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ABSTRACT
The Lee–Carter model is a useful dynamic stochastic model to represent the evolution of central mortality rates throughout
time. This model only considers the uncertainty about the coefficient related to the mortality trend over time but not to the
age-dependent coefficients. This paper proposes a fuzzy-random extension of the Lee–Carter model that allows quantifying
the uncertainty of both kinds of parameters. As it is commonplace in actuarial literature, the variability of the time-dependent
index is modeled as an ARIMA time series. Likewise, the uncertainty of the age-dependent coefficients is also quantified, but
by using triangular fuzzy numbers. The consideration of this last hypothesis requires developing and solving a fuzzy regression
model. Once the fuzzy-random extension has been introduced, it is also shown how to obtain some variables linked with central
mortality rates such as death probabilities or life expectancies by using fuzzy numbers arithmetic. It is simultaneously shown the
applicability of our developments with data of Spanish male population in the period 1970–2012. Finally wemake a comparative
assessment of our method with alternative Lee–Carter model estimates on 16 Western Europe populations.
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1. INTRODUCTION

Classical actuarial methods graduate mortality by only taking into
account the age of persons without calendar year considerations.
Due to the progressive increase of life expectancy in all developed
countries, this kind of methods systematically overestimate the
mortality rates and, as a consequence, may increase the longevity
risk when pricing life annuities.

In the last decades of the 20th century, several papers developed
dynamic stochastic approaches for the evolution of mortality rates
throughout calendar time and, so, projectingmortality to the future
with thesemodels becamemore accurate. In this way, themethod in
[1], that we will name Lee–Carter (LC), is one of the most extended
methodologies. The LCmodel proposed adjusting a linear function
to the logarithm of central mortality rates of each year and age,mx,t.
The coefficients of the linear function depend on the age x whereas
the independent variable is a nonobserved intensity index kt asso-
ciated to the time calendar t. Once the parameters of the model
have been adjusted, to make predictions onmortality dynamics it is
necessary projecting kt to the future. It is commonly made with an
ARIMA model.

There are two main reasons why the LC model boasts great accep-
tance. On the one hand, it has been applied in many countries with
good results [2–10]. Likewise, the LC method is relatively easy to
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compute in its seminal version, either by using the singular value
decomposition (SVD) method or with the approximation to the
SVD solution suggested in [1].

Several papers proposed technical extensions to the original LC
model as [3,5–7,11–13]. All these extensions have two common fea-
tures. Firstly, more completeness and sophistication of the model
suppose more computational effort. Secondly, all of them consider
that the age-specific historical influences not captured by themodel
are due to a stochastic error-term, as the LC model does. However,
stochastic variability may not be the unique source of uncertainty
since it can also come from fuzziness (e.g., due to incomplete or
imprecise information) and, consequently, it can be modeled with
Fuzzy Sets Theory tools. In this way, [14] developed two alterna-
tive fuzzy formulations of the LC model. The first model considers
that all the parameters are fuzzy numbers (FNs) and arithmetical
operations are carried out by means of the weakest t-norm. This
first approach was object of several refinements in [15,16]. In the
second approach, the centers and spreads of the FNs that esti-
mate the parameters of the LC model are supposed to be random
variables (RVs) and are estimatedwith Bayesianmethods. The com-
parison between the fuzzy and the fuzzy-stochastic models seems
to show very similar results, but the second model requires much
more computational effort.

Mixing fuzziness and randomness in actuarial modeling is not new.
[17] described fuzzy RVs with actuarial applications in view and
[18] developed a non-life individual risk model where the number
of claims follows a Poisson process and their amount is estimatedPdf_Folio:775
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with a triangular fuzzy number (TFN). In a life insurance context,
[19,20] used fuzzy RVs for the valuation of life contingencies.

This paper also blends fuzziness and randomness and proposes a
fuzzy-random approach of the LCmodel which is conceptually dif-
ferent to those developed in [14]. We consider that the behavior of
the independent variable kt follows an ARIMA stochastic process.
Likewise, we assume that the variability of the age-specific coeffi-
cients is due to fuzziness and it is captured by means of FNs. Under
these hypotheses, for a given outcome of the RV kt, we will have a
concrete result of the centralmortality rate,mx,t, whichwill be given
by an FN.

In order to adjust the fuzzy coefficients of the logarithm of mx,t,
we use the model of fuzzy regression (FR) developed by [21], that
mixes ordinary least squares (OLSs) regression, and the FRmethod
by [22], but also allows a nonsymmetrical shape for the coefficients.

The rest of the paper is organized as follows: We firstly make a brief
review of the LC model. Then, we describe some concepts of FNs
and FR that will be necessary to develop our work. Section 4 fea-
tures our fuzzy-random extension to the LC model, exposes how
to project future mortality from this formulation, and shows an
empirical application for Spanish male population, evaluating both
the capability of the model to adjust central mortality rates to sam-
ple data and to predict out-of-sample data. In the fifth section,
we show how some mortality tables variables can be obtained
from the results of previous sections. Subsequently, focused on life
expectancies of Spanish male population, we test the capability of
our model to predict future values. Section 6 includes a complete
comparison of the predictive performance of the proposed method
with both the basic LC method in [1] and the fuzzy extension by
Koissi and Shapiro in [14]. This comparison shows the advantages
of our fuzzy-random extension of the LC model. We finish the
work by pointing out the main conclusions and suggesting possible
extensions.

2. OVERVIEW OF THE LEE–CARTER
MODEL

Lee and Carter in [1] proposed modeling the logarithm of the cen-
tral death rate for each specific age and each year with a linear func-
tion. In such a way, ifmx,t is the central death rate of a person aged
x in the calendar year t, the Lee–Carter (LC) model considers

ln
(
mx,t

)
= ax + bxkt + 𝜀x,t (1)

or, equivalently

mx,t = exp
(
ax + bxkt + 𝜀x,t

)
(2)

where

• exp (ax) is the specific value of the central mortality rate at age
x regardless of the time calendar t,

• bx quantifies the sensitivity of the central death logarithm rate

for age x in year t respect to changes in kt

(
d ln

(
mx,t

)
dt

= bx
dkt
dt

)
,

• kt is a specific mortality index for each year t that represents
the trend of the mortality across time,

• 𝜀x,t is a random error term, with mean 0 and standard
deviation 𝜎𝜀 , which reflects particular age-specific historical
influences not captured by the model.

Notice that whereas the parameters ax and bx are age-dependent,
the parameter kt is time-dependent. To estimate the model for a
given matrix of rates mx,t, the authors seek the least squares solu-
tion to the Equation (1). This model is undetermined since, given
a solution (ax, bx, kt), any transformation of the type (ax, bx/c, ckt)
or (ax + cbx, bx, kt – c), ∀c ∈ ℜ, is also a solution. In order to
avoid this issue [1] introduced the constraints ∑

x
bx = 1 and

∑
t
kt = 0. So, the estimations of ax are simply the averages over

time of ln
(
mx,t

)
, that is,

a∗x =
∑T

t=0 ln
(
mx,t

)
T + 1 (3a)

being the considered calendar years t = 0, 1, … ,T and x = 0, 1,
. . ., 𝜔 the different ages with 𝜔 the maximum attainable age.

The model Equation (1) cannot be fitted by ordinary regression
techniques because on its right side there are two parameters to be
estimated but kt is unobservable. However, [1] showed that a least
squares solution can be obtained by applying SVD to the matrix
Zx,t = ln

(
mx,t

)
–a∗x . Alternatively, in theAppendixA of [1], it is also

proposed an approximation to the SVD solution. As the parameters
bx are assumed to follow the constraint∑

x
bx = 1, the parameter

kt, for each t = 0, 1, … ,T, can be fitted as

k∗t = ∑
x
ln
(
mx,t

)
–∑

x
a∗x (3b)

And finally, each bx can be found by regressing through OLSs the
linear model Zx,t = bxkt + 𝜀x,t. So

b∗x =
∑

t
Zx,tk∗t

∑
t

(
k∗t
)2 =

∑
t

(
ln
(
mx,t

)
– a∗x

)
k∗t

∑
t

(
k∗t
)2 (3c)

Once the parameters of the model have been fitted, for t =
0, 1, … ,T and x = 0, 1, … , 𝜔, the trend of the mortality across time,
kt, for t = T + 1, … can be forecasted with an ARIMA model and
related variables, as confidence intervals for kt, survival and mor-
tality probabilities or life expectancies, can be obtained.

3. FNS AND FR

3.1. FNs and Their Arithmetic

This paper quantifies uncertain quantities as a common type of FN,
TFNs, that will be symbolized as ̃A = (A, lA, rA) being A the core
of the TFN (𝜇Ã (A) = 1) and lA and rA its left and right spreads,
respectively. The 𝛼-cuts of this kind of FNs are closed and bounded
intervals ∀𝛼 ∈ [0, 1]

A𝛼 = [A (𝛼) ,A (𝛼)] = [A – lA (1 – 𝛼) ,A + rA (1 – 𝛼)] (4a)

The expected interval of a FN Ã, eI
(
Ã
)
, is a crisp interval that in

the case of TFNs is

eI
(
Ã
)
= [∫

1

0
A (𝛼) d𝛼, ∫

1

0
A (𝛼) d𝛼] = [A – lA

2 ,A + rA
2 ] (4b)

Pdf_Folio:776
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Let f be a continuous real-valued function of n-real variables xj, j =
1, 2, … , n,. If xj are not crisp numbers, but the FNs Ãj, j = 1, 2,.., n, f
induces the FN B̃ in such a way that B̃ = f

(
Ã1, Ã2, … , Ãn

)
. In order

to obtain the 𝛼-cuts of B̃, B𝛼, the results of [23] can be used. If the
function f is increasing respect to the first m variables, m ≤ n, and
decreasing respect to the last n –m variables

B𝛼 = [B (𝛼) ,B (𝛼)]

= [f
(
A1 (𝛼) ,A2 (𝛼) , ... ,Am

(𝛼) ,Am+1 (𝛼) ,
Am+2 (𝛼) , ...An (𝛼)

