h(x, y) are polynomials, and λ1, . . . , λr,
κ1, . . . , κs, are complex constants. We observe that a generalization of the Darboux
theory was developed in the paper [14], which evidently contains the above defini-
tion with another name, but for our aim we shall use the name of quasi–Darboux
integrable.

We have the following conjecture.

Conjecture 21. A polynomial differential system (18) having a weak center at the
origin is quasi-Darboux integrable.

This conjecture is supported by several facts which we give below.

Proposition 22. A polynomial differential system (18) with a weak center at the
origin is quasi–Darboux integrable in a neighborhood of the origin with the first
integral

H =
1

2
(x2 + y2)


1 +

m+1∑

j=1

τj(x, y)Υj(x, y)


 := H2f(x, y),

where H2 = 0 is an invariant algebraic curve and f = 0 is an analytic (non
polynomial) invariant curve with cofactor 2φ and −2φ respectively.

3.3. Center problem for analytic or polynomial vector fields with a gen-
eralized weak condition of a center. First we prove the following two proposi-
tions.

Proposition 23. Assume that a differential system (4) satisfies the relation

(24) (x2 + y2)

(
∂(−y + X)

∂x
+

∂(x + Y )

∂y

)
= µ (x(−y + X) + y(x + Y )) ,

with µ ∈ R\{0}. Then the system can be written as in (18) with

φ(x, y) =
2

µ

(
∂(−y + X)

∂x
+

∂(x + Y )

∂y

)
,

and Λ = Λ(x, y) an arbitrary analytic function in a neighborhood of the origin.
Moreover system (4) has the inverse integrating factor (x2 + y2)µ/2, and it can be
written as

(25) ẋ = (x2 + y2)µ/2{F, x} ẏ = (x2 + y2)µ/2{F, y},
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with

(26)

F =

∫

γ

(−Xdy + Y dx

(x2 + y2)µ/2
+

d(x2 + y2)

2(x2 + y2)µ/2

)

=





1

2 − µ
(x2 + y2)(µ−2)/2 +

∫

γ

−Xdy + Y dx

(x2 + y2)µ/2
if µ ̸= 2,

log
√

x2 + y2 +

∫

γ

−Xdy + Y dx

(x2 + y2)
, if µ = 2.

Note that if in (24) we have that µ = 0, then system (4) is a Hamiltonian system.

Proposition 24. Consider the polynomial differential system (2) of degree m which
satisfy the relations

(27)

∫ 2π

0

(
∂P

∂x
+

∂Q

∂y

)
|x=cos t, y=sin tdt = 0.

Then there exist polynomials H̃ =
m+1∑

j=3

Hj and G =
m−1∑

j=1

Gj of degree m + 1 and

m − 1 respectively such that system (2) can be written as

(28)
ẋ = P = {H̃, x} + (1 + G){H2, x},

ẏ = Q = {H̃, y} + (1 + G){H2, y}.

Note that we have extended the definition of “weak condition for a center” given
in subsection 2.5 for a quasi-homogenous polynomial differential system to a general
analytic differential system. Proposition 10 can be generalized as follows.

Theorem 25. [Generalized weak condition of a center of an analytic (polynomial)
differential systems] We consider an analytic (polynomial) differential system (7).
Then the origin is a weak center if there exists µ ∈ R\{0} such that (61) hold.
Moreover this differential system can be written as (25) with the first integral:

F =

∫

γ

(
(1 + (1 − 1/λ)Υ + q(H2))dH2 + H2dΥ

H
1/λ
2

)
,

with λ = 2/µ and Υ = Υ(x, y) and q = q(H2) are a convenient analytic functions,
or which is equivalent

(29)

ẋ = −y

(
1 + q(H2) + (1 − 1/λ)Υ +

1

2

(
x

∂ Υ

∂ x
+ y

∂ Υ

∂ y

))
+

x

2
{Υ, H2},

ẏ = x

(
1 + q(H2) + (1 − 1/λ)Υ +

1

2

(
x

∂ Υ

∂ x
+ y

∂ Υ

∂ y

))
+

y

2
{Υ,H2}.

Moreover, if (29) is a polynomial differential system of degree m, i.e. Υ = Υ(x, y)

is a polynomials of degree m−1 and q(H2)) =

[(m−1)/2]∑

j=1

αjH
j−1
2 , here [(m−1)/2] is

the integer part of (m − 1)/2, αj is a constant for j = 1, . . . , [(m − 1)/2] such that

1 + α1 +
λ − 1

λ
Υ(0, 0) ̸= 0.

then the system (29) is quasi Darboux-integrable with the first integral F which is
given in what follows
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(i) If λ ̸= 1 and

[m/2]∏

n=2

(n − 1/λ) ̸= 0, then

(30) F =
H2(

Υ +
1 + α1

1 − 1/λ
+

α2H2

2 − 1/λ
+ . . . +

αmH
[(m−1)/2]−1
2

[(m − 1)/2] − 1/λ

)λ/(λ−1)
.

The algebraic curves H2 = 0 and

g = Υ +
1 + α1

1 − 1/λ
+

α2H2

2 − 1/λ
+ . . . +

αmH
[(m−1)/2]−1
2

[(m − 1)/2] − 1/λ
= 0

are invariant curves with cofactors {g, H2} and (1 − 1/λ){g, H2}, respec-
tively.

(ii) If λ = 1 and 1 + α1 ̸= 0, then

(31) F = H2e
−

(
Υ+α2H2+α3H2

2/2+...+αmH
[(m−1)/2]−1
2 /([(m−1)/2]−1)

)
/(1+α1).

The algebraic curves H2 = 0 is invariant with cofactor {H2, Υ}.

(iii) If 1/[m/2] ≤ λ = 1/k < 1 and


αk

[(m−1)/2]∏

n=2,n̸=k

(n − k)


 ̸= 0, then

(32) F =
H2

Υ +
1 + α1

1 − k
+

[(m−1)/2]∑

j=2, j ̸=k

αj

j − k
Hj−1

2 + αkHk−1
2 log H2




1/(k−1)
.

The algebraic curve H2 = 0 and non-polynomial curve

f = Υ +
1 + α1

1 − k
+

[(m−1)/2]∑

j=2, j ̸=k

αj

j − k
Hj−1

2 + αkHk−1
2 log H2 = 0,

are invariant curves with cofactors {Υ,H2} and (1−k){Υ, H2}, respectively.
We observe that lim

(x,y)→(0,0)
f(x, y) = 0.

(iv) If 1/[(m − 1)/2] ≤ λ = 1/k < 1, αk = 0 and

[(m−1)/2]∏

n=2,n̸=k

(n − k) ̸= 0, then

(33) F =
H2

Υ +
1 + α1

1 − k
+

[(m−1)/2]∑

j=2, j ̸=k

αj

j − k
Hj−1

2




1/(k−1)
.

The algebraic curves H2 = 0 and

g = Υ +
1 + α1

1 − k
+

[(m−1)/2]∑

j=2, j ̸=k

αj

j − k
Hj−1

2 = 0

are invariant algebraic curves with cofactors {g, H2} and (1 − k){g, H2}
respectively.
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The given first integrals has the following Taylor extension at the origin F = H2(1+
h.o.t.) Consequently the origin is a weak center.

In an analogous way we can study the analytic case.

3.4. Linear centers with degenerate infinity. We shall study the following
class of differential systems

(34) ẋ = −y +

m−1∑

j=2

Xj + xRm−1, ẏ = x +

m−1∑

j=2

Yj + yRm−1,

where Rm−1 = Rm−1(x, y) is a convenient nonzero homogenous polynomial of
degree m − 1. Such system are polynomial differential systems with a degenerate
infinity. This name is due to the fact that in the Poincaré compactification of (34)
the line at infinity is filled with singular points.

Proposition 26. Assume that a polynomial differential system (5) has a center at
the origin with a first integral H given in (6). Then this system has a degenerate
infinity if it can be written as

ẋ =
m∑

j=2

gm+1−j{Ψ̄j , x} +
x

m + 1

m−1∑

j=1

{Hm+1−j , gj},

ẏ =
m∑

j=2

gm+1−j{Ψ̄j , y} +
y

m + 1

m−1∑

j=1

{Hm+1−j , gj},

where Ψ̄j =

j−1∑

k=2

Hk.

Proposition 26 characterizes the polynomial differential systems having a degen-
erate infinity and a linear type center at the origin.

Proposition 27. Polynomial differential system (18) has a degenerate infinity if
it can be written as

(35)

ẋ = −y(1 +
m−2∑

j=2

Λj) + x
m−2∑

j=2

φj + xφm−1,

ẏ = x(1 +
m−2∑

j=2

Λj) + y
m−2∑

j=2

φj + yφm−1,

i.e. Λm−1 = 0.

All the results of this subsection are proved in section 7.

4. The Proofs of Subsection 3.1

Proof of Theorem 12 . First we prove the “only if part”.Assume that the analytic
differential system (7) has a Poincaré-Liapunov local first integral. Then we shall
see that it can be written as (13).
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Consider a general analytic vector field with a singular point at the origin. Then
it can be written as that we write as

X =




∞∑

j=1

Xj(x, y)


 ∂

∂x
+




∞∑

j=1

Yj(x, y)


 ∂

∂y
,

where Xj and Yj for j = 0, 1, . . . are homogenous polynomials of degree j. Since the
analytic first integral H starts with H2 = (x2+y2)/2, without loss of generality this
implies that X1(x, y) = −y and Y1(x, y) = x. Hence the following infinite number
of equations must be satisfied

0 =
dH

dt
=

(
x +

∂ H3

∂x
+ . . .

)
(−y + X2 + X3 + . . .)

