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Metataxonomic analysis represents a fast and cost-effective approach for acquiring

informative insight into the composition of the microbiome of samples with variable

diversity, such as wine samples. Nevertheless, it comprises a vast amount of laboratory

procedures and bioinformatic frameworks each one associatedwith an inherent variability

of protocols and algorithms, respectively. As a solution to the bioinformatic maze, QIIME

bioinformatic framework has incorporated benchmarked, and balanced parameters as

default parameters. In the current study, metataxonomic analysis of two types of mock

community standards with the same microbial composition has been performed for

evaluating the effectivess of QIIME balanced default parameters on a variety of aspects

related to different laboratory and bioinformatic workflows. These aspects concern

NGS platforms, PCR protocols, bioinformatic pipelines, and taxonomic classification

algorithms. Several qualitative performance expectations have been the outcome of the

analysis, rendering the mock community a useful evaluation tool.

Keywords: metataxonomics, next-generation-sequencing, bioinformatics, QIIME, PCR, Ion Torrent, Illumina, wine

1. INTRODUCTION

During the past years significant improvements in Next Generation Sequencing (NGS) platforms
and computational performance have given a considerable momentum to the research of microbial
communities. Primarily there are two sequencing-based methods for the classification analysis of
a microbiome, the metagenomic approach which concerns the shotgun sequencing of microbial
DNA, and the metataxonomic approach which refers to the sequencing of a marker gene, having
as a usual target the ribosomal RNA gene (Breitwieser et al., 2017). Due to the cost-effectiveness
and decreased demands on computational resources of the latter, it has been used quite broadly in
research and consists the focus of the current study.

A typical metataxonomic analysis includes a process that combines laboratory and bioinformatic
workflows. The steps involved in the laboratory process concern the collection of a microbiome
sample, the DNA extraction, the library preparation based on the preferred rRNA gene marker and
the massive sequencing with the NGS platform of choice. The bioinformatic workflow concerns
the quality filtering of the resulted data, the clustering of sequences based on a specific clustering
strategy and the taxonomic assignment to the representative sequence of each cluster.

There are a plethora of bioinformatic frameworks for the analysis of the microbiome data with
Quantitative Insights Into Microbial Ecology (QIIME) being one of the most popular and thus,
implemented in the current study (Caporaso et al., 2010; Bolyen et al., 2018). As a bioinformatic
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framework, it contains a significant amount of algorithms and
parameters to select and tweak, respectively, but studies such
as Bokulich et al. (2013, 2018) have provided informative and
useful benchmarks with the resulted balanced parameters being
incorporated into QIIME as default parameters. Nevertheless,
microbiome samples are subjects to different laboratory
procedures and protocols and as such implementation of
parameters must be evaluated. For that reason, a mock
community, which represents a microbiome sample of known
composition (Bokulich et al., 2016), consists a valuable tool
in assessing both laboratory and bioinformatic workflows
prior to establishment of parameters. There are many studies
dedicated to mock communities, such as Yuan et al. (2012)
where a mock community was used for the comparison of six
common DNA extraction protocols, or Yeh et al. (2018) where
mock communities were the tool for the establishment of a
methodology that could verify similar performance between
sequencing runs. However, the way that the current study differs
from the rest is based on the fact that the main focus is given on
assessing the effectiveness of QIIME balanced default parameters
on our laboratory and bioinformatic workflows destined to the
metataxonomic analysis of wine samples.