)
,

f
(
A1 (𝛼) ,A2 (𝛼) , ...Am (𝛼) ,A

m+1 (𝛼) ,
A
m+2 (𝛼) , ... ,An

(𝛼)
)
]

(5)

The result of evaluating nonlinear functions with TFNs is not a
TFN. In this way, [24] proposed a TFN approximation for any
real-valued function, derivable and increasing (decreasing) respect
to the first (last) m (n − m) variables, built up from the first-
order Taylor polynomial expansion from the 1-cut to any 𝛼-cut. It
can be demonstrated that in Equation (5) B̃ ≈ (B, lB, rB) where,
naming the vector that comprises the centers of Ãj, j = 1, 2, … , n,
AC = (A1,A2, … ,An)

B = f (AC)

lB =
m

∑
j=1

𝜕f(AC)
𝜕xj

lAj
–

n

∑
j=m+1

𝜕f(AC)
𝜕xj

rAj

rB =
m

∑
j=1

𝜕f(AC)
𝜕xj

rAj
–

n

∑
j=m+1

𝜕f(AC)
𝜕xj

lAj

(6)

Arithmetic operations between real numbers can be extended to
FNs by using the appropriate real-valued function. Since this work
uses TFNs, when this function is linear the result of the arithmetic
operation will also be a TFN. Otherwise, the result will be approxi-
mated by using Equation (6). So, it is obtained:

• Addition:

B̃ =
n

∑
j=1

Ãj =
(

n

∑
j=1

Aj,
n

∑
j=1

lAj
,

n

∑
j=1

rAj

)
• Scalar multiplication:

B̃ = kÃ = {(kA, klA, krA) k ≥ 0(
kA, |k|rA, |k|lA

)
k < 0

• Product of two positive TFNs (i.e., their supports are contained
withinℜ+):

B̃ = Ã1 ⋅ Ã2 =
(
A1A2,A2lA1 + A1lA2 ,A2rA1 + A1rA2

)
• Division of two positive TFNs:

B̃ =
̃A 1
̃A 2
=
(
A1
A2

,
lA1
A2

+
A1rA2
(A2)

2 ,
rA1
A2

+
A1lA2
(A2)

2

)
• Exponential function:

B̃ = exp
(
Ã
)
≈
(
exp (A) , exp (A) lA, exp (A) rA

)

• Logarithmic function:

B̃ = ln
(
Ã
)
≈
(
ln (A) , lAA ,

rA
A

)

3.2. FR Model with Asymmetric Coefficients

This paper uses the FRmodel of [21] that combines the least squares
method with the minimum fuzziness principle in [22]. This type of
FRmethod has been used in financial and actuarial applications like
fitting options volatility smile [25,26] or calculating claim reserves
[27]. In the actuarial field, a wide survey of FRmodels can be found
in [28].

Let us suppose that for the j-th observation of the sample, j = 0, 1,
. . ., n, the pair of the dependent variable (that may be a FN) and the
independent variables (that we suppose crisp) is

(
̃yj,xj

)
j=1,2,… , n

,

where xj =
(
x1,j, x2,j, … , xm,j

)
, ̃yj =

(
yj, lyj , ryj

)
, xi,j ∈ ℜ. Like-

wise, we suppose a linear relationship and also that the coefficients
of the linear function are TFNs ãi =

(
ai, lai , rai

)
, i = 0, 1, … ,m.

So

̃yj = ã0 +
m

∑
i=1

ãixi,j

and then(
yj, lyj , ryj

)
=
(
a0, la0 , ra0

)
+

m

∑
i=1

(
ai, lai , rai

)
xi,j

where

yj = a0 +
m

∑
i=1

aixi,j

lyj = la0 +
m

∑
i=1
xi,j≥0

|xi,j|lai +
n

∑
i=1
xi,j<0

|xi,j|rai

ryj = ra0 +
m

∑
i=1
xi,j≥0

|xi,j|rai +
n

∑
i=1
xi,j<0

|xi,j|lai

The final objective is obtaining the estimates of ãi =
(
ai, lai , rai

)
,

i = 0, 1, …m, that will be denoted by ã∗i =
(
a∗i , la∗i , ra∗i

)
. Following

[21], we implement the following steps:

Step 1. By taking the centers of the dependent variable, yj, j =
0, 1, … , n, we fit the centers of the fuzzy coefficients ã∗i , ai, i =
0, 1, …m, by using OLS on the expression yj = a0 +∑m

i=1 aixi,j. In
such a way, we obtain the estimates

(
a∗0, a∗1, ... , a∗m

)
. To solve this

step we can use Equations (3a–3c).

Step 2. We fit the spreads of parameters applying the minimum
fuzziness criterion in [22]. So, spread estimates must minimize the
uncertainty of the estimated outputs and simultaneously these esti-
mated outputs have to contain the real observations, with a mem-
bership level of at least 𝛼. If we symbolize the estimates of thePdf_Folio:777
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spreads as l∗ai and r∗ai i = 0, 1, …m, the estimated output for ̃yj will

be ̃y∗j =
(
y∗j,, l∗yj , r

∗
yj

)
, where y∗j = a∗0 +∑m

i=1 a
∗
i xi,j.

Considering, as in [22], that ̃yj ⊆𝛼 ̃y∗j ⇔ yj𝛼 ⊆ y∗j𝛼 , the spreads la∗i
and ra∗i , i = 0, 1, …m, minimize for a prefixed level 𝛼

min
lai ,rai

z =
n

∑
j=1

lyj +
n

∑
j=1

ryj

And accomplish the constraints

yj𝛼 ⊆ y∗j𝛼 , j = 1, 2, … , n

 
l∗ai , r

∗
ai ≥ 0, i = 0, 1, … ,m (7)

[29] proposed a rule to choose 𝛼 when the observations on inputs
are crisp. 𝛼must reach a compromise between containing observed
outputs in ̃y∗j reasonably well but, likewise, ̃y∗j must be narrow
enough in order to be a useful prediction.

If we name as ̃y∗𝛼j =
(
y∗𝛼j , l∗𝛼yj , r

∗𝛼
yj

)
the estimate of the jth obser-

vation of the dependent variable at a given 𝛼, we can define the
credibility level c𝛼j as

c𝛼j =
𝜇 ̃y∗𝛼j

(
yj
)

l∗𝛼yj + r∗𝛼yj

Thus, the credibility for the entire sample c𝛼 is c𝛼 = ∑n
j=0

𝜇 ̃y∗𝛼
j

(
yj
)

l∗𝛼yj +r
∗𝛼
yj

.

[29] showed that maximizing c𝛼 is equivalent to solve the following
quadratic linear programming problem

max c𝛼 = –p0𝛼2 +
(
p0 – c0

)
𝛼, 𝛼 ∈ [0, 1]

where

p0 =
n

∑
j=0

1 – 𝜇 ̃y∗0j
(yj)

l∗0yj + r∗0yj

c0 =
n

∑
j=0

𝜇 ̃y∗0j
(yj)

l∗0yj + r∗0yj

being the solution of this problem

𝛼 = {
1
2

(
1 – c0

p0

)
c0 < p0

0 otherwise
(8)

Therefore, the process that we follow to fit the fuzzy coefficients
consists in implementing Step 2 for𝛼 = 0. Once the spreads l∗0ai and
r∗0ai , i = 0, 1, … ,m, have been obtained, the optimal value of 𝛼, 𝛼′,
will be calculated by using the expression Equation (8). Following
[30], the final value of l∗ai and r∗ai , i = 0, 1, …m is, simply

l∗ai = l∗𝛼′
ai =

l∗0ai
1 – 𝛼′ and r

∗
ai = r∗𝛼′

ai =
r∗0ai

1 – 𝛼′

4. FUZZY-RANDOM APPROACH OF THE LC
MODEL

4.1. Fuzzy-Random Fitting of the LC Model

Our fuzzy-random approach of the LC model considers two
different sources of uncertainty:

1. It is supposed that historical influences of each specific age
are due to fuzziness in the model structure. As a consequence,
both, the coefficient that describes the average age-specific pat-
tern ofmortality and the coefficientwhich reflects the variation
in the central death across time, turn into FNs and so ãx =(
ax, lax , rax

)
and b̃x =

(
bx, lbx , rbx

)
.

2. The mortality index kt follows an ARIMA stochastic process,
that is, kt is an outcome of a RV kt.

Under these assumptions, once the average pattern of mortality, ãx,
and the decline in mortality, b̃x, have been estimated we can obtain
for an outcome of the RV kt, kt, the central rate of mortality (and
its logarithm) as

ln
(
m̃x,t

)
= ãx + b̃xkt (9a)

where

ln
(
m̃x,t

)
=
(
ln
(
mx,t

)
, l
ln
(
mx,t

), r
ln
(
mx,t

)) (9b)

being

ln
(
mx,t

)
= ax + bxkt (9c)

l
ln
(
mx,t

) = {lax + ktlbx for kt > 0
lax – ktrbx for kt ≤ 0 (9d)

r
ln
(
mx,t

) = {rax + ktrbx for kt > 0
rax – ktlbx for kt ≤ 0 (9e)

In order to fit the estimates ã∗x =
(
a∗x , l∗ax , r

∗
ax

)
, b̃∗x =

(
b∗x , l∗bx , r

∗
bx

)
,

and k∗t , t ≤ T, we follow the process described in Section 3.2 as
follows:

Step 1. By taking the centers of ln
(
m̃x,t

)
, t = 0, 1, … ,T and x =

0, 1, … , 𝜔, we fit the centers of ã∗x and b̃∗x and the outcomes of the
RVs kt, k∗t , as we described in Section 2. In this step, it is necessary
to point out that the observed values of the central rate of mortality
(and its logarithms) in which we will base our work are crisp. So,
ln
(
m̃x,t

)
= ln

(
mx,t

)
.