+

(
y +

∂ H3

∂y
+ . . .

)
(x + Y2 + Y3 + . . .)

= xX2 + yY2 + {H2,H3}

+xX3 + yY3 +
∂ H3

∂x
X2 +

∂ H3

∂y
Y2 + {H2,H4}

+xX4 + yY4 +
∂ H3

∂x
X3 +

∂ H3

∂y
Y3 +

∂ H4

∂x
X2 +

∂ H4

∂y
Y2 + {H2,H5} + . . .

...
...

...
...

+xXn + yYn +
∂ H3

∂x
Xn−1 +

∂ H3

∂y
Yn−1 + . . . +

∂ Hn

∂x
X2 +

∂ Hn

∂y
Y2 + {H2,Hn+1}

...
...

...
...

Consequently
(36)

xX2 + yY2 + {H2,H3} = 0,

xX3 + yY3 +
∂ H3

∂x
X2 +

∂ H3

∂y
Y2 + {H2,H4} = 0,

xX4 + yY4 +
∂ H3

∂x
X3 +

∂ H3

∂y
Y3 +

∂ H4

∂x
X2 +

∂ H4

∂y
Y2 + {H2,H5} = 0,

...
...

...
...

...
...

xXn + yYn +
∂ H3

∂x
Xn−1 + . . . +

∂ Hn

∂x
X2 +

∂ Hn

∂y
Y2 + {H2, Hn+1} = 0,

xXn+1 + yYn+1 +
∂ H3

∂x
Xn + . . . +

∂ Hn+1

∂x
X2 +

∂ Hn+1

∂y
Y2 + {H2, Hn+2} = 0,

...
...

...
...

...
....

First, we introduce the notations

X0 =

k∑

j=2

Xj =

k∑

j=2

({Hj+1, } + g1{Hj , } + . . . + gj−1{H2, }) ,
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where k ≤ ∞ and gj = gj(x, y) is a homogenous polynomial in the variables x
and y of degree j, for j = 1, 2, . . . , k.

The first equation of (36) can be rewritten as follows

x

(
X2 +

∂ H3

∂y

)
+ y

(
Y2 − ∂ H3

∂x

)
= 0.

Solving it with respect to X2 and Y2 we obtain

X2 = −∂ H3

∂y
− yg1 = {H3, x} + g1{H2, x} := X2(x),

Y2 =
∂ H3

∂x
+ xg1 = {H3, y} + g1{H2, y} := X2(y),

where g1 = g1(x, y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the second equation of (36) we get

x

(
X3 +

∂ H4

∂y
+ g1

∂ H3

∂y

)
+ y

(
Y3 − ∂ H4

∂ x
− g1

∂ H3

∂x

)
= 0.

By solving this equation with respect to X3 and Y3 we have

X3 = −∂ H4

∂y
− g1

∂ H3

∂y
− yg2 = {H4, x} + g1{H3, x} + g2{H2, x} := X3(x),

Y3 =
∂ H4

∂x
+ g1

∂ H3

∂x
+ xg2 = {H4, y} + g1{H3, y} + g2{H2, y} := X3(y),

where g2 = g2(x, y) is an arbitrary homogenous polynomial of degree two. By
continuing this process we obtain X4, Y4, . . . , Xn, Yn, i.e.

(37)
Xn = {Hn+1, x} + g1{Hn, x} + . . . + gn−1{H2, x} := Xn(x),

Yn = {Hn+1, y} + g1{Hn, y} + . . . + gn − 1{H2, y} := Xn(y),

where gn = gn(x, y) is an arbitrary homogenous polynomial of degree n. Hence,

since
∞∑

j=1

gj converges in a neighborhood of the origin, we get that

ẋ = −y + X2 + X3 + . . . + Xj + . . . = −y + X (x) = −y +

∞∑

j=2

Xj(x)

=


1 +

∞∑

j=1

gj


 {H, x},

ẏ = x + Y2 + Y3 + . . . + Yj + . . . = x + X (y) = x +
∞∑

j=2

Xj(y)

=


1 +

∞∑

j=1

gj


 {H, y}.

Note that the function 1+
∞∑

j=1

gj is an analytic integrating factor of the differential

system (13) i.e. it is a Reeb inverse integrating factor.
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Now we prove the “ if ” part. We assume that system (5) has a Reeb inverse
integrating factor. From the equation (12), i.e.

(X1 + X2 + X3 + . . .)

(
∂ V1

∂x
+

∂ V2

∂x
+

∂ V3

∂x
+ . . .

)

+(Y1 + Y2 + Y3 + . . .)

(
∂ V1

∂y
+

∂ V2

∂y
+

∂ V3

∂y
+ . . .

)

= (1 + V1 + V2 + . . .)

(
∂ X1

∂x
+

∂ Y1

∂y
+

∂ X2

∂x
+

∂ Y2

∂y
+

∂ X3

∂x
+

∂ Y3

∂y
+ . . .

)

if follows that
(38)

0 =
∂ X1

∂x
+

∂ Y1

∂y
,

Y1
∂ V1

∂y
+ X1

∂ V1

∂x
=

∂ X2

∂x
+

∂ Y2

∂y
,

Y1
∂ V2

∂y
+ X1

∂ V2

∂x
+ X2

∂ V1

∂x
+ Y2

∂ V1

∂y
=

∂ X3

∂x
+

∂ Y3

∂y
+ V1

(
∂ X2

∂x
+

∂ Y2

∂y

)
,

...
...

...
...

...
...

From the first equation of (38) we get that

X1 = −∂ F2

∂y
, Y1 =

∂ F2

∂x
,

where F2 = F2(x, y) is an arbitrary homogenous polynomial of degree 2. From the
second equation of (38) we obtain

∂

∂x

(
X2 + V1

∂ F2

∂y

)
+

∂

∂y

(
Y2 − V1

∂ F2

∂x

)
= 0,

hence

(39) X2 = −∂ F3

∂y
− V1

∂ F2

∂y
, Y2 =

∂ F3

∂x
+ V1

∂ F2

∂x
,

where F3 = F3(x, y) is an arbitrary homogenous polynomial of degree 3. From the
third equation of (38) we obtain

∂

∂x

(
X3 + V1

∂ F3

∂x
+ V2

∂ F2

∂y

)
+

∂

∂y

(
Y3 − V1

∂ F3

∂y
− V2

∂ F2

∂x

)
= 0,

thus

X3 = −∂ F4

∂y
− V1

∂ F3

∂y
− V2

∂ F2

∂y
, Y3 =

∂ F4

∂x
+ V1

∂ F3

∂x
+ V2

∂ F2

∂x
,

where F4 = F4x, y) is an arbitrary homogenous polynomial of degree 4. By contin-
uing this process we get

{Fj , V1} + . . . + {F2, Vj−1} =
∂ Xj

∂x
+

∂ Yj

∂y
,
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by considering that {Fk, Vn} =
∂

∂y

(
Vn

∂Fj

∂x

)
− ∂

∂x

(
Vn

∂Fj

∂y

)
we deduce the rela-

tion

∂

∂x

(
Xj + V1

∂ Fj

∂y
+ . . . + . . . + Vj−1

∂ F2

∂y

)
+

∂

∂y

(
Xj − V1

∂ Fj

∂x
− − . . . − Vj−1

∂ F2

∂x

)
= 0.

By using the notation

X̃0 =
k∑

j=12

X̃j =
k∑

j=12

({Fj+1, } + V1{Fj , } + . . . + Vj−1{F2, }) ,

where k ≤ ∞, Vj = Vj(x, y) and Fj = Fj(x, y) are homogenous polynomial in the
variables x and y of degree j, for j = 1, 2, . . . , k, we get that

(40)

X̃1(x) = {F2, x} = X1,

X̃1(y) = {F2, y} = Y1,

X̃2(x) = {F3, x} + V1{F2, x} = X2,

X̃2(y) = {F3, y} + V1{F2, y} = Y2,

...
...

...
...

...
...

X̃m(x) = {Fm+1, x} + V1{Fm, x} + . . . + Vm−1{F2, x} = Xm,

X̃m(y) = {Fm+1, y} + V1{Fm, y} + . . . + Vm−1{F2, y} = Ym,

(41)

X̃m+k−1(x) = {Fm+k, x} + V1{Fm−1+k, x} + . . . + Vm+k−2{F2, x} = Xm+k−1,

X̃m+k−1(y) = {Fm+k, y} + V1{Fm−1+k, y} + . . . + Vm+k−2{F2, y} = Ym+k−1,

where k > 1 and Fk = Fk(x, y) is an arbitrary homogenous polynomial of degree

j, for j ≥ 3, such that the series F =
∞∑

j=2

Fj , converges at neighborhood of the

origin. By considering that we are interesting in studying the linear type center
then X1 = −y and X1 = x then we have that F2 = (x2 + y2)/2. Therefore

F = (x2 + y2)/2 + F3 + F4 + . . . ,

is a Poincaré-Liapunov local first integral this prove the “ if ” part of the theorem.
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Moreover, by summing we get

ẋ = −y +

∞∑

j=2

Xj =

∞∑

j=2

({Fj+1, x} + V1{Fj , x} + . . . + Vj−1{F2, x})

=


1 +

∞∑

j=2

Vj


 {F, x}

ẏ = x +
∞∑

j=2

Xj =
∞∑

j=2

({Fj+1, y} + V1{Fj , y} + . . . + Vj−1{F2, y})

=


1 +

∞∑

j=2

Vj


 {F, y},

Thus the proof of the theorem follows. �

Remark 28. From the “only if” part follows that the arbitrariness which we deter-
mine the vector fields with the given Poincaré-Liapunov local first integral is related

with the Reebs inverse integrating factor V = 1+
∞∑

j=2

gj and from the ” if” part fol-

lows that the arbitrariness which we determine the vector fields with the given Reebs
inverse integrating factor is related with the Poincaré-Liapunov local first integral
F = (x2 + y2)/2 + F3 + F4 + . . ..