Wine samples are characterized by extremely dynamic
microbial populations. During wine ageing, these populations
tend to be quite sparse with most of the microorganisms being
difficult to detect as they enter the viable but non-culturable state
(VBNC) (Millet and Lonvaud-Funel, 2000), and thus making
NGS technology the most appropriate detection tool. Therefore,
sparse microbial communities are quite important since wine
spoilage microorganisms may go undetected due to their low
abundance and significantly alter the wine quality later on.
For that reason, the mock community in the current study
was chosen to be simple. Additionally to the main focus, the
mock community will serve a double qualitative role on a series
of aspects related to our workflows. Regarding the laboratory
procedure, to evaluate 16S metataxonomic analysis on data
produced by Ion Torrent and Illumina platforms, the impact
of 18S and ITS amplicons on the metataxonomic classification
and the effect of the PCR cycles during the library preparation
on the downstream bioinformatic analysis of the Ion Torrent
data. As far as the bioinformatic analysis is concerned, the mock
community will assist in ascertaining the impact on classification
of different quality filtering thresholds, the performance of
different sequence clustering methods and the classification
performance of two different algorithms. Moreover, we are
examining the possibility of utilizing the confidence of the
assigned taxonomy, as reported by the classification algorithms,
as a tool for eliminating false positives.

2. METHODS

2.1. Laboratory Workflow
Two microbial community standards from ZymoBIOMICSTM

with the same microbial composition of 8 prokaryotes and 2
eukaryotes and impurity level < 0.01% have been used. The
first standard contained DNA extracted from pure cultures (DNA
standard D6305 200 ng), whereas the second standard was

TABLE 1 | Culture and DNA standard microbial composition of the mock

communities used during the current study and 16S theoretical relative

abundance.

Species NRRL

accession

NO.

Theoretical composition

of 16S rRNA(%)

Culture standard DNA standard

Pseudomonas aeruginosa B-3509 4.2 4.6

Escherichia coli B-1109 10.1 10.0

Salmonella enterica B-4212 10.4 11.3

Lactobacillus fermentum B-1840 18.4 18.8

Enterococcus faecalis B-537 9.9 10.4

Staphylococcus aureus B-41012 15.5 13.3

Listeria monocytogenes B-33116 14.1 15.9

Bacillus subtilis B-354 17.4 15.7

Saccharomyces cerevisiae Y-567 - -

Cryptococcus neoformans Y-2534 - -

Based on ZymoBIOMICSTM, the strain information was extracted from the website of the

Agricultural Research Service Culture Collection and can be accessed with the NRRL

accession number (NRRL, https://nrrl.ncaur.usda.gov/).

constructed by pooling pure cultures (Microbial Community
standard D6300). The microbial species along with the 16S
theoretical relative abundance, as provided by the standards
specifications, are given in Table 1. The theoretical relative
abundances have been calculated by the standards provider
taking into consideration differences in the number of copies
each amplicon has among the species. However, such correction
is rendered impossible when estimating relative abundances in
real wine samples. Therefore, the estimated relative abundances
have not been corrected in order to examine the amount
of deviation between estimated and ideal relative abundance.
The aim of using the DNA standard (DS) was to assess the
performance of different PCR primers and amplicons used with
the NGS platforms, the impact of PCR cycles on the number of
chimeric sequences in the Ion Torrent platform, as well as the
performance of the bioinformatic pipelines at reconstructing the
16S theoretical relative abundance as well as assigning correct
taxonomy to the eukaryotic DNA. The additional goal of using
the culture standard (CS) was to ascertain the effectiveness of the
in-house DNA extraction protocol that follows the recommended
procedure of the DNeasy Plant Mini kit (Qiagen, Hilden,
Germany), including three bead-beating steps for 3 minutes in a
FastPrep-24 bead beater (MP Bio, Solon, OH) (Lleixà et al., 2018).

Amplicon based sequences were generated by two different
platforms, Ion Torrent (Centre for Omics Sciences, Reus, Spain)
and Illumina (Centre for Genomic regulation, Barcelona, Spain).
In the case of Ion Torrent, the sequencing libraries were prepared
in the in-house laboratory of the University Rovira i Virgili using
both the DNA and culture standard. For the libraries creation,
the 16S rRNA region was amplified by PCR with the primers
515F and 806R (Caporaso et al., 2011) whereas the 18S rRNA
region was amplified using the primers FR1 and FF390 (Prevost-
Boure et al., 2011). Since a positive correlation between PCR
cycles and amount of chimeric sequences has been reported (Ahn
et al., 2012), 30 and 45 PCR cycles were used for the libraries
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FIGURE 1 | Two commercial mock community standards from

ZymoBIOMICSTM with exactly the same microbial composition of 8

prokaryotes and 2 eukaryotes have been used in the current study. The

Microbial Community standard (referred as CS) consisted of microbial cells

from which DNA was extracted using an in-house DNA extraction protocol.