Step 2.We have to calculate the values l∗0ax , l
∗0
bx
, r∗0ax and r

∗0
bx

by solving
the linear problem Equation (7) for 𝛼 = 0, that is,

min
lax , lbx , rax , rbx

(T + 1)∑
x

(
lax + rax

)
+∑

t
|kt| ∑x

(
lbx + rbx

)
subject to

a∗x + b∗x k∗t + rax + ktrbx ≥ ln
(
mx,t

)
for kt > 0

a∗x + b∗x k∗t + rax – ktlbx ≥ ln
(
mx,t

)
for kt ≤ 0

Pdf_Folio:778
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a∗x + b∗x k∗t – lax – ktlbx ≤ ln
(
mx,t

)
for kt > 0

a∗x + b∗x k∗t – lax + ktrbx ≤ ln
(
mx,t

)
for kt ≤ 0

b∗x – lbx ≥ 0 if b∗x ≥ 0
b∗x + rbx < 0 if b∗x < 0

lax , lbx , rax , rbx ≥ 0, x = 0, 1, 2, … , 𝜔

Let us remark that the constraints b∗x – lbx ≥ 0 and b∗x + rbx < 0,
ensure that the estimate of the center of b̃x, b̃∗x , will have clearly
defined its sign. It will make easier to fit fuzzy-probabilistic confi-
dence intervals for out-of-sample predictions.

Step 3. We obtain the optimal value 𝛼′ from Equation (8). Finally,
the spreads l∗ax , l

∗
bx
, r∗ax and r

∗
bx
are obtained, simply, dividing l∗0ax , l

∗0
bx
,

r∗0ax and r∗0bx by 1 – 𝛼′.

By using ã∗x , b̃∗x , and k∗t , it is possible to have a fuzzy estimate for the
observed central mortality rates. In fact, from Equations (9a–9e) we
obtain

ln
(
m̃∗

x,t

)
=

(
ln
(
m∗

x,t

)
, l
ln
(
m∗

x,t

), r
ln
(
m∗

x,t

))
=

(
a∗x , l∗ax , r

∗
ax

)
+ k∗t

(
b∗x , l∗bx , r

∗
bx

) (10a)

where

ln
(
m∗

x,t

)
= a∗x + b∗xk∗t (10b)

  l
ln
(
m∗

x,t

) = {
l∗ax + k∗t l

∗
bx

for k∗t > 0
l∗ax – k

∗
t r
∗
bx

for kt ≤ 0 (10c)

 
r
ln
(
m∗

x,t

) = {
r∗ax + k∗t r

∗
bx

for k∗t > 0
r∗ax – k

∗
t l
∗
bx

for k∗t ≤ 0 (10d)

and, consequently, m̃∗
x,t = exp

(
ã∗x + b̃∗xk∗t

)
. Using the results in

Section 3.1., m̃∗
x,t can be approximated by a TFN

m̃∗
x,t ≈

(
m∗

x,t, lm∗
x,t
, rm∗

x,t

)
=
(
exp

(
a∗x + b∗xk∗t

)
, exp

(
a∗x + b∗xk∗t

)
l
ln
(
m∗

x,t

)
, exp

(
a∗x + b∗xk∗t

)
r
ln
(
m∗

x,t

))
(11)

4.2. Forecasting with the Fuzzy-Random LC
Model

To forecast future central mortality rates and related variables, it is
necessary projecting the values of the index kt. In our approach,
these values are the outcomes of the RVs kt for each year t > T that
actuarial literature commonly fits by an ARIMA(p, 1, q) on the data
set {k∗t } , t ≤ T. Subsequently, these projections must be combined
with Equations (10a–10d) and (11).

[31] developed a framework for predictions that mixes conven-
tional regression and fuzzy parameters. Following those develop-
ments, the predicted values of kt, t > T, that may be point values or
statistical confidence intervals with a linked significance level, will
allow obtaining predictions for the central rate of mortality. The
values for the central rates of mortality that we obtain from a point
prediction of kt are FNs given the fuzziness of ãx and b̃x. If we use a
probabilistic confidence interval of kt, the prediction of the central
rate of mortality is a fuzzy-probabilistic confidence interval, that is,
a probabilistic interval whose lower and upper bounds are FNs.

We can use three different estimates for kt, t > T, and so, forecasted
central rates of mortality change:

• If we use the mathematical expectation, E∗ (kt), the
mathematical expectation of the logarithm of the central rate of
mortality, ln

(
m̃x,t

)
, is denoted by Ẽ∗

(
ln
(
m̃x,t

))
, and

Ẽ∗
(
ln
(
m̃x,t

))
=

(
E∗

(
ln
(
mx,t

))
, l

E∗
(
ln
(
m̃x,t

)), r
E∗

(
ln
(
m̃x,t

)))
=

(
a∗x , l∗ax , r

∗
ax

)
+ E∗ (kt)

(
b∗x , l∗bx , r

∗
bx

)
(12a)

that can be calculated with Equations. (10a–10d). So, the
central rate of mortality obtained from E∗ (kt), Ẽ∗(m̃x,t), is

Ẽ∗
(
m̃x,t

)
= exp

(
Ẽ∗

(
ln
(
m̃x,t

)))
(12b)

which can be approximated by a TFN using Equation (11).

• If we estimate kt by its 𝜀-percentile, k∗,𝜀t , the fuzzy forecast of
the logarithm of the central rate of mortality, ln(m̃x,t), is

denoted by ln
(
m̃∗

x,t

)𝜀
, being

– If b∗x – l∗bx ≥ 0

ln
(
m̃∗

x,t

)𝜀
=

(
ln
(
m∗

x,t

)𝜀
, l
ln
(
m∗

x,t

)𝜀 , r
ln
(
m∗

x,t

)𝜀)
=

(
a∗x , l∗ax , r

∗
ax

)
+ k∗,𝜀t

(
b∗x , l∗bx , r

∗
bx

)
(13a)

– If b∗x + r∗bx < 0:

ln
(
m̃∗

x,t

)𝜀
=

(
ln
(
m∗

x,t

)𝜀
, l
ln
(
m∗

x,t

)𝜀 , r
ln
(
m∗

x,t

)𝜀)
=

(
a∗x , l∗ax , r

∗
ax

)
+ k∗,1–𝜀t

(
b∗x , l∗bx , r

∗
bx

)
(13b)

And it can be implemented with Equations (10a–10d). The
central rate of mortality obtained from k∗,𝜀t , m̃∗,𝜀

x,t , is

m̃∗,𝜀
x,t = exp

(
ln
(
m̃∗

x,t

)𝜀)
≈
(
m∗,𝜀

x,t , lm∗,𝜀
x,t
, rm∗,𝜀

x,t

)
(13c)

and this FN can also be approximated with Equation (11).
Of course, with this procedure, we maintain the fuzzy
uncertainty of ã∗x and b̃∗x but the probabilistic uncertainty of
kt is reduced to a point estimation.

• If we take for kt its probabilistic 1 – 𝜀 confidence interval,
⏞k∗,𝜀t = [k

∗, 𝜀2
t , k

∗,1– 𝜀2
t ], following [31], the 1-𝜀 confidence

interval prediction for ln
(
m̃x,t

)
– or m̃x,t–, that we denote

⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
- or⏞̃m∗,𝜀

x,t - is a fuzzy-probabilistic confidence interval.

• If b∗x – l∗bx ≥ 0, the lower bound of
⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
is the FN

ln
(
m̃∗

x,t

) 𝜀
2 =

(
a∗x , l∗ax , r

∗
ax

)
+ k

∗, 𝜀2
t

(
b∗x , l∗bx , r

∗
bx

)
, whereas the
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upper bound of
⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
is

ln
(
m̃∗

x,t

)1– 𝜀2 = (
a∗x , l∗ax , r

∗
ax

)
+ k

∗,1– 𝜀2
t

(
b∗x , l∗bx , r

∗
bx

)
.

• If b∗x + r∗bx < 0, the lower bound of
⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
is

ln
(
m̃∗

x,t

) 𝜀
2 =

(
a∗x , l∗ax , r

∗
ax

)
+ k

∗,1– 𝜀2
t

(
b∗x , l∗bx , r

∗
bx

)
and the upper

bound of
⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
is

ln
(
m̃∗

x,t

)1– 𝜀2 = (
a∗x , l∗ax , r

∗
ax

)
+ k

∗, 𝜀2
t

(
b∗x , l∗bx , r

∗
bx

)
In both cases, we have to apply Equations (13a–13b).

To calculate the bounds of the fuzzy-probabilistic confidence inter-
val⏞̃m∗,𝜀

x,t we implement

m̃
∗, 𝜀2
x,t =exp

(
ln
(
m̃∗

x,t

) 𝜀
2
)

and m̃
∗,1– 𝜀2
x,t =exp

(
ln
(
m̃∗

x,t

)1– 𝜀2)
as we do in Equation (13c).

Let us remark that [1] did not take into account the uncertainty of
ax and bx but only that from kt. In our model, it is the particular

case where ãx and b̃x have null spreads and the expressions of the
fuzzy-probabilistic 1– 𝜀 confidence intervals of the logarithm of the
central rate ofmortality turn into conventional confidence intervals

⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
= [a∗x + k

∗, 𝜀2
t b∗x , a∗x + k

∗,1– 𝜀2
t b∗x] if b∗x ≥ 0 (14a)

⏞⎴⎴⏞⎴⎴⏞
ln
(
m∗

x,t

)𝜀
= [a∗x , +k

∗,1– 𝜀2
t b∗x , a∗x + k

∗, 𝜀2
t b∗x] if b∗x < 0 (14b)

4.3. An Empirical Application of the
Fuzzy-Random LC Model: The Case of
Spanish Male Population

We apply our extension of the LC model to Spanish male popu-
lation within the period 1970–2000 and we test its out-of-sample
performance during 2001–2012. Central mortality rates have
been collected from the “Human Mortality Database,” [32]
(http://www.mortality.org). Ages are grouped in 5-year intervals,
except for ages less than 1 year, for ages from 1 to 5 years, and
for ages greater or equal to 110 years. The values of the estimates
ã∗x and b̃∗x are in Table 1, whereas the estimates of the behavior of kt
are in Figure 1.