Proof of Theorem 13. Now we assume that the vector field X is polynomial of de-
gree m. First we prove the ”only if“ part. From (37) it follows that if Xn = Yn = 0
for n > m + 1, then
(42)

ẋ = −y +
∞∑

j=2

Xj(x) = −y +
m∑

j=2

Xj(x)

= −y + {Hm+1, x} + (1 + g1){Hm, x} + . . . + (1 + g1 + . . . + gm−1){H2, x},

ẏ = x +

∞∑

j=2

Xj(y) = x +

m∑

j=2

Xj(y)

= x + {Hm+1, y} + (1 + g1){Hm, y} + . . . + (1 + g1 + . . . + gm−1){H2, y}.

Clearly, if Xn = Yn = 0 for n ≥ m + 1, then
(43)
Xm+1(x) = {Hm+2, x} + g1{Hm+1, x} + . . . + +gm−1{H3, x} + gm{H2, x} = 0,

Xm+1(y) = {Hm+2, y} + g1{Hm+1, y} + . . . + +gm−1{H3, y} + gm{H2, y} = 0,

Xm+k(x) = {Hm+k+1, x} + g1{Hm+k, x} + . . . + gm+k−1{H2, x} = 0,

Xm+k(y) = {Hm+k+1, y} + g1{Hm+k, y} + . . . + gm+k−1{H2, y} = 0,
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for k > 2. This system of partial differential equations of first order is compatible
if and only if the following relations hold

(44)
{Hm+1, g1} + {Hm, g2} + . . . + {H3, gm−1} + {H2, gm} = 0,

{Hm+k, g1} + {Hm+k−1, g2} + . . . + {H2, gm+k−1} = 0,

for k ≥ 2. Hence, in view of Proposition 8 we get that
∫ 2π

0

(
{Hm+1, g1} + {Hm, g2} + . . . + {H3, gm−1}

)∣∣∣
x=cos t, y=sin t

dt = 0.

We shall study partial differential equations (43) under the conditions (44).

For k = 2 from (43) we get

(45) dHm+2 = −g1dHm+1 − g2dHm + . . . − gm−1dH3 − gmdH2,

where gm = gm(x, y) is an arbitrary homogenous polynomial of degree m which
satisfies the first order partial differential equations (see (44) for n = m+1.) Hence
the two first partial differential system (43) is compatible, consequently integrating
the 1-form (45) we obtain

Hm+2 = −
∫

γ

(g1dHm+1 + g2dHm + . . . + gm−1dH3 + gmdH2) .

On the other hand from (43) and using that Hj are homogenous polynomial of
degree j, we get that

Hm+2 = − 1

m + 2
((m + 1)g1Hm+1 + . . . + 3gm−1H3 + 2gmH2) .

For k = 3 system (43) becomes

(46)
{Hm+3, x} + g1{Hm+2, x} + . . . + gm{H3, x} + gm+1{H2, x} = 0,

{Hm+3, y} + g1{Hm+2, y} + . . . + gm{H3, y} + gm+1{H2, y} = 0,

which in view of (45) system (46) can be written as

(47)

{Hm+3, x} +
(
g2
1 − g2

)
{Hm+1, x} + (g1g2 − g3) {Hm, x}

+ . . . + (g1gm−1 − gm){H3, x} + (g1gm + gm+1) {H2, x} = 0,

{Hm+3, y} +
(
g2
1 − g2

)
{Hm+1, y} + (g1g2 − g3) {Hm, y}

+ . . . + (g1gm−1 − gm){H3, y} + (g1gm + gm+1) {H2, y} = 0,

where gm+1 = gm+1(x, y) is an arbitrary homogenous polynomial of degree m + 1
which satisfies the first order partial differential equation

(48)
{
(
g2
1 − g2

)
, Hm+1} + {(g1g2 − g3) ,Hm}

+ . . . + {(g1gm−1 − gm),H3} + {(g1gm − gm+1) ,H2} = 0.

Hence, in view of Proposition 8 we get that

−
∫ 2π

0

(
{
(
g2
1 − g2

)
,Hm+1} + {(g1g2 − g3) , Hm}

+ . . . + {(g1gm−1 − gm),H3}
)∣∣∣

x=cos t, y=sin t
dt = 0.
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On the other hand, from (47) and in view of the fact that Hj are homogenous
polynomial of degree j we get that

Hm+3 = − 1

m + 3

(
(m + 1)

(
g2
1 − g2

)
Hm+1 − m (g1g2 − g3) Hm

− . . . + 3(g1gm−1 − gm)H3 − 2 (g1gm − +gm+1)H2

)
.

Under the condition (48) system (47) is compatible, consequently after the integra-
tion de 1-form

dHm+3 = −
(
g2
1 − g2

)
dHm+1 − (g1g2 − g3) dHm

− . . . + (g1gm−1 − gm)dH3 − (g1gm − gm+1) dH2,

we get that

Hm+3 = −
∫

γ

(
g2
1 − g2

)
dHm+1 − (g1g2 − g3) dHm

− . . . + (g1gm−1 − gm)dH3 − (g1gm − gm+1) dH2

= − 1

m + 3

(
(m + 1)

(
g2
1 − g2

)
Hm+1 − m (g1g2 − g3) Hm

− . . . + 3(g1gm−1 − gm)H3 − 2 (g1gm − gm+1)H2

)

For k = 4 system (43) becomes

{Hm+4, x} + g1{Hm+3, x} + . . . + gm{H4, x} + gm+1{H3, x} + gm+2{H2, x} = 0,

{Hm+4, x} + g1{Hm+3, y} + . . . + gm{H4, y} + gm+1{H3, y} + gm+2{H2, y} = 0,

which in view of (45) system (46) can be written as
(49)

{Hm+4, x} +
(
−g3

1 + 2g1g2 − g3

)
{Hm+1, x}

+
(
−g2

1g2 + g3g1 + g2
2 − g4

)
{Hm, x} + . . . +

(
g1gm+1 − g2

1gm−1 − gm+2

)
{H2, x} = 0,

{Hm+4, y} +
(
−g3

1 + 2g1g2 − g3

)
{Hm+1, y}

+
(
−g2

1g2 + g3g1 + g2
2 − g4

)
{Hm, y} + . . . +

(
g1gm+1 − g2

1gm−1 − gm+2

)
{H2, y} = 0,

where gm+2 = gm+2(x, y) is an arbitrary homogenous polynomial of degree m + 2
which satisfies the first order partial differential equation

(50)
0 = {−g3

1 + 2g1g2 − g3, Hm+1} + {−g2
1g2 + g3g1 + g2

2 − g4, Hm}
+ . . . + {(g2 − g2

1)gm + g1gm+1 − gm+2, H2}.

∫ 2π

0

(
{
(
−g3

1 + 2g1g2 − g3

)
, Hm+1}

+ . . . + {
(
(g2 − g2

1)gm−1 + g1gm − gm+1

)
, H3}

)∣∣∣
x=cos t, y=sin t

dt = 0.

Under this condition system (49) is compatible, consequently after the integration
of the 1-form

dHm+4 = −
(
−g3

1 + 2g1g2 − g3

)
dHm+1−. . .−

(
(g2 − g2

1)gm + g1gm+1 − gm+2

)
dH2
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and using the property of homogenous polynomial we get that

Hm+4 =

∫

γ

m∑

j=1

(
gj(g2 − g2

1) + g1gj+1 − gj+2

)
dHm+2−j .

=
1

m + 4

m∑

j=1

(m + 2 − j)(
(
gj(g2 − g2

1) + g1gj+1 − gj+2

)
Hm+2−j .

By continuing this process we deduce that

dHm+k = −βk−1 dHm+1 − βkdHm − . . . − (βm+k−2 + gm+k−2)dH2 for k ≥ 5,

where βj = βj(x, y) are homogenous polynomial of degree j, and gm+k−2 is an
arbitrary homogenous polynomial of degree m+k−2 which we choose as a solution
of the first order partial differential equation

(51) {βk−1, Hm+1} + . . . + {βm+k−2 + gm+k−2,H2} = 0 for k ≥ 5,

Thus

Hm+k =

∫

γ

(−βk−1 dHm+1 − βkdHm − . . . − (βm+k−2 + gm+k−2)dH2)

=
1

m + k
((m + 1)αkHm+1 + mαk+1Hm + . . . + 2αm+k−2H2)

for k ≥ 5, where αk is a convenient homogenous polynomial of degree k.

From these results it follows that the homogenous polynomials Hj+1 and gj−1

for j > m we determine by the line integral and as a solution of the linear partial
differential equation respectively.

By summing we finally obtain
(52)

H =

∞∑

j=2

Hj = (x2 + y2)/2 +

∞∑

j=3

Hj

=

∫

γ

(
1 − g1 − g2 − . . . − gm−1 − gm . . . + g2

1 + . . . + g2
m−1 + g2

m + . . .
)
dHm+1

+

∫

γ

(
1 − g2 − g3 − . . . − gm−1 − gm . . . − g1g2 − g1g3 + . . .

)
dHm

...
...

...
...

+

∫

γ

(
1 − gm − gm+1 − . . . − 2g1g2 − 2g1g3 − . . . − 2g1gm−1 − g2

1 − g2
2 . . .