The DNA standard (referred as DS) contained DNA from the same 10 microbial

cells as the CS but extracted by ZymoBIOMICSTM. Both standards were

sequenced using Ion Torrent and Illumina platforms. Regarding the DNA from

the prokaryotic cells, both platforms sequenced the 16S amplicon. Regarding

the DNA from the eukaryotic cells, Ion Torrent sequenced the 18S amplicon

whereas Illumina the ITS amplicon. In the case of Ion Torrent 30 and 45 PCR

cycles have been implemented in both amplicons, whereas in Illumina only 30

PCR cycles were implemented. Sequencing data derived from both NGS

platforms have been analyzed using QIIME 1 and QIIME 2.

creation. The PCR products were purified using GeneRed Size
selection Kit (Qiagen, Hilden, Germany) and sent to COS for
sequencing with the 530 chip using the Gene Studio S5 System of
the Ion Torrent platform. On the other side, the DNA standard
and extracted DNA from the culture standard were sent directly
to CRG to be sequenced by IlluminaMiSeq 2x300 yielding paired
end sequences for the v3 region of the 16S [primers 341F and
785R, Herlemann et al. (2011)] and for the ITS region [primers
ITS1F/ITS2R, White et al. (1990)]. Schematic representation of
the experimental design is given in Figure 1.

The Ion Torrent platform generated in average 300 bp reads
for the 16S amplicon and 350 bp reads for the 18S amplicon, with
an average Phred33 quality score of 29 and 27, respectively. On
the other hand, Illumina generated in average 300 bp reads for
both amplicons with an average Phred33 quality score of 36 for
both 16S and ITS forward reads and 34 and 35 for the 16S and
ITS reverse reads, respectively. Due to the fact that the Phred33
quality of the Ion Torrent reads dropped below 10 in positions
located in the middle of the read, two filtering strategies were
applied. One applying a quality threshold at 10 (Q10) and one
at 20 (Q20). The motivation behind these two strategies was to
examine whether higher number of sequences or higher overall
quality will produce better results. Contrarily, for the Illumina
reads, only the Q20 threshold was applied.

2.2. Bioinformatic Workflow
Bokulich et al. (2013) benchmarked different quality filtering
strategies with QIIME 1 and Bokulich et al. (2018) benchmarked
the performance of difference classification algorithms between
QIIME 1 and QIIME 2. Therefore, the bioinformatic pipelines
were based on two versions of QIIME, QIIME 1 (version 1.9.1)
and QIIME 2 (version 2018.2), with the processing and
taxonomic assignment steps mentioned in Table 2. Along with
QIIME, bioinformatic tools such as FastQC (Andrews, 2010),
Trimmomatic (Bolger et al., 2014) and FLASH (Magoč and
Salzberg, 2011) were executed externally.

From the default parameters of QIIME 1 for the quality
filtering of raws reads, only the Phred33 quality threshold was
altered. Generally, the quality filtering concerned discarding
reads with consecutive bases above a given Phred33 threshold
but occupying <75% of the total read length, truncating reads
at positions with more than 3 consecutive bases with Phred33
quality less than the desired and reassessing the discarding
rule after truncation. Due to the fact that QIIME 1 quality
filtering steps require the sequences to be multiplexed, for the
demultiplexed Illumina sequences the quality filtering steps of
QIIME 1 were replicated in Trimmomatic. Moreover, the
DADA2 algorithm (Callahan et al., 2016), as incorporated into
QIIME, truncated reads at the first base instance of undesired
quality and discarded reads with >2 expected errors. An
additional filtering step was implemented by removing chimeric
sequences with VSEARCH UCHIME de novo (Rognes et al.,
2016) or DADA2.