Table 1 Parameters ã∗x and b̃∗x for Spanish male population for the period 1970–2000.

a∗x   b∗x  
Age Center Left Spread Right Spread Center Left Spread Right Spread
[0, 1) −4.49273 0.30688 0.25300 0.17351 0.00000 0.00000
[1, 5) −7.48194 0.20455 0.18860 0.12731 0.00000 0.00000
[5, 10) −8.10376 0.21022 0.22686 0.11147 0.00000 0.00000
[10, 15) −8.11329 0.12371 0.11770 0.08472 0.00000 0.01665
[15, 19) −7.17041 0.12666 0.21927 0.03932 0.00000 0.02229
[20, 24) −6.77416 0.12234 0.33523 0.02428 0.00000 0.02060
[25, 29) −6.64539 0.19804 0.43116 0.00113 0.00000 0.00113
[30, 34) −6.47171 0.30079 0.29775 −0.01338 0.01338 0.00000
[35, 39) −6.25015 0.17167 0.12575 0.00356 0.00356 0.00000
[40, 44) −5.89617 0.07598 0.04676 0.02483 0.00243 0.00000
[45, 49) −5.45921 0.06226 0.02487 0.03075 0.00000 0.00520
[50, 54) −5.00591 0.05166 0.05161 0.03864 0.00000 0.00000
[55, 59) −4.55867 0.06395 0.05231 0.04121 0.00000 0.00087
[60, 64) −4.10372 0.08045 0.05451 0.04445 0.00000 0.00000
[65, 69) −3.64283 0.07091 0.04687 0.04724 0.00000 0.00523
[70, 74) −3.15519 0.07888 0.05236 0.05065 0.00030 0.00000
[75, 79) −2.66456 0.09569 0.05943 0.04685 0.00210 0.00000
[80, 84) −2.18259 0.07938 0.05492 0.04257 0.00203 0.00001
[85, 89) −1.72857 0.06846 0.04214 0.03342 0.00580 0.00000
[90, 94) −1.32104 0.06281 0.04782 0.02257 0.00465 0.00028
[95, 99) −0.97328 0.04833 0.02706 0.01436 0.00810 0.00692
[100, 104) −0.68435 0.05068 0.02508 0.00759 0.00636 0.00759
[105, 109) −0.46013 0.04953 0.03142 0.00277 0.00000 0.00277
[110, ∞) −0.31708 0.04852 0.03221 0.00017 0.00000 0.00017

Figure 1 Evolution of kt for Spanish male population in the period 1970–2000.
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The unit root test [33] on {k∗t }t=1970,1971,… , 2000, suggests that it is
I (1). We cannot reject the null hypothesis of one unit root on the
level (the Students’ t is −0.202) but we reject that null hypothesis on
the first difference because the Students’ t is −7.563.

In Table 2, Ljung and Box Q-statistic suggests that a pure random
walk for the first difference is acceptable. So, we model kt as Δk∗t =
–0.375 + 𝜀∗t , where the estimate for the standard deviation of 𝜀∗t is
0.68. Figure 2 represents the evolution thatwe predict for kt for years
2001–2012 which has been elaborated by using the bootstrapping
procedure for ARIMA time series described in [34].

We now check the capability of our extension of the LC model to
fit the central rate of mortality, mx,t , into the sample used to adjust
the coefficients, t = 1970, 1971, … , 2000 but also its performance
in out-of-sample predictions at t = 2001, 2001, … , 2012. We
measure this capability with the membership level that the actual
central mortality ratemx,t has in its fuzzy estimate m̃∗

x,t,𝜇m̃∗
x,t

(
mx,t

)
.

Figure 3 shows the average of grades of membership, for all age

groups, for the period 1970–2000, that is, 𝜇t =
∑

x
𝜇m̃∗

x,t

(
mx,t

)
N

,
with N the number of age groups that have been considered
(N = 24). Likewise, Figure 4 represents, for t = 2001, … , 2012, the

values of 𝜇t =
∑

x
𝜇

Ẽ∗
(
m̃x,t

) (mx,t
)

N
, where the central rate of mor-

tality has been forecasted by using E*(kt), and so, with Equations
(12a–12b).

Figure 3 shows that the mean grade of membership until the mid-
dle of the 80s oscillates, depending on the year, between 0.4 and
0.8. Subsequently, 𝜇t remains always around 0.6. In Figure 4, where
we also predict central mortality rates with Equations (12a–12b),
we can check that with the exception of 2003 and 2005, the average

grade of membership of the real observed central rates of mortality
in Ẽ∗

(
m̃x,t

)
is at least 0.4. Therefore, it can be said that the capa-

bility of the model to fit the central mortality rates in the sample
as well as to extrapolate them for a period of more than 10 years is
reasonably good.

Table 3 shows the TFN predictions for the central mortality rates
of year 2010 that come from E∗ (kt) and from the bounds of
⏞k∗,10%t = [k∗,5%t , k∗,95%t ], that is, we forecast the mathematical
expectation and the 10% fuzzy-probabilistic confidence interval of
mx,2010. For example, if we consider the age group [30, 34)

Ẽ∗
(
m̃[30,34),2010

)
= (0.00176, 0.00053, 0.00087)

which means that the forecasted mean of the central rate of mor-
tality in the year 2010 is approximately 0.00176, although it can

vary between 0.00123 and 0.00263. Likewise, ⏞⎴⎴⏞⎴⎴⏞m̃∗,10%
[30,34),2010 has

as lower and upper bounds, m̃∗,5%
[30,34),2010 and m̃∗,95%

[30,34),2010, the
TFNs (0.00168, 0.00051, 0.00075) and (0.00184, 0.00055, 0.00100),
respectively, that is, the real central mortality rate in the year
2010 is contained, with a probability of 90%, between approxi-
mately 0.00168, in the most optimistic scenario, and approximately
0.00184, in the most pessimistic scenario. If we were using the basic
LC model, which only takes into account the uncertainty related
to the index kt, the results would not be FNs but the real numbers
0.00176 for the mathematical expectation and [0.00168, 0.00184],
for its 90% confidence interval.

Figure 5 depicts the membership level of true observed values
of m[0,1),t for the period 2001–2012 in the TFNs Ẽ∗

(
m̃[0,1),t

)
and m̃∗,95%

[0,1),t. Such important age group is not well predicted when

Table 2 Autocorrelation statistics for the time series {k∗t }t=1970,1971,… , 2000.

Lag Autocorrelation Partial Autocorrelation Q-Statistic p-Value
1 −0.305 −0.305 30.004 0.120
2 0.145 0.005 38.019 0.149
3 −0.01 0.054 38.053 0.283
4 −0.101 −0.109 41.836 0.382
5 0.174 0.123 53.422 0.376
6 −0.023 0.092 53.638 0.498
7 −0.002 −0.004 53.927 0.612
8 −0.112 −0.174 59.353 0.654
9 −0.333 −0.437 11.001 0.276
10 0.014 −0.055 12.450 0.256
11 0.22 −0.152 14.886 0.188
12 0.11 −0.023 15.530 0.215

Figure 2 Estimation of the evolution of kt for Spanish male population in the period 2001–2012.
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Figure 3 Values of 𝜇t =
∑x 𝜇m̃∗

x,t

(
mx,t

)
N

in the period 1970–2000.

Figure 3 Values of 𝜇t =
∑x 𝜇m̃∗

x,t

(
mx,t

)
N

in the period 1970–2000.

Table 3 TFN approximations of the estimates of Ẽ∗
(
m̃x,t

)
and the bounds of⏞⎴⏞⎴⏞m̃∗,10%

x,t
(
m̃∗,5%
x,t and m̃∗,95%

x,t
)
for year 2010.

Ẽ∗
(
m̃x,t

)
  m̃∗,5%

x,t m̃∗,95%
x,t  

Age Center Left Spread Right Spread Center Left Spread Right Spread Center Left Spread Right Spread
[0, 1) 0.00206 0.00063 0.00052 0.00115 0.00035 0.00029 0.00379 0.00116 0.00096
[1, 5) 0.00016 0.00003 0.00003 0.00011 0.00002 0.00002 0.00025 0.00005 0.00005
[5, 10) 0.00010 0.00002 0.00002 0.00007 0.00001 0.00002 0.00015 0.00003 0.00003
[10, 15) 0.00013 0.00004 0.00002 0.00010 0.00003 0.00001 0.00018 0.00004 0.00002
[15, 19) 0.00052 0.00018 0.00011 0.00046 0.00019 0.00010 0.00060 0.00016 0.00013
[20, 24) 0.00090 0.00029 0.00030 0.00083 0.00033 0.00028 0.00098 0.00025 0.00033
[25, 29) 0.00129 0.00037 0.00055 0.00128 0.00038 0.00055 0.00129 0.00037 0.00056
[30, 34) 0.00176 0.00053 0.00087 0.00168 0.00051 0.00075 0.00184 0.00055 0.00100
[35, 39) 0.00186 0.00032 0.00047 0.00184 0.00032 0.00049 0.00189 0.00032 0.00045
[40, 44) 0.00216 0.00016 0.00015 0.00199 0.00015 0.00016 0.00235 0.00018 0.00015
[45, 49) 0.00315 0.00036 0.00008 0.00284 0.00037 0.00007 0.00351 0.00033 0.00009
[50, 54) 0.00460 0.00024 0.00024 0.00403 0.00021 0.00021 0.00526 0.00027 0.00027
[55, 59) 0.00701 0.00051 0.00037 0.00610 0.00046 0.00032 0.00810 0.00056 0.00042
[60, 64) 0.01070 0.00086 0.00058 0.00922 0.00074 0.00050 0.01251 0.00101 0.00068
[65, 69) 0.01651 0.00201 0.00077 0.01409 0.00197 0.00066 0.01949 0.00202 0.00091
[70, 74) 0.02602 0.00205 0.00144 0.02194 0.00173 0.00124 0.03107 0.00245 0.00169
[75, 79) 0.04410 0.00422 0.00352 0.03766 0.00360 0.00327 0.05196 0.00497 0.00377
[80, 84) 0.07445 0.00592 0.00556 0.06450 0.00513 0.00526 0.08642 0.00687 0.00584
[85, 89) 0.12816 0.00877 0.01264 0.11452 0.00784 0.01353 0.14409 0.00986 0.01129
[90, 94) 0.21414 0.01404 0.01994 0.19846 0.01321 0.02159 0.23176 0.01497 0.01781
[95, 99) 0.32848 0.03803 0.03485 0.31297 0.04353 0.04175 0.34543 0.03162 0.02684
[100, 104) 0.46845 0.05871 0.04225 0.45663 0.06889 0.05097 0.48107 0.04750 0.03266
[105, 109) 0.61439 0.05071 0.03279 0.60868 0.05592 0.03249 0.62038 0.04519 0.03311
[110, ∞) 0.72704 0.03900 0.04508 0.72661 0.03941 0.04506 0.72748 0.03858 0.04511
TFN, triangular fuzzy number.