)
dH2

= τm+1Hm+1 + τmHm + . . . + τ2H2,

where τj = τj(x, y) is a convenient analytical function, for j = 2, . . . , m + 1.
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Hence, if
∞∑

j=3

gj converges in a neighborhood of the origin, then in view of the

Taylor expansion

Ω :=
1

1 +
∞∑

j=1

gj

= 1 −
∞∑

j=3

gj +




∞∑

j=1

gj




2

+ . . . ,

we get that

Ω = 1 − g1 − g2 − . . . − gm−1 − gm . . . + g2
1 + . . . + g2

m−1 + g2
m + . . . ,

(1 + g1)Ω = 1 − g2 − g3 − . . . − gm−1 − gm . . . − g1g2 − g1g3 + . . . ,

...
...

...
...

(1 + g1 + . . . + gm−1)Ω = 1 − gm − gm+1 − . . . − 2g1g2 − 2g1g3

− . . . − 2g1gm−1 − g2
1 − g2

2 . . . .

Therefore the function (52) can be written as follows

H = (x2 + y2)/2 +

∞∑

j=3

Hj = τm+1Hm+1 + τmHm + . . . + τ2H2

=

∫

γ

Ω
(
dHm+1 + (1 + g1)dHm + . . . (1 + g1 + . . . gm−1)dH2

)
,

On the other hand, by summing (44), (48), (50), (51) and etc. we get
{
−g1 − g2 − . . . − gm−1 − gm . . . + g2

1 + . . . + g2
m−1 + g2

m + . . . , Hm+1

}

+{1 − g2 − g3 − . . . − gm−1 − gm . . . − g1g2 − g1g3 + . . . , Hm}
...

...
...

...

+{1 − gm − gm+1 − . . . − 2g1g2 − 2g1g3 − . . . − 2g1gm−1 − g2
1 − g2

2 . . . , H2}
= {Ω,Hm+1} + {Ω(1 + g1),Hm} + . . . + {Ω(1 + g1 + . . . + gm−1),H2} = 0.

Hence we obtain that the polynomial differential system (42) of degree m can be

written as (14) where 1 +
∞∑

j=2

gj is the Reeb inverse integrating factor. In short the

proof of the “only if part” and the statement (i) follows. This proves the “only if
part” of the theorem.

Now we prove the ” if” part. We assume that V = 1+

∞∑

j=2

Vj is the Reeb inverse

integrating factor. From (40) and (41) it follows that If Xj = Yj = 0 for j > m+1,
then

(53)
X̃k(x) = {Fk+1, x} + V1{Fk, x} + . . . + Vk−1{F2, x} = 0,

X̃k(y) = {Fk+1, y} + V1{Fk, y} + . . . + Vk−1{F2, y} = 0,

for k ≥ m + 1.
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System of partial differential equations of first order (53) is compatible if and
only if

(54) {V1, Fk} + {V2, Fk−1} + . . . + {Vk−1, F2} = 0,

where k ≥ m + 1. The proof of statement (ii) can be obtained analogously to the
proof of statement (i), if we take gj = Vj and Hj+1 = Fj+1 for j = 1, . . . ,m.

Finally we observe that from (15) it follows that

∂F

∂y
= Ω ({Hm+1, x} + (1 + g1){Hm, x} + . . . + (1 + g1 + . . . + gm−1){H2, x}) ,

∂F

∂x
= Ω ({Hm+1, y} + (1 + g1){Hm, y} + . . . + (1 + g1 + . . . + gm−1){H2, y}) ,

From the condition
∂2 H

∂ x∂ y
=

∂2 H

∂ y∂ x
, we get the condition (16). In short the theorem

is proved. �

Example 29. We shall determine the quadratic system having the Reeb integrating
factor

V = (1a + Ay)2b/A−1 = 1 + (2b − A)y + (A − 2b)(A − b)y2

+
1

3
(A − 2b)(A − b)(3A − 2b)y3 + . . .

= 1 + V1 + V2 + V3 + . . . ,

where A and b are nonzero constants. The quadratic polynomial differential system
(39) in this case becomes

X2 = −∂F3

∂y
− (2b − A)y2, Y2 =

∂F3

∂x
+ (2b − A)xy,

where F3 is a homogenous polynomial of degree 3, which satisfies the conditions
(54) for k = 3. Hence we obtain that F3 = bx2y + κ y3, where κ is a constant.
Therefore

X2 = −bx2 − (A − 2b + 3κ)y2, Y2 = 2bxy + (A − 2b)xy = Axy.

5. The Proofs of Subsection 3.2

Proof of Theorem 15. Necessity We suppose that system (4) has a weak center at
the origin . Consequently there exists an analytic local first integral H = H2(1 +
∞∑

j=1

Υj) := H2Φ. Then from Theorem 12 it follows the necessary and sufficient

conditions on the existence of a linear type center for an analytic differential system
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differential system. Thus (13) becomes
(55)

ẋ = V {H,x} = −V

(
yΦ + H2

∂Φ

∂y

)
= −V y

(
Φ +

y

2

∂Φ

∂y
+

x

2

∂Φ

∂x

)
+ V

x

2
{Φ,H2}

=


1 +

∞∑

j=1

gj




−y

(
1 +

∞∑

j=1

j + 2

2
Υj

)
+

x

2

∞∑

j=1

j + 2

2
{Υj ,H2}




= −y
(
1 +

∞∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

))

+
x

2

∞∑

j=2

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1, H2}

)

= −y
(
1 +

∞∑

j=2

Λj

)
+

x

2

∞∑

j=2

Ωj

ẏ = V {H, y} = V

(
xΦ + H2

∂Φ

∂x

)
= V x

(
Φ +

y

2

∂Φ

∂y
+

x

2

∂Φ

∂x

)
+ V

y

2
{Φ,H2}

=


1 +

∞∑

j=1

gj




x
(
1 +

∞∑

j=1

j + 2

2
Υj

)
+

y

2

∞∑

j=1

j + 2

2
{Υj ,H2}




= x
(
1 +

∞∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

))

+
y

2

∞∑

j=2

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)

= x
(
1 +

∞∑

j=2

Λj

)
+

y

2

∞∑

j=2

Ωj .

Sufficiency Now we suppose that (19) holds and show that then the origin is

a weak center. Indeed, from (55) we obtain that Ḣ2 = 2V H2{Φ, H2}, Φ̇ =

−2V Φ{Φ,H2}, thus
dΦ

dH2
= − Φ

H2
then H = H2Φ is a first integral, consequently

the origin is a weak center.

The second statement we prove as follows. Under the assumption

−y
∞∑

j=m

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)

+
x

2

∞∑

j=m

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)
= 0

x

∞∑

j=m

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)
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+
y

2

∞∑

j=m

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)
= 0

which is equivalent to the equations

j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1 = 0

{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2} = 0

for j > m + 1, from (55) we get the following polynomial differential equations of
degree m.

ẋ = −y


1 +

m∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)


+
x

2

m∑

j=2

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)
,

ẏ = x


1 +

m∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)


+
y

2

m∑

j=2

(
{Υj−1, H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1,H2}

)

Here Υj is a convenient homogenous polynomial of degree j, such that H2 =
(x2 + y2)/2, Hj+2 = H2Υj , for j = 1 . . . m + 1 and gj is an arbitrary homogenous
polynomial of degree j satisfying (16). Consequently in view of (15) we obtain the
local first integral (20). Thus the theorem is proved �

Example 30. The following cubic polynomial differential system has a center at
the origin (see [35])

ẋ = −y +
1

2

(
x2 − xy − 2y2 − xy2 − y3

)
= −y(1 + y +

y2

2
) +

x

2
(x − y − y2)

ẏ = x +
1

2

(
3xy − y2 + xy2 − y3

)
= x(1 + y +

y2

2
) +

y

2
(x − y − y2),

Consequently this system can be rewritten as (18) with the functions φ and Λ de-

termined as follows 1 + Λ =
1

2
(1 + (y + 1)2, φ = x − y − y2. and hence the center

is a weak center.

In order to illustrate Theorem 13 we study the following quadratic systems.

Example 31. For the quadratic differential system

ẋ = −y − bx2 − dy2 ẏ = x + Axy,

the functions H3 and g1 are H3 = 2b y H2 +
d − b − A

3
y3 and g1 = (A − 2b)y. It

is easy to show that the solution of equation (16) for m = 2, i.e. the equation
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H3, Ω} + {H2, (1 + g1)Ω} = 0, is Ω = (1 + Ay)2b/A−1. Consequently from (15) the
quadratic system has the following first integral

h(x, y) =

∫
(1 + Ay)2b/A−1 (dH3 + (1 + g1)dH2)

= (1 + Ay)2b/A
(
2(b(A + b)(A + 2b)H2 + (d − A − b)

(
1 − 2by + by2(A + 2b)

))
,

and from it we obtain the Poincaré-Liapunov first integral H =
A + b − d + h(x, y)

2b(A + b)(A + 2b)
=

H2 + h.o.t..

In particular if d − A − b = 0, then the quadratic polynomial differential system
has a weak center at the origin with H3 = 2b y H2, and Poincaré-Liapunov first
integral H = (1 + Ay)2b/A−1H2.