Regarding the Illumina reads two clustering methods were
applied. One that creates clusters of sequences, called operational
taxonomic units (OTU) based on a similarity threshold (Rideout
et al., 2014) and one that defines sequence variants called
amplicon sequence variants (ASV) (Callahan et al., 2017). The

TABLE 2 | Bioinformatic pipelines based on NGS platform and method of

clustering used during this study for comparison of their performance over the

mock community standards.

Ion Torrent OTU Illumina OTU Illumina ASV

Barcode extractiona Paired ends mergingc Paired ends mergingc

Quality filtering (Q10 or

Q20)a
Quality filtering (Q20)d DADA2 quality filtering

(Q20)b

Reads dereplicationb Reads dereplicationb DADA2 reads

dereplicationb

Open reference OTUb Open reference OTUb DADA2 Chimeras

filtering (only ITS)b

Chimeras filteringb Chimeras filteringb DADA2 ASVb

SKLEARN classifier

trainingb
SKLEARN classifier

trainingb
SKLEARN classifier

trainingb

SKLEARN taxonomy

assignmentb
SKLEARN taxonomy

assignmentb
SKLEARN taxonomy

assignmentb

BLAST+ taxonomy

assignmentb
BLAST+ taxonomy

assignmentb
BLAST+ taxonomy

assignmentb

a QIIME 1 ( version 1.9.1 ).
b QIIME 2 ( version 2018.2 ).
c FLASH.
d Trimmomatic.
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OTUmethod produces an OTU-table where, for each sample, the
number of sequences in each OTU has been recorded (Rognes
et al., 2016), whereas the ASV method is related with an ASV-
table of the frequency that each ASV has been observed in each
sample (Callahan et al., 2016). OTUs containing <10 sequences
across all samples were filtered-out as noise (Giordano et al.,
2018), and the similarity threshold for the OTU clustering was set
to 99% as this threshold returnsmore comparable results between
OTU and ASV (Van Der Pol et al., 2018).

For the metataxonomic classification the database SILVA
(version 132) has been the source of taxonomy for the 16S
and 18S amplicons (Quast et al., 2012) as it is the most recent
and updated database, whereas the ITS taxonomy relied on
the UNITE database (version 7.2) (Nilsson et al., 2018). The
taxonomic assignment was carried out by two algorithms, the
k-mer based multinomial naive Bayes algorithm integrated in
the Python Scikit-learn library (SKLEARN) (Pedregosa et al.,
2011) and the Basic Local Alignment Search Tool+ (BLAST+)
algorithm which represents an enhanced version of the very
popular BLAST algorithm available from 1997 (Camacho et al.,
2009). Both algorithms report a confidence percentage, with
the SKLEARN algorithm referring to the amount of confidence
for the taxonomy assigned at a specific taxonomic level and
BLAST+ referring to the fraction of top hits that matched the
consensus taxonomy at a given level. As SKLEARN represents
a machine learning approach, the additional flexibility provided
was to assign taxonomy after training the algorithm with
extracted reference sequences from the SILVA and UNITE
databases using the aforementioned PCR primers and trimmed
to a length equal to the maximum length of the reads after
quality filtering. The training process of SKLEARN is based
on k-mers where the value 7 was used as it is the default
balanced QIIME 2 parameter. In relaxed terms, during the
training process SKLEARN splits each reference sequence into
a series of overlapping heptamers and assigns a level of
taxonomy to a given collection of heptamers. Later on, during
the classification process SKLEARN splits each sequence once
again into a collection of overlapping heptamers, and tries to
assign a level of taxonomy by taking into consideration the
collections of heptamers from the reference sequences. The
balanced default parameters of BLAST+ remained unaltered
whereas the performance of SKLEARN improved after reducing
the confidence parameter from the default 0.7 value down to 0.5.

3. RESULTS

Figure 2 shows the number of sequences for each sample
after applying Phred33 quality filtering and removing chimeras.
For the Ion Torrent a mild filtering was applied after setting
the quality threshold at Q10 with an average of 8.6% of the
sequences filtered, across all samples, for the 16S amplicon
and 14.1% for the 18S whereas at Q20 an average of 62
and 72.4% was removed, respectively. An additional average
of 13.5% of the sequences were identified as chimeras for
the 16S amplicon and 1.2% for the 18S at Q10, while at
Q20 the identified chimeras were 5.9 and 1.3%, respectively.