the mathematical expectation of the parameter kt is used because
from the year 2002 on the forecasted rates never contain the real
values, that is, their grade of membership is always 0. Neverthe-
less, it does not happen when considering the upper bound of the
fuzzy-probabilistic 90% confidence interval of m̃∗,95%

[0,1),t. In this case,
membership levels are never lower than 0.4. We statistically test
the capability of Ẽ∗

(
m̃x,t

)
to predict actual central mortality rates

for each year t = 2001, 2002, ... , 2012. Table 4 shows the results.
Following [35], it is desirable that the observed rates mx,t attain
membership levels of at least 0.5, in the fuzzy prediction Ẽ∗

(
m̃x,t

)
i.e, 𝜇

Ẽ∗
(
m̃x,t

) (mx,t
)
≥ 0.5. So, for each year t = 2001, 2002, ... , 2012

we implement a Wilcoxon rank test for the null hypothesis that the
median value of𝜇

Ẽ∗
(
m̃x,t

) (mx,t
)
is 0.5. It can be seen in Table 4 that
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Figure 5 Membership levels 𝜇
Ẽ∗

(
m̃[0,1),t

) (
mx,t

)
and 𝜇

m̃∗,95%
[0,1),t

(mx,t) in 2001–2012.

Note: (a) stands for 𝜇
Ẽ∗

(
m̃[0,1),t

) (
mx,t

)
and (b) stands for 𝜇

m̃∗,95%
[0,1),t

(mx,t).

only in years 2003 and 2012 themedian of 𝜇
Ẽ∗

(
m̃x,t

) (mx,t
)
is under

0.5 and the null hypothesis is rejected at standard significant levels.

5. FORECASTING LIFE EXPECTANCY WITH
THE FUZZY-RANDOM LC MODEL

5.1. Calculating Life Expectancy from Fuzzy
Estimates of Central Mortality Rates

We now compute probabilities of death or survival and life
expectancies after calculating estimates of central mortality rates.
Let us denote the width of the age group as nx years.

To obtain the probability that a person in the age group x, at calen-
dar year t, does not reach the following age group, nxqx,t, we have to
take into account that it is a function ofmx,t.

nxqx,t =
nxmx,t

1 + nx
(
1 – 𝛾x,t

)
mx,t

(15)

where 𝛾x,t ∈ [0, 1] is the average fraction of the nx-year period lived
by those who died in that period and we will suppose that this coef-
ficient is fixed beforehand. Given that

𝜕nxqx,t
𝜕mx,t

= nx

[1 + nx
(
1–x,t

)
mx,t]

2 > 0

by considering Equation (15) and bearing in mind that nx q̃
∗
x,t𝛼 is a

prediction of a probability, that is, nx q̃
∗
x,t𝛼 ⊆ [0, 1], we can obtain

the 𝛼-cuts of nx q̃
∗
x,t, nx q̃

∗
x,t𝛼

Table 4 Assessment of the capability prediction of Ẽ∗
(
m̃x,t

)
with a

Wilcoxon rank test in 2001–2012.

Year W Median Mean Year W Median Mean

2001 92* 0.602 0.656 2007 93 0.414 0.381
2002 141 0.488 0.643 2008 141 0.438 0.256
2003 77** 0.181 0.439 2009 59** 0.534 0.246
2004 140 0.454 0.431 2010 122 0.462 0.233
2005 117 0.165 0.337 2011 67*** 0.521 0.255
2006 61*** 0.528 0.320 2012 62*** 0.202 0.182
Notes: (1)W stands for the value ofWilcoxon rank test statistic. (2) “*,” “**” and “***” stand
for the rejection of the null hypothesis that the median value of 𝜇

Ẽ∗
(
m̃x,t

) (
mx,t

)
is 0.5

with a significance level of 10%, 5%, and 1%, respectively.

nxq̃∗x,t𝛼 = [nxq
∗
x,t (𝛼) , nxq∗x,t (𝛼)]

= [max {0,
nx [m∗

x,t – lm∗
x,t
(1 – 𝛼)]

1 + nx
(
1 – 𝛾x,t

)
[m∗

x,t – lm∗
x,t
(1 – 𝛼)]

} ,

min {1,
nx [m∗

x,t + rm∗
x,t
(1 – 𝛼)]

1 + nx
(
1 – 𝛾x,t

)
[m∗

x,t + rm∗
x,t
(1 – 𝛼)]

}]

It may be useful to obtain a triangular approximation for nx q̃
∗
x,t,

nx q̃
∗
x,t ≈

(
nxq

∗
x,t, lnx q∗x,t , rnx q∗x,t

)
, with

nxq
∗
x,t =

nxm∗
x,t

1 + nx
(
1 – 𝛾x,t

)
m∗

x,t
(16a)

In order to obtain the support of nx q̃
∗
x,t,we have to take into account

that it is a probability and so, its support must be within the interval
[0, 1]. Then

l
nx
q∗x,t

= min {nxq
∗
x,t,

nxlm∗
x,t

[1 + nx
(
1 – 𝛾x,t

)
mx,t]

2 } (16b)

and

r
nx
q∗x,t

= min {1 –nx q
∗
x,t,

nxrm∗
x,t

[1 + nx
(
1 – 𝛾x,t

)
mx,t]

2 } (16c)

To determine the probability that a person in the age group x, at
calendar year t, reaches the following age group, nxpx,t, from the
crisp relationship nxpx,t = 1–nxqx,t, under fuzziness we state nx p̃x,t =
1 –nx q̃x,t where

nxp
∗
x,t𝛼 = [nxp

∗
x,t (𝛼) , nxp∗x,t (𝛼)] = [1 – nxq

∗
x,t (𝛼) , 1 – nxq

∗
x,t (𝛼)]

From Equations (15a–15c), nx p̃
∗
x,t ≈

(
nxp

∗
x,t, lnx p∗x,t , rnx p∗x,t

)
nxp

∗
x,t = 1 –nx q

∗
x,t; lnx p∗x,t = l

nx
q∗x,t
; r

nx
p∗x,t

= r
nx
q∗x,t

Pdf_Folio:783



784 J. Andrés-Sánchez and L. G. Puchades. / International Journal of Computational Intelligence Systems 12(2) 775–794

The life expectancy of a person in the age group x, at calendar year
t, ex,t can be calculated with the expression

ex,t = ∑i≥x∏x≤j<i

(
1 –nj qj,t

)
[ni – (ni – 𝛾i,t)niqi,t] (17)

Since

𝜕ex,t
𝜕niqi,t

= – {∏x≤j<i

(
1 –nj qj,t

)
[ni –

(
ni – 𝛾i,t

)
]

+ ∑s>i∏x≤j<s
j≠i

(
1 –nj qj,t

)
[ns – (ns – 𝛾s,t)nsqs,t]}

it turns out that ex,t is a decreasing function of niqi,t (and so, of its
linked central mortality rate).

By evaluating Equation (17) with ni q̃
∗
i,t, we will obtain a fuzzy esti-

mate for ex,t, ̃e∗x,t . Moreover, it is straightforward to see that its 𝛼
–cuts, e∗x,t𝛼, are

e∗x,t𝛼 = [e∗x,t (𝛼) , e∗x,t (𝛼)]

= [∑i≥x∏x≤j<i

(
1 – njqj,t (𝛼)

)
[ni –

(
ni – 𝛾i,t

)
njqj,t (𝛼)] ,

∑i≥x∏x≤j<i

(
1 – njqj,t (𝛼)

)
[ni –

(
ni – 𝛾i,t

)
niqi,t (𝛼)]]

A TFN approximation of ̃e∗x,t, ̃e∗x,t ≈
(
e∗x,t, le∗x,t , re∗x,t

)
, can be

obtained by using Equation (6)

e∗x,t = ∑i≥x∏x≤j<i

(
1 – nj q

∗
j,t

)
[ni – (ni – 𝛾i,t)niq

∗
i,t] (18a)

le∗x,t = ∑i≥x {∏x≤j<i

(
1 –nj q

∗
j,t

) (
ni – 𝛾i,t

)
+∑s>i∏x≤j<s

j≠i

(
1 –nj q

∗
j,t

)
[ns – (ns – 𝛾s,t)nsq

∗
s,t]} rni q∗i,t

(18b)

re∗x,t = ∑i≥x {∏x≤j<i

(
1 –nj q

∗
j,t

) (
ni – 𝛾i,t

)
+ ∑s>i∏x≤j<s

j≠i

(
1 –nj q

∗
j,t

)
[ns – (ns – 𝛾s,t)nsq

∗
s,t]} lni q∗i,t

(18c)

Of course, if in Equations (18a–18c) we take as a prediction of the
index kt its mathematical expectation, k∗t = E∗ (kt), we will obtain
a fuzzy estimate of life expectation that we symbolize as Ẽ∗

(
̃e∗x,t
)
.