Proof of Corollary 17. From the equation Λ = 0 and in view of of (22) we get

∞∑

j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . . +

3

2
gj−2Υ1 + gj−1

)
= 0,

hence by considering that Hj = H2Υj−2 we obtain that

Hj+1 = − 1

j + 1
(j g1Hj + . . . + 3 gj−2H3 + 2gj−1H2) ,

for j ≥ 2. On the other hand, in view of the previous relation it follows from (22)
that

2φ =

∞∑

j=2

(
{Υj−1,H2} + g1{Υj−2,H2} + . . . + gj−2{Υ1, H2}

)

=
1

H2

∞∑

j=2

(
{Hj+1,H2} + g1{Hj ,H2} + . . . + gj−2{H3,H2}

)

=
1

H2

∞∑

j=2

( −1

j + 1
{jg1Hj + . . . + 2gj−1H2, H2} + g1{Hj ,H2} + . . . + gj−2{H3,H2}

)

= − 1

H2

∞∑

j=2

( 1

j + 1
({jg1Hj + . . . + 2gj−1H2, H2) − g1{Hj ,H2} − . . . − gj−2{H3,H2}

)

= − 1

H2

∞∑

j=2

( 1

j + 1
({jg1Hj , H2} − (j + 1)g1{Hj ,H2} + . . .)

)

= − 1

H2

∞∑

j=2

( 1

j + 1
(jHj{g1, H2} − g1{Hj ,H2} + . . .)

)

= − 1

H2

∞∑

j=2

( 1

j + 1

(
(x

∂Hj

∂x
+ y

∂Hj

∂y
){g1,H2} − (x

∂g1

∂x
+ y

∂g1

∂x
)({Hj ,H2} + . . .)

))
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=
1

H2

∞∑

j=2

1

j + 1
(x2 + y2)

(
{Hj , g1} + . . . + {H2, gj−1}

)

= 2
∞∑

j=2

1

j + 1

(
{Hj , g1} + . . . + {H2, gj−1}

)
.

Hence, if we assume that {Hj , g1} + . . . + {H2, gj−1} = 0 for j > m + 1 then we
obtain the conditions under which the polynomial differential system has a uniform
isochronous center at the origin. Thus the proof of the corollary follows. �

Proof of Corollary 16. First we observe that differential equations (18) in polar
coordinates x = r cos θ, y = r sin θ becomes

ṙ = rφ(r cos θ, r sin θ), θ̇ = 1 + Λ(r cos θ, r sin θ),

hence in view of that the center is weak center, then the polar coordinates must be
such that H(r cos θ, r sin θ) = C = constant. Hence we get that the weak center is
an isochronous center if and only if (21) holds, thus the corollary is proved. �

Proof of Proposition 22. Since at the origin of system (18) there is a weak center,
we have an analytic first integral H = H2f in a neighborhood of the origin. So
clearly H2 = 0 and f = 0 are invariant curves of system (18). It is easy to check

that
dH2

dt
= 2H2φ. From the first integral H = H2f we get that

dH2

dt
f + H2

df

dt
= 2H2φf + H2

df

dt
= 0.

Thus
df

dt
= −2φf, and the proposition is proved. �

Proof of Corollary 18. From the Cauchy–Riemann conditions it is easy to obtain
condition

∂Λ

∂x
+

∂φ

∂y
= 0,

∂Λ

∂y
− ∂φ

∂x
= 0 ⇐⇒ ∂ (φ + iΛ)

∂z̄
= 0,

i.e. the functions Λ and φ are harmonic functions. Moreover differential system
(18) in complex coordinates z = x + i y and z̄ = x − i y becomes

(56) ż = iz + zΦ(z) := f(z),

where f = f(z) is a holomorphic function, Φ(z) = φ + iΛ. Clearly if we have a
differential system ż = zΨ(z) where Ψ = u(x, y) + iv(x, y) then this differential
system can be rewritten as follows

ẋ = −yv + xu ẏ = xv + yu,

i.e. can be rewritten as (18) with 1 + Λ = v and φ = u.

From equations (56) we get

dz

f(z)
−
(

dz

f(z)

)
= 0,

hence after the integration the existence of the first integral

(57)

∫

γ

(
dz

f(z)
−
(

dz

f(z)

))
= 2i

(∫

γ

Im
dz

f(z)

)
= Const..
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follows.

Now we prove that a holomorphic center for a polynomial differential system is

Darboux integrable. Indeed from (57) it follows that F = 2

∫
Im

dz

f(z)
is a first

integral.

We shall study the case when

f(z) = z(i+Φ(z)) = z
m−1∏

s=1

(z − zs)
ks for ks ∈ N : k1+k2+. . .+km−1 = m−1,

where zs are complex numbers for s = 1, . . . , m − 1, such that

(58) Ref ′(0) := 0, Imf ′(0) = i.

Under this condition the origin is a holomorphic isochronous center.

We develop 1/f(z) and 1/f(z̄) as follows

1

f(z)
=

A
(1)
0

z
+

m−1∑

s=1

A
(1)
s

z − zs
+

m−1∑

s=1

A
(2)
s

(z − zs)2
+ . . . +

m−1∑

s=1

A
(ks)
s

(z − zs)ks
,

1

f(z̄)
=

(
1

f(z)

)
,

where A
(ks)
s =

ks!

f (ks)(zs)
= α

(ks)
s +iβ

(ks)
s , α

(1)
0 = 0, β

(1)
0 = 1, with α

(ks)
s , β

(ks)
s ∈

R and f (n)(z) =
dnf(z)

dzn
. We get after the integration

∫

γ

(
A

(1)
0

z
+

m−1∑

s=1

A
(1)
s

z − zs
+

m−1∑

s=1

A
(2)
s

(z − zs)2
+ . . . +

m−1∑

s=1

A
(ks)
s

(z − zs)ks

)
dz

−
∫

γ

(
Ā

(1)
0

z̄
+

m−1∑

s=1

Ā
(1)
s

z̄ − z̄s
+

m−1∑

s=1

Ā
(2)
s

(z̄ − z̄s)2
+ . . . +

m−1∑

s=1

Ā
(ks)
s

(z̄ − z̄s)ks

)
dz̄

=

∫

γ

(
dz

f(z)
−
(

dz

f(z)

))
.

After some computations we obtain the following expression for the first integral

F̃ = log




m−1∏

s=0

(z − zs)
A(1)

s

m−1∏

s=0

(z̄ − z̄s)
Ā(1)

s




−
m−1∑

s=1

A
(2)
s

(z − zs)
+ . . . +

m−1∑

s=1

1

(1 − ks)

A
(ks)
s

(z − zs)−1+ks

−
m−1∑

s=1

Ā
(2)
s

(z̄ − z̄s)
+ . . . +

m−1∑

s=1

1

(1 − ks)

Ā
(ks)
s

(z̄ − z̄s)−1+ks
.
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where z0 = 0. In view of the relation

z − zs =
√

(x − xs)2 + (y − ys)2e
i arctan

y − ys

x − xs .

Hence

F̃ = log




m−1∏

s=0

(|z − zs|)A(1)
s −Ā(1)

s e
i(A(1)

s +Ā(1)
s ) arctan

y − ys

x − xs


+ Ψ

Ψ := −
m−1∑

s=1

A
(2)
s

(z − zs)
+ . . . +

m−1∑

s=1

1

(1 − ks)

A
(ks)
s

(z − zs)−1+ks

−
m−1∑

s=1

Ā
(2)
s

(z̄ − z̄s)
− . . . −

m−1∑

s=1

1

(1 − ks)

Ā
(ks)
s

(z̄ − z̄s)−1+ks
.

and by considering condition (58) after tedious computations we obtain that the
first integral is a Darboux first integral:

F = e−iF̃ = e−iΨ

m−1∏

s=0

(
(x − xs)

2 + (y − ys)
2
)β(1)

s e

m−1∑

s=0

α(1)
s arctan

y − ys

x − xs

= (x2 + y2)


e−iΨ

m−1∏

s=1

(
(x − xs)

2 + (y − ys)
2
)β(1)

s e

m−1∑

s=1

α(1)
s arctan

y − ys

x − xs


 .

So the first integral F has a Taylor expansion in the neighborhood of the origin has
the form F = (x2 + y2) (1 + h.o.t.) . Thus the holomorphic isochronous center is a
weak center. In short the proposition is proved. �

We observe that the problem on the existence the first integral for the complex
differential system was study in particular in [27]

Proof of Proposition 23. From (24) it follows that

x(−y + X − λxφ) + y(x + Y − yφ) = 0,

where λ = 2/µ and φ =
∂(−y + X)

∂ x
+

∂(x + Y )

∂ y
. Thus

−y + X = −ν y + xφ, x + Y = xν + yφ,

where ν = ν(x, y) is an arbitrary function. Denoting ν = 1 + Λ we get that
differential equations (4) coincide with (18). On the other hand in view of the
relations

(−y + X)
∂H2

∂ x
+ (x + X)

∂H2

∂ y
= λH2φ = λ H2

(
∂(−y + X)

∂ x
+

∂(x + Y )

∂ y

)
,

which is equivalent to

(59)
∂

∂x

( −y + X

(x2 + y2)µ/2

)
+

∂

∂y

(
x + Y

(x2 + y2)µ/2

)
= 0.
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i.e. Hλ
2 is inverse integrating factor. Thus differential system (4) can be written as

(25) with F given by the formula (26). In short corollary is proved. �

Proof of Proposition 24. Suppose that P and Q can be written as in (28) where
H and G are polynomials, and we shall see that such polynomials exist when (27)
holds. Then

∂H̃

∂y
= −yG − P,

∂H̃

∂x
= −xG + Q.

Hence by considering that
∂2H̃

∂x∂y
=

∂2H̃

∂y∂x
, we get that

x
∂G

∂y
− y

∂G

∂x
= {H2, G} =

∂P

∂x
+

∂Q

∂y
.

By considering that (27) holds, then in view of Corollary 8 we deduce that there

exists a polynomial G =
m−1∑

j=1

Gj such that

(60) x
∂Gj

∂y
− y

∂Gj

∂x
= {H2, Gj} =

∂Pj

∂x
+

∂Qj

∂y
.