Considering the PCR cycles, their impact on the production
of chimeras was not clear for the 16S amplicon as at Q10,
45 cycles generated 3.5% more chimeras than 30 cycles for
the CS but for the DS they produced 4.2% less. The same
pattern repeated for the 16S amplicon at Q20 with 45 cycles
of the CS producing 1.6% more chimeras but for the DS
3.5% more chimeras produced from 30 cycles. On the other
hand, the difference was more apparent for the 18S amplicon
producing more chimeras at 45 than 30 cycles, but the difference
was marginal representing only 1.6% of the sequences in
average (Figure 2A).

For the Illumina platform, the merging of the paired ends
caused a ≈ 2% loss of reads for the 16S amplicon in both
standards, whereas for the ITS amplicon of the DS the loss was
38%. Due to the fact that the sequencing of the ITS amplicon
for the CS generated very low amount of sequences which had
very low Phred33 quality, this sample was excluded from the
study. This was the additional reason for not reporting the
theoretical abundance of 18S and ITS amplicons, along with
the fact that from the two standards only the CS reports 18S
theoretical abundance in the specifications. However, research
interest still remained on examining whether the classification
algorithms could assign correct taxonomy to the eukaryotic
DNA and which amplicon of the two improves classification
performance. For the 16S amplicon of the CS, the Illumina OTU
pipeline removed 1.2% of sequences during the quality filtering
step and an additional 23.7% was identified as chimeras. The
pipeline performed quite similar for the DS removing 1 and
17.9%, respectively. On the contrary, for the 16S amplicon of the
two standards the Illumina ASV pipeline identified≈ 80% of the
sequences as chimeric. This high percentage could be justified
in cases where non-biological nucleotides, such as primers or
adapters, have not been removed prior to analysis 1, but since this
rationale did not hold for the given dataset, the chimera filtering
step was omitted for both standards. Therefore, the only loss was
during the quality filtering with both standards losing ≈ 5% of
sequences. Regarding the ITS amplicon of the DS, the Illumina
OTU pipeline filtered 0.8% of sequences based on quality but
did not identify any chimeras, and the Illumina ASV pipeline
removed 1.9% during quality filtering and a further 5% during
chimera filtering (Figure 2B).

The metataxonomic classification was performed at genus
level since accurate classification at species level is a known
limitation of rRNA amplicon sequencing due to the fact that
it is a highly conserved region (Sentausa and Fournier, 2013).
This limitation became apparent also in the current study as the
only bacterium identified consistently and accurately at species
level was Listeria monocytogeneswhereas Salmonellawas the only
one whose classification never reached species level. From the
rest, Bacillus demonstrated the highest variability with overall
7 different species being identified, 5 species for Staphylococcus
and Pseudomonas, and ≤ 3 for Escherichia, Lactobacillus, and
Enterococcus. Although this broad variability concerned the OTU
clustering method, the variability in the ASV method was more
constrained including only the cases of either correct species

1https://benjjneb.github.io/dada2/tutorial.html
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FIGURE 2 | Number of sequences resulted after applying quality and chimeras filtering. (A) Ion Torrent. First letter of the sample names (C or D) represents type of

mock community standard (Culture or DNA). What follows is the number of PCR cycles (30 or 45) with the amplicon (16S or 18S) at the end. The raw number of

sequences are represented in green and in red and blue the two Phred33 quality filtering strategies Q20 and Q10, respectively. (B) Illumina. First letter of the sample

names (C or D) represents type of mock community standard (Culture or DNA) with the amplicon (16S or ITS) at the end. The raw number of sequences are

represented in green and in red and blue the sequences resulted from the filtering steps of the Illumina ASV and Illumina OTU pipeline, respectively.

identification, no species identification or species identification
as uncultured bacterium.