If the prediction of the mortality trend comes from its proba-

bilistic confidence interval, ⏞k∗,𝜀t = [k
∗, 𝜀2
t , k

∗,1– 𝜀2
t ], we can built

up a fuzzy-probabilistic confidence interval of the life expectancy
⏞e∗,𝜀x,t = [e

∗, 𝜀2
x,t , e

∗,1– 𝜀2
x,t ]. In the common case where the sensitivity of

the central rate of mortality respect to changes in the index kt is

strictly positive, that is, b̃∗x > 0
(
b∗x – lb∗x ≥ 0

)
, k

∗, 𝜀2
t will determine

e
∗,1– 𝜀2
x,t , whereas k

∗,1– 𝜀2
t will define the lower life expectancy e

∗, 𝜀2
x,t .

5.2. Predicting Life Expectancies of
Spanish Male Population in 2001–2012

Tables 5 and 6 show the estimates for the mean value and the 90%
confidence fuzzy-probabilistic interval of the life expectancy for
the age groups [0, 1) and [65, 69) during the period 2001–2012.
These ages are significantly important because they are considered
in order to quantify life expectancy at birth and at retirement,
respectively. If only the centers of the fuzzy life expectancies are
considered, predictions that come from the basic LC method are
found. So, for example, the point estimate for e[0,1),2012 is 78.19
years and the 90% confidence probabilistic interval is [76.56, 79.75]
years. The fuzzy-random extension of the LC model allows intro-
ducing the fuzziness into the coefficients ax and bx and, as a
consequence, point predictions and probabilistic interval predic-
tions, as well, are fuzzified. So, the projection of e[0,1),2012 is the
TFN (78.19, 1.25, 1.30) years, whereas the lower and upper bounds
of the 90% confidence fuzzy-probabilistic interval are respectively
(76.56, 1.19, 1.28) and (79.75, 1.34, 1.33).

Table 5 TFN approximation of the estimates of Ẽ∗
(
̃e∗[0,1),t

)
and⏞⎴⏞⎴⏞̃e∗,10%[0,1),t , with lower and upper bounds ̃e∗,5%[0,1),t and ̃e∗,95%[0,1),t , in 2001–2012.

Ẽ∗
(
̃e∗[0,1),t

)
  ̃e∗,5%[0,1),t   ̃e∗,95%[0,1),t  

Year Center Left Spread Right Spread Center Left Spread Right Spread Center Left Spread Right Spread
2001 76.31 1.18 1.28 75.73 1.17 1.28 76.96 1.20 1.28
2002 76.49 1.19 1.28 75.72 1.17 1.28 77.20 1.21 1.29
2003 76.66 1.19 1.28 75.75 1.17 1.28 77.54 1.22 1.29
2004 76.84 1.20 1.28 75.82 1.18 1.28 77.85 1.23 1.30
2005 77.01 1.20 1.29 75.89 1.18 1.28 78.07 1.24 1.30
2006 77.18 1.21 1.29 75.94 1.18 1.28 78.29 1.25 1.30
2007 77.35 1.21 1.29 75.94 1.18 1.28 78.60 1.27 1.31
2008 77.52 1.22 1.29 75.97 1.18 1.28 78.80 1.28 1.31
2009 77.69 1.23 1.29 76.10 1.18 1.28 79.05 1.29 1.32
2010 77.85 1.23 1.30 76.13 1.18 1.28 79.28 1.31 1.32
2011 78.02 1.24 1.30 76.26 1.18 1.28 79.50 1.32 1.33
2012 78.19 1.25 1.30 76.56 1.19 1.28 79.75 1.34 1.33
TFN, triangular fuzzy number.
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Figures 6 and 7 represent the membership level of true observed
values for life expectancies, ex,t, into their estimates Ẽ∗

(
̃e∗x,t
)
,

̃e∗,5%x,t and ̃e∗,95%x,t . Concretely, we take the estimates calculated in
Tables 5 and 6. We can check that e[0,1),t is fitted quite accurately

Table 6 TFN approximation of the estimates of Ẽ∗
(
̃e∗[65,69),t

)
and⏞⎴⏞⎴⏞̃e∗,10%[65,69),t, with lower and upper bounds ̃e∗,5%[65,69),t and ̃e∗,95%[65,69),t, in 2001–2012.

Ẽ∗
(
̃e∗[65,69),t

)
  ̃e∗,5%[65,69),t ̃e∗,95%[65,69),t

Year Center Left Spread Right Spread Center Left Spread Right Spread Center Left Spread Right Spread
2001 17.06 0.48 0.64 16.67 0.46 0.63 17.51 0.51 0.65
2002 17.18 0.49 0.64 16.66 0.46 0.63 17.68 0.52 0.65
2003 17.30 0.49 0.64 16.68 0.46 0.63 17.92 0.53 0.66
2004 17.42 0.50 0.65 16.73 0.46 0.63 18.15 0.55 0.66
2005 17.54 0.51 0.65 16.78 0.46 0.63 18.31 0.56 0.67
2006 17.67 0.52 0.65 16.82 0.47 0.63 18.47 0.57 0.67
2007 17.79 0.52 0.66 16.82 0.47 0.63 18.70 0.58 0.67
2008 17.91 0.53 0.66 16.83 0.47 0.63 18.85 0.59 0.68
2009 18.03 0.54 0.66 16.92 0.47 0.63 19.04 0.61 0.68
2010 18.15 0.55 0.66 16.94 0.47 0.64 19.21 0.62 0.68
2011 18.27 0.55 0.67 17.03 0.48 0.64 19.38 0.63 0.69
2012 18.40 0.56 0.67 17.24 0.49 0.64 19.57 0.64 0.69
TFN, triangular fuzzy number.

Figure 6 Membership levels 𝜇
Ẽ∗

(
̃e∗[0,1),t

)(e[0,1),t), 𝜇 ̃e∗,5%[0,1),t
(e[0,1),t) and 𝜇 ̃e∗,95%[0,1),t

(e[0,1),t) in

2001–2012.
Note: (a) stands for 𝜇

Ẽ∗
(
̃e∗[0,1),t

)(e[0,1),t), (b) stands for 𝜇 ̃e∗,5%[0,1),t
(e[0,1),t) and (c) stands for

𝜇 ̃e∗,95%[0,1),t
(e[0,1),t).

Figure 7 Membership levels 𝜇
Ẽ∗

(
̃e∗[65,69),t

)(e[65,69),t), 𝜇 ̃e∗,5%[65,69),t
(e[65,69),t) and

𝜇 ̃e∗,95%[65,69),t
(e[65,69),t) in 2001–2012.

Note: (a) stands for 𝜇
Ẽ∗

(
̃e∗[65,69),t

)(e[65,69),t), (b) stands for 𝜇 ̃e∗,5%[65,69),t
(e[65,69),t) and (c) stands

for 𝜇 ̃e∗,95%[65,69),t
(e[65,69),t).
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by Ẽ∗
(
̃e∗[0,1),t

)
from 2001 to 2005. On the other hand, from 2006

to 2012, 𝜇
Ẽ∗

(
̃e∗[0,1),t

) (
e[0,1),t

)
decreases to values near 0. However,

we can also remark that in those years the membership level of
e[0,1),t into the TFN ̃e∗,95%[0,1),t stands clearly up to 0.5. Likewise, for

[65, 69), Figure 7 shows that Ẽ∗
(
̃e∗[65,69),t

)
fits e[65,69),t, from 2006

to 2012, with clearly satisfactory membership levels that are usually
up 0.8. It is true that 𝜇

Ẽ∗
(
̃e∗[65,69),t

) (
e[65,69),t

)
has low values in

the years 2003 and 2005 but they are compensated by the greater
membership levels of 𝜇 ̃e∗,5%[65,69),t

(
e[65,69),t

)
. In a similar way as in

Subsection 4.3., we statistically test the capability of fuzzy mean life
expectancies to predict actual life expectations at t = 2001, 2002, ... ,
2012. Again, for each year t = 2001, 2002, ... , 2012 we implement a
Wilcoxon rank test with the null hypothesis that themedian value of
𝜇

Ẽ∗
(
̃e∗x,t
) (

mx,t
)
= 0.5. Table 7 shows that, except for the year 2003,

in the years where the median of 𝜇
Ẽ∗

(
m̃x,t

) (
mx,t

)
is under 0.5, we

cannot reject the null hypothesis. On the other hand, in the years
2001, 2007, 2010, and 2011, there are statistical evidences that the
median is above 0.5.

Due to the interest in actuarial analyses in life expectancy both
at birth and at retirement, we test the quality of the prediction by
Ẽ∗

(
̃e∗x,t
)
for age gropus [0, 1) an [65, 69). The results are also col-

lected in Table 7. We can check that the median and mean mem-
bership levels of observed life expectancies in the period 2001–2012
are consistently above 0.5. However, the Wilcoxon rank test does
not reject in both age groups that 𝜇

Ẽ∗
(
̃e∗x,t
) (ex,t) = 0.5.

Table 7 Assessment of the capability prediction of Ẽ∗
(
̃e∗x,t
)
with a

Wilcoxon rank test for the period 2001–2012.

Capability Prediction of Ẽ∗
(
̃e∗x,t

)
Per Years

Year W Median Mean Year W Median Mean

2001 92* 0.602 0.718 2007 93 0.414 0.589
2002 141 0.488 0.656 2008 141 0.438 0.586
2003 77** 0.181 0.338 2009 59*** 0.534 0.555
2004 140 0.454 0.653 2010 122 0.462 0.445
2005 117 0.165 0.440 2011 67*** 0.521 0.443
2006 61*** 0.528 0.699 2012 62*** 0.202 0.409

Capability Prediction of Ẽ∗
(
̃e∗[0,1),t

)
and Ẽ∗

(
̃e∗[65,69),t

)
on Life Expectancy at Birth and Retirement

Median Mean W

Ẽ∗
(
̃e∗[0,1),t

)
0.628 0.567 37

Ẽ∗
(
̃e∗[65,69),t

)
0.655 0.609 19

Notes: (1) Each year has 24 predictions on life expectancies, one per age group. (2) Each age
group has 12 predictions available, one for each assessed year. (3) W stands for the value
of Wilcoxon rank test statistic. (4) “*,” “**,” and “***” stand for the rejection of the null
hypothesis that median value of 𝜇

Ẽ∗
(
̃e∗x,t

) (
ex,t

)
is 0.5 with a significance level of 10%,

5%, and 1%, respectively.