We can determine the function H as follows

H̃ =

∫ x

x0

(−x
m−1∑

j=1

Gj + Q)dx −
∫ y

y0

(y
m−1∑

j=1

Gj + P )

∣∣∣∣∣∣
x=x0

dy,

where Gj = Gj(x, y) is the solution of equation (60). In short the proposition is
proved. �

We observe that from (28) it follows that

xP + yQ = {H̃, H2},
∂P

∂x
+

∂Q

∂y
= {H2, G},

thus in view of Proposition 6 we obtain that
∫ 2π

0

(xP (x, y) + y Q(x, y)) |x=cos t, y=sin tdt = 0,

∫ 2π

0

(
∂P

∂x
+

∂Q

∂y

)
|x=cos t, y=sin tdt = 0.

We consider an analytic differential system (7) under the assumptions

(61)

(x2 + y2)

(
∂X

∂x
+

∂Y

∂y

)
= µ (xX + yY ) ,

∫ 2π

0

(
∂X

∂x
+

∂Y

∂y

)
|x=cos t, y=sin tdt = 0,

where µ ∈ R\{0}.

The previous result can be extended for the analytic vector field. Thus we have
the following proposition.
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Proposition 32. Let (2) be an analytic differential system which satisfies the re-
lation ∫ 2π

0

(
∂P

∂x
+

∂Q

∂y

)
|x=cos t, y=sin tdt = 0.

Then there exist analytic functions H̃ =
∞∑

j=2

Hj and G =
∞∑

j=1

Gj such that

ẋ = P = −∂H̃

∂y
−yG = {H̃, x}+G{H2, x}, ẏ = Q =

∂H

∂x
+xG = {H̃, y}+G{H2, y}.

Proof. It is analogous to the proof of Proposition 24. �

Finally We have the following remarks related with differential system (18).

Remark 33. (a) It is easy to observe that the singular points of differential
system (18) lies on the intersection of the curves

(x2 + y2)φ(x, y) = 0 (x2 + y2) (1 + Λ(x, y)) = 0.

In particular if Λ = 0 then the only singular point is the origin. If the vector
field is polynomial of degree m, then by Bezout Theorem the maximum
number of singular points of system (18) is (m − 1)2 + 1.

(b) If in (18) we assume that Λ = ω(x2 + y2) − 1, and φ = λ(x2 + y2), then
system (18) becomes

ẋ = −y ω(x2 + y2) + xλ(x2 + y2), ẏ = xω(x2 + y2) + y λ(x2 + y2),

which is called the lambda–omega system (see for instance [15]).
(c) It is well known the following result.

Let X be an analytic vector field associated to differential system (4).
Then X has either the focus or a center at the origin, and under a formal
change of coordinates differential system associated to X can be reduced to
the Birkhoff normal form

ẋ = −y(1 + S2(x
2 + y2)) + xS1(x

2 + y2),

ẏ = (1 + S2(x
2 + y2)) + yS1(x

2 + y2),

where Sj = Sj(x
2 +y2) for j = 1, 2 are formal series in the variable x2 +y2

(see for instance [3]). Clearly these differential equations are particular case
of (18).

6. The Proofs of Subsection 3.3

Proof of Theorem 25. We shall study only the case when the differential system is
a polynomial differential systems of degree m.

It is possible to show that condition (24) is equivalent to (59). Hence from the
first of condition of (61) and in view of Proposition 23 we get that a polynomial
differential system (4) can be written as (25) with F given in the formula (26).
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On the other hand in view of Proposition 24 and the second of conditions (61)

we get that there exist polynomials H̃ = H̃(x, y) and G = G(x, y) of degree m + 1
and m − 1 respectively, such that the following relations hold

(62)
ẋ = −y + X = {H̃, x} + G{H2, x},

ẏ = x + Y = {H̃, y} + G{H2, y},

Hence
∂X

∂x
+

∂Y

∂y
= {H2, G}, xX + yY = {H̃,H2},

consequently condition (24) becomes 2H2{H2, G} = µ{H̃, H2}. Thus

λH2{H2, G} = {H̃, H2} ⇐⇒ {H2, H̃ + λH2G} = 0,

where λ = 2/µ. Hence

(63) H̃ = −λH2G + λp(H2) := H2Υ

here p(H2) is a polynomial of degree [(m − 1)/2], where [(m − 1)/2] is the integer
part of m − 1)/2 such that

p(H2) = a1H2+a2H
2
2+. . .+αmH

[m−1)/2]
2 := H2q(H2) and G = −1/λΥ+q(H2).

Thus by putting (63) into differential system (62) we get

ẋ = −y − ∂ H̃

∂ y
− yG = −H2

∂ Υ

∂y
− y(1 + Υ + G)

= −H2
∂ Υ

∂y
− y(1 +

λ − 1

λ
Υ + q(H2)),

= −y

(
1 + q(H2) + (1 − 1/λ)Υ + 1/2

(
x

∂ Υ

∂ x
+ y

∂ Υ

∂ y

))
+

x

2
{Υ, H2},

ẏ = x +
∂ H̃

∂ x
+ xG = H2

∂ Υ

∂x
+ x(1 + Υ + G)

= H2
∂ Υ

∂x
+ x(1 +

λ − 1

λ
Υ + +q(H2))

= x

(
1 + q(H2) + (1 − 1/λ)Υ + 1/2

(
x

∂ Υ

∂ x
+ y

∂ Υ

∂ y

))
+

y

2
{Υ,H2}.

Consequently
Ḣ2 = H2{Υ, H2},

Υ̇ = −
(

1 +
λ − 1

λ
Υ + q(H2)

)
{Υ,H2},

hence
dΥ

dH2
=

1 − λ

λH2
Υ − 1 + q(H2)

H2
.

After the integration this first order linear ordinary differential equations we have
the following solution

Υ = H
1/λ−1
2

(
C −

∫
1 + q(H2)

H
1/λ
2

dH2

)
,

where C is an arbitrary constant. Consequently we have the following particular
cases.
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(i) If λ ̸= 1 and

[(m−1)/2]∏

n=2

(n − 1/λ) ̸= 0, then

Υ = H
1/λ−1
2 C − 1 + α1

1 − 1/λ
− α2H2

2 − 1/λ
− . . . − αmH

[(m−1)/2]−1
2

[(m − 1)/2] − 1/λ
.

(ii) If λ = 1, then

Υ = C − (1 + α1) log H2 − α2H2 − α3H
2
2

2
− . . . − αmH

[(m−1)/2]−1
2

[(m − 1)/2] − 1
.

(iii) If 1 < λ = 1/k ≤ 1/[(m − 1)/2] and

[(m−1)/2]∏

n=2,n̸=k

(n − k) ̸= 0, then

Υ = −Hk−1
2

(
− C +

1 + α1

1 − k
H1−k

2 − α2

2 − k
H2−k

2 − . . .

−αk log H2 − αk+1H2 − αk+2

2
H2

2 − . . . − αm

[(m − 1)/2] − k
H

[(m−1)/2]−k
2

)
.

(iv) If 1/[(m − 1)/2] ≤ λ = 1/k < 1, αk = 0 and

[(m−1)/2]∏

n=2,n̸=k

(n − k) ̸= 0, then

Υ = Hk−1
2 C − 1 + α0

1 − k
−

[(m−1)/2]∑

j=2, j ̸=k

αj

j − k
Hj−1

2 .

Excluding the constant C in the obtained solutions we deduce the first integrals F
given in formula (30), (31), (32), (33). �

Remarks 34. (a) If in the equation (29) the relation 1+α1+
λ − 1

λ
Υ(0, 0) = 0,

holds then the origin is not linear type. Indeed, under this condition the
given equation becomes

ẋ = −y




m−1∑

j=1

((1 − 1/λ) +
j

2
)Υj +

[(m−1)/2]∑

j=2

αjH
j−1
2


+

x

2
{Υ, H2},

ẏ = x




m−1∑

j=1

((1 − 1/λ) +
j

2
)Υj +

[(m−1)/2]∑

j=2

αjH
j−1
2


+

y

2
{Υ,H2}.

where Υ =
m−1∑

j=1

Υj , and Υj is a homogenous polynomial of degree j for

j = 1, . . . , m − 1.
(b) The first condition (61) is necessary as it follows from the next example.

Consider the analytic differential system

(64)

ẋ = −y

(
1 +

β

β + 1
G

)
+

H2

β + 1

∂G

∂y
+ α x

(
x2 + y2

)β
= −y + X,

ẏ = x

(
1 +

β

β + 1
G

)
− H2

β + 1

∂G

∂x
+ α y

(
x2 + y2

)β
= x + Y,
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where α (Liapunov constant) and β ≥ 0 are real numbers, G = G(x, y) is
an analytic function in R2. It is easy to prove that (64) satisfies the first
of condition (61) for arbitrary α ̸= 0 with µ = 2(β + 1) and λ = 1/(β + 1),
but the origin of this system is a focus . Moreover differential system (64)
can be rewritten as

ẋ = (x2 + y2)β+1{F, x}, ẏ = (x2 + y2)β+1{F, y},

where V = (x2 + y2)β+1 is an inverse integrating factor and a first integral
is

F =





1 +
β

β + 1
G

2β(x2 + y2)β
+ α arctan(y/x) if β ̸= 0,

H2e
−2G−2α arctan (y/x) if β = 0,

defined in R2 \ (0, 0). It is easy to prove that in this case

∂(−y + X)

∂x
+

∂(x + Y )

∂y
= {H2, G} + 2α(β + 1)(x2 + y2)β ,

consequently
∫ 2π

0

(
∂(−y + X)

∂x
+

∂(x + Y )

∂y

)
|x=cos t, y=sin tdt = 2πα (β + 1) ̸= 0.