Figures 3–6 depict 16S estimated relative abundance (orange
color) being juxtaposed against theoretical relative abundance
(blue color) for both standards and NGS platforms. Overlapping
between the two abundances is being represented with dark
gray color and estimated abundance below 1% or undefined
(0%) is being represented numerically. Excess of orange color
at the bar edges denotes abundance overestimation whereas
excess of blue color abundance underestimation. Next to each
figure the taxonomic assignment confidence is being displayed
as it has been reported by the classification algorithm at genus
level (All). An additional step has been performed where the
assigned taxonomies have been filtered by setting a confidence
threshold which is displayed next to the unfiltered confidence.
This threshold was initially set to 90% (> 0.90) and gradually
decreased until an optimal balance between amount of false
positives and theoretical abundance reconstruction is achieved.
Apart from Figures 5B, 6B,D this confidence threshold matches
the minimum unfiltered confidence reported by the classification
algorithm giving an identical estimated relative abundance before
and after confidence filtering as well as the same amount of false
positives (FP).

For the Ion Torrent platform, SKLEARN failed to identify
Salmonella regardless quality filtering threshold, PCR cycles
or standard type, while achieved best performance with the
DS, 45 PCR cycles, Q20 and confidence threshold 80%
(Figure 4G). Overall, themaximumnumber of false positives was
2 with the genera Carnobacterium, Citrobacter, Oenococcus, and
Pediococcus consisting the pool of false positives. At the same

time, BLAST+ seems to have exhibited a better performance than
SKLEARN with optimal performance also with the DS, 45 cycles
and Q20 (Figure 4H), but generating higher amounts of false
positives and requiring a lower confidence threshold for optimal
performance. In general, BLAST+ proved to be more sensitive
than SKLEARNwith 5 as the maximum number of false positives
and a persistent confidence threshold of 60%. The false positives
identified by BLAST+ were the genera Cedecea, Citrobacter,
Enterobacter, Klebsiella, Oenococcus, and Pediococcus.

With Illumina generated data, the landscape was more clear.
Both pipelines, Illumina OTU and ASV, yielded similar results
with both classification algorithms performing better with the
DS (Figure 6). Once again BLAST+ held the best performance
managing to approximate quite accurately the theoretical
composition (Figures 6B,D). However, it demonstrated overall
higher sensitivity producing more false positives with their
number being affected by even a slight increase of the confidence
threshold by just 1% from the minimum reported confidence
of 69% (Figures 5B, 6B,D). The pool of false positives for
SKLEARN was comprising the genera Acetobacter, Enterobacter,
and Oenococcus, whereas for BLAST+ the genera Citrobacter,
Acetobacter, Cronobacter, Enterobacter, and Oenococcus. In
general, although the relative abundance of the false positives
remained below 0.01%, the only excemption was with the CS
and the Illumina ASV pipeline where Cronobacter reached
0.3%. Moreover, even if the confidence level of the classification
assignment was quite low for the false positives in both
algorithms (60%), the genera that defied this trend were
Acetobacter, Enterobacter and Oenococcus reaching as high as
90% confidence.
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FIGURE 3 | 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard using Ion Torrent. Overlapping between the two

abundances is being represented with dark gray color. Cult_30 and Cult_45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold and FP

false positives without (first number) and with confidence filtering (second number). Figures to the left (A,C,E,G) represent estimated abundance based on SKLEARN

algorithm and to the right (B,D,F,H) based on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on

filtered (> %).