6. EMPIRICAL ASSESSMENT OF THE
FUZZY-RANDOM LC MODEL IN EIGHT
WESTERN EUROPEAN COUNTRIES1

6.1. Methodological Considerations

In this section wemake a comparative assessment on the prediction
capability of our proposed fuzzy-randomextension of the LCmodel
(FRLC) with both the basic LC (BLC) in [1] and the pure fuzzy LC
version by Koissi and Shapiro in [14], (FKSLC). Let us remark that
BLC only considers random uncertainty ofcoefficients kt. On the
other hand, FKSLC introduces fuzzy uncertainty in all the coeffi-
cients of the LC model by means of symmetrical TFNs. Likewise,
FKSLC handles uncertainty with the weakest t-norm instead of the
commonly used minimum operator.

To carry out the analysis, we use central mortality rates collected
separately for men and women in eight Western Europe countries
(i.e., we use 16 databases) from [32] (http://www.mortality.org). As
we made in Sections 4 and 5 for the case of Spanish male popula-
tion, we fit the model parameters by using central mortality rates
in the period 1970–2000 and we test models out-of-sample perfor-
mance during 2001–2012. Ages are again grouped in 5-year inter-
vals, except for ages lower than 1 year, for ages from 1 to 5 years,
and for ages greater or equal to 110 years.

We assess two aspects regarding the fitting quality of the models:

Item 1. We measure and compare models’ performance to make
point predictions on central mortality rates and life expectancies.
This is made by using the conventional error measures: root mean
squared error (RMSE), normalized mean squared error (NMSE),
and mean absolut error (MAE). We consider these point predic-
tions: the expectation for BLC, the core of the fuzzy expectation
for FRLC and, finally, the core of the fuzzy prediction for FKSLC.
Notice that point predictions by BLC and FRLC are the same by
definition. So, in fact, we are making a comparison of a couple of
predictive methods: BLC/FRLC versus FKSLC. Following [36], this
pairwise comparison between techniques is made with both a sign
test (Wins/Losses) and a Wilcoxon rank test.

Item 2.We evaluate the capability of BLC, FRLC, and FKSLC to pre-
dict future values ofmx,t , and ex,t by means of confidence intervals.
In this second item, we measure the accuracy of a method as the
rate of right predictions onmx,t or ex,t through confidence intervals
estimates provided by the methods.

In this regard, let us make the following remarks:

• BLC only considers random uncertainty of kt. So, after
establishing a significance level 𝜀, that in our numerical
assessment will be 10%, BLC predicts life variables as a 1 – 𝜀
confidence interval like in Equation (14).

• FRLC estimates the lower and upper bounds of the 1 – 𝜀
confidence interval by means of two TFNs. To obtain standard
confidence interval predictions, we transform these estimates
into a conventional confidence interval that comes from the
convex hull, C (⋅), of the expected intervals Equation (4b)
corresponding to 𝜀

2 and 1– 𝜀
2 percentiles of fuzzy predictions

1This section is especially benefited by the helpful suggestions of one
anonymous referee.Pdf_Folio:786
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(5% and 95% in our numerical application). So, formx,t, the
1 – 𝜀 confidence interval prediction is

C
(
eI
(
m̃
∗, 𝜀2
x,t

)
∪ eI

(
m̃
∗,1– 𝜀2
x,t

))
. Analogously, the 1 – 𝜀

confidence interval prediction of ex,t is

C
(
eI
(
̃e
∗, 𝜀2
x,t

)
∪ eI

(
̃e
∗,1– 𝜀2
x,t

))
. For example, the life

expectancy at birth of a Spanish man born in 2004 for 𝜀 = 10%
is built up from ̃e∗[0,1),2004

5% = (75.82, 1.18, 1.28) and
̃e∗[0,1),2004

95% = (77.85, 1.23, 1.30) (see Table 5). We easily find

that eI
(
̃e∗[0,1),2004

5%
)
= [75.23, 76.46] and

eI
(
̃e∗[0,1),2004

95%
)
= [77.23, 78, 50]. Then, the 90%

confidence interval prediction for e[0,1),2004 is (in years):

C ([75.23, 76.46] ∪ [77.23, 78.50])
= [75.23, 78.50]

• FKSLC directly predicts mortality variables as FNs. The
expected interval of the FN obtained from this method is taken
as its confidence interval.

The analysis of both questions is developed in two levels:

(a) In each population, we independently assess the predictive
capability of each method. For a given population we must
predict 24 variables for each of the 12 years that testing period
2001–2012 comprises. In each year we find the mean value
of the accuracy measures and so, for each population, we
have 12 available mean values of accuracy (one per year). The
results that we find in this case are exclusive to the population
studied.

(b) We will use the mean results of the accuracy predictions
within thewhole period 2001–2012 of all populations tomake
an inter-population assessment. It may lead to extract more
general conclusions about the method performance. In this
case, we will work with a sample of 16 different goodness of
fit measures.

Following [37] and [38], an adequate nonparametrical test to carry
out this kind of analysis is the Friedman rank test (Friedman𝜒2 and
Iman-Davenport F statistics) thatmay be completed by the pairwise
comparisons that allow using Friedman ranks (Z-score). Likewise,
given that FRLC and FKSLC are extensions of BLC, we will imple-
ment themultiple sign test described in [37] where the control tech-
nique is BLC.

6.2. Comparison of BLC, FRLC, and FKSLC
for Each Population

We now show the adequacy of the three LC methods evaluated in
16 populations. We present in a more detailed way the results cor-
responding to Spanish male population (Tables 8a–8d) and a sum-
mary table for all the analyzed countries (Tables 9a–9e).

Regarding Item 1, we can check in Tables 8a and 8b that for Spanish
male population, BLC/FRLC point predictions of mx,t and ex,t
are, generally, more accurate than those by FKSLC and this best
adjustment has a consistent statistical significance. Furthermore,

Table 9a shows that in the studied populations, as in the case of
Spanish men, point predictions of mx,t from BLC/FRLC are nor-
mally better than those from FKSLC and this fact has also statisti-
cal significance. We can appreciate three exceptions: Belgian male
population, where FKSLC beats BLC/FRLC with a consistent sta-
tistical level and United Kingdom and Netherlands female popu-
lations where we do not appreciate any significant better method.
Table 9c shows that in the prediction of ex,t, it is less clear that
BLC/FRLC predictions are better than those by FKSLC. BLC/FRLC
beats FKSLC with a clear statistical significance in eight popula-
tions but in five populations FKSLC works clearly better. Likewise,
in three populations the possible superior performance of a given
method has no statistical significance.

Table 8a Mean RMSE, NMSE, and MAE (per years) of central mortality
rates point predictions for Spanish men by the evaluated methods (Item 1).

RMSE NMSE MAE
Year BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC
2001 0.006 0.002 0.0039 0.0009 0.0031 0.0003
2002 0.007 0.011 0.0044 0.0051 0.0040 0.0097
2003 0.020 0.011 0.0108 0.0058 0.0280 0.0088
2004 0.012 0.023 0.0070 0.0091 0.0110 0.0392
2005 0.018 0.018 0.0101 0.0082 0.0240 0.0247
2006 0.011 0.020 0.0066 0.0111 0.0103 0.0297
2007 0.015 0.022 0.0084 0.0095 0.0168 0.0360
2008 0.016 0.022 0.0089 0.0115 0.0204 0.0361
2009 0.014 0.018 0.0078 0.0097 0.0151 0.0240
2010 0.013 0.016 0.0074 0.0089 0.0139 0.0202
2011 0.011 0.015 0.0066 0.0085 0.0110 0.0175
2012 0.022 0.026 0.0119 0.0129 0.0407 0.0498

Wins/losses 10/2** Wins/losses 9/3* Wins/losses 10/3**
W 8** W 11** W 15*

RMSE, rootmean squared error; NMSE, normalizedmean squared error;MAE,mean abso-
lute error; BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC,
fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” stands for the number of cases in which BLC and FRLC point pre-
dictions are better/worse than FKSLC. (2)W stands for the value of the Wilcoxon rank test
statistic. (3) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a signifi-
cance level of 10%, 5%, and 1%, respectively.

Table 8b Mean RMSE, NMSE, and MAE (per years) of life expectancy
point predictions for Spanish men by the evaluated methods (Item 1).

RMSE NMSE MAE
Year BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC
2001 0.152 0.246 1.51E-04 2.45E-04 0.122 0.160
2002 0.194 0.232 1.91E-04 2.30E-04 0.149 0.155
2003 0.327 0.218 3.21E-04 2.16E-04 0.287 0.202
2004 0.190 0.400 1.83E-04 3.90E-04 0.173 0.287
2005 0.270 0.344 2.61E-04 3.35E-04 0.235 0.264
2006 0.348 0.647 3.30E-04 6.19E-04 0.235 0.484
2007 0.306 0.571 2.89E-04 5.44E-04 0.251 0.404
2008 0.443 0.754 4.14E-04 7.38E-04 0.308 0.561
2009 0.560 0.889 5.18E-04 8.30E-04 0.008 0.010
2010 0.712 1.060 6.51E-04 9.79E-04 0.007 0.009
2011 0.769 1.127 6.98E-04 1.03E-03 0.007 0.008
2012 0.703 1.056 6.36E-04 9.75E-04 0.012 0.013

Wins/losses 11/1* Wins/losses 11/1** Wins/losses 11/1**
W 9** W 9** W 5**

RMSE, rootmean squared error; NMSE, normalizedmean squared error;MAE,mean abso-
lute error; BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC,
fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” stands for the number of cases in which BLC and FRLC point pre-
dictions are better/worse than FKSLC. (2)W stands for the value of the Wilcoxon rank test
statistic. (3) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a signifi-
cance level of 10%, 5%, and 1%, respectively.
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Table 8c Mean proportion of successful predictions on central mortality rates of BLC, FRLC, and FKSLC with
confidence intervals (Item 2).