(c) The second of condition (61) for analytic differential system is necessary
as it follows from the next example. If it holds then in view of Proposition
24 we get that analytic differential system (7) can be written as (28). In
this case we have∫ 2π

0

(
∂(−y + X)

∂x
+

∂(x + Y )

∂y

)
|x=cos t, y=sin tdt

=

∫ 2π

0

{H2, G} |x=cos t, y=sin tdt = 0,

and that differential system (28) satisfies the second conditions of (61) for

arbitrary G and H̃. Clearly there exist analytic function G and H̃ for which
the origin is a focus and the first conditions of (61) does not hold.

7. The Proofs of Subsection 3.4

Proof of Proposition 26. From (14) and (34) it follows that

(65)

∂Hm+1

∂ y
+ g1

∂ Hm

∂y
+ . . . + gm−1y = −xRm−1,

∂Hm+1

∂ x
+ g1

∂ Hm

∂x
+ . . . + gm−1x = yRm−1.

Thus

y
∂Hm+1

∂ y
+ x

∂Hm+1

∂ x
+ g1

(
y
∂Hm

∂ y
+ x

∂Hm

∂ x

)
+ . . . + gm−1

(
y
∂H2

∂ y
+ x

∂H2

∂ x

)
= 0.

Hence by considering that Hj is homogenous polynomial of degree j we get that

Hm+1 = − 1

m + 1
(mg1Hm + (m − 1)g2Hm−1 + . . . 2gm−1H2) .
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Substituting this polynomial into (65) we obtain

1

m + 1

(
m

∂Hm

∂y
g1 + mHm

∂g1

∂y
− (m + 1)g1

∂Hm

∂y

+ . . . + 2
∂H2

∂y
gm−1 + 2H2

∂gm−1

∂y
− (m + 1)gm−1

∂H2

∂y

)

=
1

m + 1

((
x

∂Hm

∂x
+ y

∂Hm

∂y

)
∂g1

∂y
−
(

x
∂ g1

∂x
+ y

∂g1

∂y

)
∂ Hm

∂y

)

+ . . . +
1

m + 1

((
x

∂H2

∂x
+ y

∂H2

∂y

)
∂gm−1

∂y
−
(

x
∂ gm−1

∂x
+ y

∂gm−1

∂y

)
∂ H2

∂y

)

=
x

m + 1

m−1∑

j=1

{Hm+1−j , gj} = xRm−1.

Thus Rm−1 =
1

m + 1

m−1∑

j=1

{Hm+1−j , gj}. So we proved the equation of ẋ in (35).

The proof for ẏ is similar. �

Proof of Proposition 26. Follows from the equalities

ẋ = −y(1 + Λ) + xφ = −y(1 +
m−2∑

j=1

Λj) + x
m−2∑

j=1

Λj − yΛm−1 + xφm−1

ẏ = x(1 + Λ) + yφ = x(1 +
m−2∑

j=1

Λj) + y
m−2∑

j=1

Λj + xΛm−1 + yφm−1

Thus the following relations must be hold

−yΛm−1 + xφm−1 = xRm−1, xΛm−1 + yφm−1 = yRm−1,

hence Λm−1 = 0 and φm−1 = Rm−1. In short the proposition is proved. �

8. Application of Theorem 12 and 13

In this section we study how to determine the Poincaré-Liapunov first integral
and the Reeb inverse integrating factor for a given analytic or polynomial differential
system. This problem is solved by applying Theorems 12 and 13.

Given an analytic vector field X with a linear type center at the origin of coor-
dinates, we shall use the expression of (13) to determine its first integral H and its
Reeb inverse integrating factor. Thus, from (13) equating the terms of the same
degree we get

{Hj+1, x} + g1{Hj , x} + . . . + gj−1{H2, x} = Xj ,

{Hj+1, y} + g1{Hj , y} + . . . + gj−1{H2, y} = Yj ,
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for j ≥ 2. Hence

(66)

∂ H3

∂y
= −X2 − yg1,

∂ H3

∂x
= Y2 − xg1,

∂ H4

∂y
= −X3 − g1

∂ H3

∂y
− yg2,

∂ H4

∂x
= Y3 − g1

∂ H3

∂x
− xg2,

∂ H5

∂y
= −X4 − g1

∂ H4

∂y
− g2

∂ H3

∂y
− yg3,

∂ H5

∂x
= Y4 − g1

∂ H4

∂x
− g2

∂ H3

∂x
− xg3,

∂ H6

∂y
= −X5 − g1

∂ H5

∂y
− g2

∂ H4

∂y
− g3

∂ H3

∂y
− yg4,

∂ H6

∂x
= Y5 − g1

∂ H5

∂x
− g2

∂ H4

∂x
− g3

∂ H3

∂x
− xg4,

...
...

...
...

...
...

From the first two equation of (66) it follows that g1 must satisfy the first order
partial differential equation

(67) {H2, g1} =
∂ X2

∂x
+

∂ Y2

∂x
,

which by Corollary 8 has a unique solution g1. Substituting g1 into the first two
equations of (66) and using the Euler’s Theorem for homogenous polynomial we

obtain H3 =
1

3
(xY2 − yX2 − 2g1H2) .

We determine g2 as the solution of the first order partial differential equation

{H2, g2} =
∂ X3

∂x
+

∂ Y3

∂x
− {H3, g1},

where g1 is the solution of (67). Then by Corollary 8 we get that under the condition
∫ 2π

0

(
∂ X3

∂x
+

∂ Y3

∂x
− {H3, g1}

)∣∣∣∣
x=cos t, y=sin t

dt = 0,

there exists g2 = g2(x, y) of the form g̃2(x, y)+cH2 where c is an arbitrary constant.
Hence from the third and fourth equation of (66) we get

H4 =
1

4
(xY3 − yX3 − 3g1H3 − 2g2H2) .

We determine g3 as the solution of the first order partial differential equation

{H2, g3} =
∂ X4

∂x
+

∂ Y4

∂x
− {H4, g1} − {H3, g2},

where g1, g2, H3 and H4 are solutions of the previous differential equations. Then
by Corollary 8 we get that there exists a unique solution g3. Hence from the fith
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and sixth equation of (66) we get

H5 =
1

5
(xY4 − yX4 − 4g1H4 − 3g2H3 − 2g3H2) .

By continuing this process we obtain the expression H and of the inverse integrating

factor


1 +

∞∑

j=1

gj




−1

.

In order to illustrated this previous algorithm for computing the homogenous
polynomials gj ’s and Hj ’s we have the following proposition.

Proposition 35. The polynomial differential system of degree four

(68)

ẋ = −y(1 + n1x + n2y)

+x(a1x + a2y + a6x
3 + a7y

3 + a8x
2y + a9xy2),

ẏ = x(1 + n1x + n2y)

+y(a1x + a2y + a6x
3 + a7y

3 + a8x
2y + a9xy2),

has a weak center at the origin if and only if one of the two set of condition holds

(69)

a2
1 + a2

2 ̸= 0,

a1n1 + a2n2 = 0,

2a2
2a6 + a1(a

2
1 − 3a2

2)a7 + a2(a
2
2 − a2

1)a9 = 0,

2a2
2a1a8 + a2(a

2
2 − 3a2

1)a9 + 3a1(a
2
1 − a2

2)a7 = 0.

or

(70)

n2
1 + n2

2 ̸= 0,

a1n1 + a2n2 = 0,

2n3
1n6 + a1(3n2

1 − n2
2)a7 + n1(n

2
1 − n2

2)a9 = 0,

2n2
2n1a8 + 3n2(n

2
2 − n2

1)a7 + n1(3n2
2 − n2

1)a9 = 0.

Moreover system (68) under conditions (69) or (70) is invariant with respect to a
straight line.

Proof. Necessity. We suppose that the origin is a center of (68) and we shall prove
that (69) or (70) holds. First we prove the necessity of the condition a1n1+a2n2 = 0.
Indeed, from Theorem 13 it follows that the differential system (68) can be written
as

(71)

{H5, x} + (1 + g1){H4, x} + (1 + g1 + g2){H3, x}
+(1 + g1 + g2 + g3){H2, x}
= −y(1 + n1x + n2y) + x(a1x + a2y + a6x

3 + a7y
3 + a8x

2y + a9xy2),

{H5, y} + (1 + g1){H4, y} + (1 + g1 + g2){H3, y}
+(1 + g1 + g2 + g3){H2, y},

= x(1 + n1x + n2y) + y(a1x + a2y + a6x
3 + a7y

3 + a8x
2y + a9xy2)
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We prove that this partial differential system has solution if and only if a1n1 +
a2n2 = 0. Indeed, from (71) equating the terms of the same degree we obtain

{H3, x} + g1{H2, x} = −y(n1x + n2y) + x(a1x + a2y),

{H3, y} + g1{H2, y} = x(n1x + n2y) + y(a1x + a2y).

By determining the homogenous polynomial g1 as the unique solution of the equa-
tion {H2, g1} = (n2+3a1)x+(3a2−n1)y, we get that g1 = (n1−3a2)x+(n2+3a1)y.
By the homogeneity we finally obtain that H3 = 2H2(a2x−a1y). By inserting these
polynomials into the system

(72)
{H4, x} + g1{H3, x} + g2{H2, x} = 0,

{H4, y} + g1{H3, y} + g2{H2, y} = 0,

Hence we get g2 from the equation {H2, g2} + {H3, g1} = 0.

By Corollary 8 we deduce that this equation has solution if

(73)

∫ 2π

0

{H3, g1}|x=cos t,y=sin t dt = 4π(a1n1 + a2n2) = 0.

We study the case when a2a1 ̸= 0. Then we consider system (68) with n1 = −a2n2

a1
.