With respect to fungi, none of the algorithms detected
Cryptococcus regardless NGS platform or standard type, contrary
to Saccharomyces which was detected though not always at

species level. In both Illumina OTU and ASV pipelines, both
algorithms exhibited similar performance by identifying only
Saccharomyces with 100% confidence without yielding any false
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FIGURE 4 | 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard using Ion Torrent. Overlapping between the two

abundances is being represented with dark gray color. DNA_30 and DNA_45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold and

FP false positives without (first number) and with confidence filtering (second number). Figures to the left (A,C,E,G) represent estimated abundance based on

SKLEARN algorithm and to the right (B,D,F,H) based on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the

right on filtered (> %).

positives. On the other hand, BLAST+ in Ion Torrent managed to
identify Saccharomyces with 99.9% confidence in both standards
regardless quality threshold and PCR cycles, but produced

Zygosaccharomyces as a false positive with CS at Q10 and 30
cycles and Kazachstania with DS at Q20 and 45 cycles having
a 60% confidence in both cases. On the side of SKLEARN,
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FIGURE 5 | 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard using Illumina. Overlapping between the two

abundances is being represented with dark gray color. OTU and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number)

and with confidence filtering (second number). Figures to the left (A,C) represent estimated abundance based on SKLEARN algorithm and to the right (B,D) based on

BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).

Saccharomyces occupied ≈ 61% of the relative abundance in
average across the different PCR cycles in both standards at Q10
with the rest of the abundance being occupied by a taxonomy
assigned as uncultured fungus. At Q20, Saccharomyces occupied
99% of the relative abundance with the DS at 45 cycles and 50% in
the rest of the samples, with the remaining abundance once again
assigned as uncultured fungus. Although in the case of BLAST+
the false positives could be removed by raising the confidence
threshold, in the case of SKLEARN confidence filtering did not
improve the result as the confidence level was in average 90% for
Sacchraromyces and 85% for the false positives.

4. DISCUSSION

A mock community represents a microbiome sample of known
microbial composition and in the current study two types of
mock community standards with the same species composition
have become the tool for evaluating the effectiveness of
QIIME balanced default parameters on metataxonomic analysis
workflows destined to the analysis of wine aging samples.
The evaluation was performed with QIIME framework and
two classification algorithms, one representing a popular local
alignment algorithm (BLAST+) and the other one a popular
machine learning approach (SKLEARN). These two algorithms
have been introduced for the first time in QIIME 2 and
their performance compared to the classification algorithms

of QIIME 1 have been benchmarked by Bokulich et al.
(2018) where they exhibited similar as well as enhanced
performance on different performance metrics. Moreover,
Bokulich et al. (2013) in QIIME 1 benchmarked different
quality-filtering strategies so as to provide guidelines for
processing Illumina amplicon-based sequencing data. Although
the suggested parameters of these studies have been incorporated
as balanced default parameters in QIIME , microbiome samples
undergo different laboratory procedures and protocols and thus
these parameters should be evaluated prior to implementation.
Therefore, the aim of the present study was to examine the
effect of these parameters on a series of aspects related to
our laboratory and bioinformatic workflows using a mock
community and focusing on reconstructing the theoretical 16S
relative abundance or yeast composition based on 18S and
ITS amplicon sequencing. Furthermore, the mock community
facilitated the qualitative assessment of other aspects such as the
performance of the classification algorithms, the possibility of
utilizing the reported taxonomic assignment confidence from the
classification algorithms as a tool for eliminating false positives,
the performance of Ion Torrent and Illumina NGS platforms
with the 16S amplicon, the effect of PCR cycles on the analysis
of Ion Torrent data, as well as the outcome of the in-house DNA
extraction protocol by using a culture based standard (CS).

The 16S metataxonomic analysis of the CS approximated
quite closely the outcome of the DS analysis in the Illumina
platform, while it demonstrated an apparent variability in the
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FIGURE 6 | 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard using Illumina. Overlapping between the two abundances

is being represented with dark gray color. OTU and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number) and with

confidence filtering (second number). Figures to the left (A,C) represent estimated abundance based on SKLEARN algorithm and to the right (B,D) based on BLAST+.

Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).

case of the Ion Torrent platform. On the other hand, the
Ion Torrent 18S analysis produced similar results in both
standards. This denotes that pinpointing a performance culprit
among the NGS platforms, PCR protocols or bioinformatic
pipelines is rendered difficult as a further variability is being
added by the DNA extraction protocol. Regarding the discard
of the ITS amplicon based sample of the CS due to low
quality, it has been attributed to the poor performance of
the DNA extraction protocol since good quality Illumina
sequences were generated with the corresponding sample of
the DS.

With Ion Torrent, both classification algorithms performed
better with the DS linked to 45 PCR cycles and Q20 as a
quality threshold signifying that optimal performance is more
related to better overall sequence quality rather than higher
amount of sequences as produced by the Q10 threshold. This
could be associated with the fact that Q20 is related to 1%
base call error rate while Q10 to 10% (Ewing and Green,
1998), indicating that low Phred33 quality threshold might
lead to higher possibility of misclassification. Nevertheless, this
result could not be easily attributed to the PCR cycles as 45
cycles in DS produced the highest amount of sequences among
all samples and on the other hand in CS both algorithms
favored 30 cycles. Moreover, the impact of PCR cycles on the
amount of chimeric sequences was either marginal or unclear,
however a negative correlation between quality threshold and

amount of chimeras became apparent with the 16S amplicon,
with fewer chimeras being identified at Q20 threshold. This
indicates that a small increase of the PCR cycles does not
influence greatly the production of chimeras and many of those
chimeric sequences had overall low quality as they represent
PCR artifacts. Similarly, slight difference on the production
of chimeric sequences was also observed by a small increase
of PCR cycles in the study of Ahn et al. (2012) when
25 PCR cycles were compared to 30 cycles, however great
disparity on the amount of chimeras was observed between
15 and 30 cycles with the authors suggesting the lowest PCR
cycles possible.

As Van Der Pol et al. (2018) suggested, setting the similarity
threshold to 99% for the OTU clustering method produced
similar results as the ASV method in Illumina, however
the latter demonstrated a narrower variability of taxonomic
assignment at species level. Furthermore, the omitted chimera
filtering step in Illumina ASV pipeline for the 16S amplicon
highlighted its importance as false positives above the impurity
level of 0.01% were emerged. Additionally, the two NGS
platforms presented different filtering behaviors at Q20 with Ion
Torrent removing more sequences during the Phred33 quality
filtering and less during chimera filtering, whereas Illumina
performed the opposite. That could indicate that more chimeric
sequences with high Phred33 quality score were generated
with Illumina.
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As a whole, BLAST+ exhibited better and more balanced
performance in both NGS platforms than SKLEARN, however
it demonstrated higher sensitivity producing more false positives
and overall lower confidence regarding taxonomic assignment.
The low amount of false positives generated by SKLEARN with
the 16S amplicon could be associated with its training process
as higher amount of reference sequences were extracted from
the database with the PCR primers of this amplicon compared
to 18S and ITS. Nonetheless, its enhanced performance with
the Illumina data could be connected to the fact that its default
parameters were linked with this NGS platform in the study of
Bokulich et al. (2018). Moreover, the lack of false positives from
both algorithms with the ITS amplicon could be explained by
its higher specificity compared to 18S (Trtkova and Raclavsky,
2006), and overall the reported taxonomic assignment confidence
from the algorithms could not lead to an effective filtering tool of
false positives as some of the false taxonomies have been assigned
with high confidence level.

5. CONCLUSIONS

Overall, the mock community standards have been proven
a useful tool demonstrating good performance of QIIME
balanced default parameters on our workflows especially
with the Illumina platform. Nevertheless, the performance
of the NGS platforms or the classification algorithms
should not be considered deterministic since an exhaustive
benchmarking process is needed for that purpose. As underlined
by Bokulich et al. (2018), further fine-tuning of theQIIME default
parameters with limited number of mock communities could
lead closer to an overfitted rather than generalized performance.
Moreover, a series of qualitative performance expectations could
be proposed that could be summarized as better metataxonomic

outcome when setting the Phred33 quality filtering threshold
as high as possible, marginal difference in chimeras production
between 30 and 45 PCR cycles, less false positives with ITS
amplicon sequencing compared to 18S, similar performance
between ASV and OTU clustering method when the clustering
similarity threshold of the latter is set to 99% and more
comparable results between Ion Torrent and Illumina platforms
using the BLAST+ classification algorithm.
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