In view of (73) and by the homogeneity of H4 from (72) we get that

H4 =
3a1 + n2

a1
H2y

(
(a2

1 − a2
2)y − 2a1a2x

)
+ c1H

2
2 ,

g2 =
3a1 + n2

a1
(a1y − a2x)2 + c2H2,

where c1 and c2 are arbitrary constants. By inserting g1, g2, H3 and H4 into the
equation

(74)

{H5, x} + g1{H4, x} + g2{H3, x} + g3{H2, x}
= x(a6x

3 + a7y
3 + a8x

2y + a9xy2),

{H5, y} + g1{H4, y} + g2{H3, y} + g3{H2, y}
= y(a6x

3 + a7y
3 + a8x

2y + a9xy2)

and by Corollary 8 we get that the equation

{H4, g1} + {H3, g2} + {H2, g3} = 5(a6x
3 + a7y

3 + a8x
2y + a9xy2)

has a unique solution g3. From (74) we can obtain the homogenous polynomial H5.
Consequently we get that equations (71) have solutions if and only if te relation
a1n1 + a2n2 = 0 holds. The case when a1a2 = 0 it is easy to study. Thus the
necessity of this condition is proved.

Now we study the remain equations of (66), i.e.

{Hj+1, x} + g1{Hj , x} + . . . + gj−1{H2, x} = 0

{Hj+1, y} + g1{Hj , y} + . . . + gj−1{H2, y} = 0,
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for j ≥ 6. For j = 6 we get

(75)

∂ H6

∂y
= −g1

∂ H5

∂y
− g2

∂ H4

∂y
− g3

∂ H3

∂y
− yg4,

∂ H6

∂x
= −g1

∂ H5

∂x
− ∂ H4

∂x
− g3

∂ H3

∂x
− xg4,

where H3,H4, H5, g1, g2 and g3 are homogenous polynomials obtained in the pre-
vious equations. The homogenous polynomial H5 which satisfies (78) exists if and
only if the homogenous polynomial g4 is a solution of the equation

(76) {H5, g1} + {H4, g2} + {H3, g3} + {H2, g4} = 0,

and by Corollary 8 we need that

(77)

0 =

∫ 2π

0

({H3, g3} + {H4, g2} + {H5, g1})|x=cos t,y=sin t dt

= −3π (n1 + 2a2)

a2
(a1λ2 − a2λ1) ,

where λ1 and λ2 are defined as

λ1 :=
1

2a2
2

(
2a2

2a6 + a1(a
2
1 − 3a2

2)a7 + a2(a
2
2 − a2

1)a9

)
,

λ2 :=
1

2a2
2a1

(
2a2

2a1a8 + a2(a
2
2 − 3a2

1)a9 + 3a1(a
2
1 − a2

2)a7

)
.

Under the condition (78) differential equation (76) has a solution g4 which by
Corollary 8 can be obtained with arbitrary term of the type c(x2 + y2)2.

By using the homogeneity of H6 we get

H6 = −5

6
g1H5 − 4

6
g2H4 − 3

6
g3H3 − 2

6
g4H2.

Since the integral of homogenous polynomial of degree 5
∫ 2π

0

({H6, g1} + {H5, g2} + {H4, g3} + {H3, g4})|x=cos t,y=sin t dt ≡ 0,

then by Corollary 8 we obtain that there is a unique homogenous polynomial g5

satisfying

{H6, g1} + {H5, g2} + {H4, g3} + {H3, g4} + {H2, g5} = 0.

Partial differential equations of first order

(78)

∂ H7

∂y
= −g1

∂ H6

∂y
− g2

∂ H5

∂y
− g3

∂ H4

∂y
− g4

∂ H3

∂y
− yg5,

∂ H7

∂x
= −g1

∂ H6

∂x
− g2

∂ H5

∂x
− g3

∂ H4

∂x
− g4

∂ H3

∂x
− xg5,

have a solution if and only if
∫ 2π

0

({H7, g1} + {H6, g2} + {H4, g3} + {H3, g4})|x=cos t,y=sin t dt

=
π(3a2 − n1)

252a3
2

(µ1λ1 + µ2λ2) = 0
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where Hj and gj−1 for j = 2, 3, 4, 5, 6 are homogenous polynomial of degree j, and
µ1 and µ2 are

2781a2
1a

3
2 + 2673a2

1a
2
2n1 + 690a2

1a2n
2
1 + 819a5

2 + 927a4
2n1 + 230a2

2n
2
1 − 216ca3

2,

5301a3
1a

2
2 + 1305a3

1a2n1 − 414a3
1n

2
1 − 2457a1a

4
2 − 2781a1a

3
2n1 − 690a1a

2
2n

2
1 + 648a1a

2
2c,

respectively, where c ia a constant. Under the previous condition the homogenous
polynomial H7 can be calculated and we obtain

H7 = −6

7
g1H5 − 5

7
g2H5 − 4

7
g3H4 − 3

7
g4H3 − 2

7
g5H2.

By solving the system

π(2a2 + n1

2a2
(a2λ1 − 3a1λ2) = 0,

π(3a2 − n1)

252a3
2

(µ1λ1 + µ2λ2) = 0,

with respect to λ1 and λ2 and by considering that the determinant of the matrix
of coefficients is

(2a2 + n1)(3a2 − n1)(379a2
2 + 259a2n1 + 46n2

1),

and assuming that (2a2 + n1)(3a2 − n1) ̸= 0 we deduce that λ1 = λ2 = 0. It
is possible to study the case when (2a2 + n1)(3a2 − n1) = 0 and the case when
a1a2 = 0. Thus we obtain the necessity of condition (69). In analogous way we can
study the case n2n1 ̸= 0.

Sufficiency. We need the following results. Let

(79) x = κ1X + κ2Y, y = −κ2X + κ1Y,

be a non-degenerated linear transformation, i.e. κ2
1 + κ2

2 ̸= 0. Then differential
system (18) becomes

(80)
Ẋ = −Y

(
1 + Λ̃(X, Y )

)
+ XΩ̃(X,Y ),

Ẏ = X
(
1 + Λ̃(X, Y )

)
+ Y Ω̃(X, Y ),

where Λ̃(X, Y ) = Λ(κ1X+κ2Y, −κ2X+κ1Y ) and φ̃(X,Y ) = φ(κ1X+κ2Y, −κ2X+
κ1Y ).

The proof of the next claim is easy. The differential system (80) is invariant
under the transformation (X, Y, t) −→ (−X, Y, −t) if and only if it can be written
as

(81)
Ẋ = −Y

(
1 + Θ1(X

2, Y )
)

+ X2Θ2(X
2, Y ),

Ẏ = X
(
1 + Θ1(X

2, Y )
)

+ XY Θ2(X
2, Y ),

and the differential system (80) is invariant under the transformation (X,Y, t) −→
(X, −Y, −t) if and only if it can be written as

(82)
Ẋ = −Y

(
1 + Θ1(X, Y 2)

)
+ XY Θ2(X, Y 2),

Ẏ = X
(
1 + Θ1(X, Y 2)

)
+ Y 2Θ2(X,Y 2),
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Doing the change of variables (79) to system (68) we obtain system (80) for m =
4. From the claim system (68) written in the form (81) is invariant under the
transformation (X, Y, t) −→ (−X, Y, −t) if and only if

(83)

k1n1 + k2n2 = 0,

k1a2 − k2a1 = 0,

2κ2
2a6 + κ1(κ

2
1 − 3κ2

2)a7 + κ2(κ
2
2 − κ2

1)a9 = 0,

2κ2
2κ1a8 + κ2(κ

2
2 − 3κ2

1)a9 + 3κ1(κ
2
1 − κ2

2)a7 = 0,

and it is invariant under the transformation (X,Y, t) −→ (X, −Y, −t) if and only if

(84)

k1n2 − k2n1 + k1a1 + k2a2 = 0,

2κ3
1a6 + κ1(3κ2

1 − κ2
2)a7 + κ1(κ

2
1 − κ2

2)a9 = 0,

2κ2
2κ1a8 + 3κ2(κ

2
2 − κ2

1)a7 + κ1(3κ2
2 − κ2

1)a9 = 0.

We suppose that (69) or (70) hold and we claim that then the origin is a center
of system (68). Now we prove this claim. First we study the case when a2

1 +
a2
2 ̸= 0. Then after the change x = a1X − a2Y, y = a2X + a1Y, we get that this

system coincides with system (81) for m = 4 and with κ1 = a1 and κ2 = a2, and
consequently system (68) is invariant under the change (X, Y, t) −→ (−X, Y, −t) i.e.
it is reversible. Thus by Poincaré Theorem 9 we get that the origin is a center. We
suppose that n2

1 + n2
2 ̸= 0. Then after the change x = n1X − n2Y, y = n2X + n1Y,

we get that this system coincides with system (82) for m = 4 with κ1 = n1 and
κ2 = n2, and consequently system (68) is invariant under the change (X,Y, t) −→
(X, −Y, −t) i.e. it is reversible. Thus in view of the Poincaré Theorem we get that
the origin is a center. By considering that κ2

1 + κ2
2 ̸= 0. Then from the two first

conditions of (83) and (84) it follows that a1n1 +a2n2 = 0. In short the proposition
is proved. �
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Studies 17, Princeton University Press, 1947.
[21] N. Lukashevich, Isochronism of the ecenterof certain systems of differential equations, (Rus-

sian), Diff. Uravnenyia, 1 (1965), 295–302.
[22] I.I. Pleshkan, A new method of investigating the isochronism of a system of two differential

equations, (Russian), Diff. Uravnenyia 5 (1969), 1083–1090.
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