Proportion of Successful
Predictions

Test Results

Year BLC FRLC FKSLC Global comparison
2001 0.625 0.875 0.708 Friedman 𝜒2 = 20.667***
2002 0.625 0.875 0.750 Iman-Davenport F Statistic = 31***
2003 0.542 0.667 0.458 Pairwise comparisons

 FRLC versus BLC
Z score = 2.858
p-values: (a) 4.27E-03; (b) 0.013; (c) 0.009
 FKSLC versus FRLC
Z score = −4.491
p-values: (a) 7.10E-06; (b) 2.13E-05;
(c) 2.13E-05
 FKSLC versus BLC
Z score = −1.633
p-values: (a) 0.102; (b) 0.307; (c) 0.102

2004 0.625 0.833 0.458
2005 0.542 0.667 0.292
2006 0.625 0.792 0.375
2007 0.583 0.792 0.500
2008 0.583 0.708 0.333
2009 0.583 0.750 0.250
2010 0.583 0.750 0.292
2011 0.583 0.708 0.333
2012 0.542 0.583 0.167

Multiple sign test (the control method is BLC)
Wins/losses of FRLC against BLC: 12/0 +
Wins/losses of FKSLC against BLC: 2/10 −
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) Friedman 𝜒2 follows a Squared-Chi with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(24) grades of
freedom. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively. (3) (a)
indicates standard p-value and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that
the evaluated method outperforms the control method with at least at 10% significance level, whereas “−” indicates that the evaluated method
underperforms the control method with at least at 10% significance level.

Table 8d Mean proportion of successful predictions on life expectancies of BLC, FRLC, and FKSLC with confidence
intervals (Item 2).

Proportion of Successful
Predictions

Test Results

Year BLC FRLC FKSLC Global comparison
2001 0.792 0.958 0.958 Friedman 𝜒2 = 8.0417***
2002 0.833 0.958 0.958 Iman–Davenport F Statistic = 5.5431**
2003 0.667 0.792 0.667 Pairwise comparisons

 FRLC versus BLC
Z score = 2.756
p-values: (a) 0.006; (b) 0.018; (c) 0.012
 FKSLC versus FRLC
Z score = −3.878
p-values: (a) 6.88E-05; (b) 2.06E-04;
(c) 1.38E-04
 FKSLC versus BLC
Z score = −1.123
p-values: (a) 0.262; (b) 0.785; (c) 0.262

2004 0.833 0.958 0.625
2005 0.750 0.833 0.458
2006 0.875 0.958 0.375
2007 0.833 0.917 0.583
2008 0.833 0.875 0.292
2009 0.875 0.917 0.292
2010 0.875 0.958 0.250
2011 0.833 0.958 0.250
2012 0.833 0.875 0.167

Multiple sign test (the control method is BLC)
Wins/losses of FRLC against BLC: 12/0 +
Wins/losses of FKSLC against BLC: 3/9 −
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) Friedman 𝜒2 follows a Squared-Chi with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(24) grades of
freedom. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively. (3) (a)
indicates standard p-value and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that
the evaluated method outperforms the control method with at least at 10% significance level, whereas “−” indicates that the evaluated method
underperforms the control method with at least at 10% significance level.

In regards to Item 2, in Spanish male population, we can check in
Tables 8c and 8d that Friedman rank test rejects the homogeneity
in the accuracy of the predictions over analyzed life variables by
the three assessed methods. Pairwise comparisons lead us to con-
clude that FRLC makes better interval predictions than BLC and
FKSLC. However, despite the fact that we can detect that BLC beats
FKSLC, this superior performance has no statistical significance.

In this sense, multiple sign test shows that our method clearly beats
the control method and, on the other hand, the control method
seems to be superior to FKSLC but without statistical significance.
Tables 9c–9d show that those facts are common to all studied
populations. So, Friedman 𝜒2 and Iman–Davenport statistics
always reject the homogeneity of the prediction capabil-
ity by the three methods. This fact applies for mx,t and
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Table 9a Results of sign and Wilcoxon tests on the difference between the accuracy of point estimates on central mortality rates by
BLC/FRLC and FKSLC in the period 2001–2012 (Item 1).

RMSE NMSE MAE
Wins/Losses W Wins/Losses W Wins/Losses W

Austria (men) 12/0** 0*** 12/0** 0*** 12/0** 0***
Austria (women) 12/1** 0*** 12/0** 0*** 12/0** 0***
Belgium (men) 3/9* 23 5/7 25 2/10** 18
Belgium (women) 12/0** 0*** 12/0** 0*** 12/0** 0***
France (men) 11/1** 12** 11/1** 11** 11/1** 11**
France (women) 11/1** 11** 10/2** 22 11/1** 11**
Italy (men) 12/0** 0*** 12/0** 0*** 12/0** 0***
Italy (women) 11/1** 8** 8/4 34 11/1** 3***
Netherlands (men) 9/3* 15* 10/2** 11** 9/3* 16*
Netherlands (women) 8/4 31 8/4 28 8/4 30
Portugal (men) 10/2** 22 9/3* 24 10/2** 16*
Portugal (women) 4/8 23 3/9* 14** 4/8 22
Spain (men) 10/2** 8** 9/3* 11** 10/2** 15*
Spain (women) 12/0** 0*** 12/0** 0*** 12/0** 0***
United Kingdom (men) 11/1** 11** 12/0** 0*** 11/1** 12**
United Kingdom (women) 5/7 27 6/6 38 5/7 31
RMSE, root mean squared error; NMSE, normalized mean squared error; MAE, mean absolute error; BLC, basic LC model; FRLC, Fuzzy-random extension of
the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” are accounted from the perspective of BLC/FRLC. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance
level of 10%, 5%, and 1%, respectively.

Table 9b Results of sign and Wilcoxon tests on the difference between the accuracy of point estimates on life expectancies by
BLC/FRLC and FKSLC in the period 2001–2012 (Item 1).

RMSE NMSE MAE
Wins/Losses W Wins/Losses W Wins/Losses W

Austria (men) 12/0** 0*** 12/0** 0*** 12/0** 0***
Austria (women) 0/12** 0*** 0/12** 0*** 0/12** 0***
Belgium (men) 0/12** 0*** 0/12** 0*** 0/12** 0***
Belgium (women) 12/0** 0*** 12/0** 0*** 12/0** 0***
France (men) 11/1** 12** 11/1** 12** 11/1** 12**
France (women) 9/3* 11** 9/3* 29 9/3* 28
Italy (men) 12/0** 0*** 12/0** 0*** 12/0** 0***
Italy (women) 4/8 30 4/8 30 3/9* 26
Netherlands (men) 0/12** 0*** 0/12** 0*** 0/12** 0***
Netherlands (women) 4/8 18 4/8 18 4/8 18
Portugal (men) 12/0** 0*** 12/0** 0*** 12/0** 0***
Portugal (women) 12/0** 0*** 8/4 37 8/4 37
Spain (men) 11/1** 9** 11/1** 9** 11/1** 9**
Spain (women) 1/11** 12** 1/11** 12** 1/11** 12**
United Kingdom (men) 12/0** 11** 12/0** 0*** 12/0** 0***
United Kingdom (women) 0/12** 0*** 0/12** 0*** 0/12** 0***
RMSE, root mean squared error; NMSE, normalized mean squared error; MAE, mean absolute error; BLC, basic LC model; FRLC, Fuzzy-random extension of
the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” are accounted from the perspective of BLC/FRLC. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance
level of 10%, 5%, and 1%, respectively.

for ex,t. Pairwise Friedman ranks tests show that the pre-
diction on central mortality rates by FRLC beats signifi-
cantly those obtained by BLC and FKSLC. Likewise, we can
also check that BLC usually makes more accurate interval
predictions than FKSLC but that better performance, except for
the case of French women, has not statistical significance.

In the analysis of life expectancy predictions, pairwise Friedman
ranks tests (see Table 9d) reveal that FRLC predicts confidence
intervals consistently better than other methods in most popula-
tions. In any case, it is also true that in French and Italy female
populations and Portugal male population (Netherlands male pop-
ulation) the greater accuracy of FRLC over BLC (FKSLC over
FRLC) is not statistically significant. We can also check that in
most cases BLC includes more percentage of observed values of

ex,t than FKSLC but it is only statistically relevant in five popula-
tions. However, in the case of Netherlands male population, FKSLC
model predicts life expectancies better than BLCwith a clear signif-
icance level. Results of multiple sign tests in Table 9e show that our
method improves significantly BLC (the control method), whereas
this clearly does not follow with FKSLC method.

6.3. A Global Comparison of BLC, FRLC,
and FKSLC

In this section we show the results of testing BLC, FRLC, and
FKSLC from a sample composed by the mean values of accuracy
prediction measures within 2001–2012 of the 16 populations con-
sidered in this paper. They are summarized in Tables 10a–10d.
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Table 9c Results of Friedman rank tests and pairwise Friedman rank tests for the accuracy of the confidence interval predictions on central
mortality rates by BLC, FRLC, and FKSLC in sample populations in the period 2001–2012 (Item 2).

Pairwise ZScores from Friedman Ranks Friedman Test
FRLC versus BLC FKSLC versus FRLC FKSLC versus BLC Friedman𝜒2 Iman–Davenport F

Austria (men) 3.164*** −3.776*** −0.612 8.542** 6.079***
Austria (women) 3.062*** −4.082*** −1.021 14.083*** 15.621***
Belgium (men) 2.654** −4.491*** −1.837 18.375*** 35.933***
Belgium (women) 2.654** −4.695*** −2.041 22.167*** 133.026***
France (men) 2.858** −4.491*** −1.633 20.660*** 68.042***
France (women) 2.449** −4.695*** −2.245* 20.000*** 55.000***
Italy (men) 2.654** −4.491*** −1.837 16.420*** 23.828***
Italy (women) 2.654** −4.695*** −2.041 22.167*** 133.026***
Netherlands (men) 2.858** −4.491*** −1.633 20.667*** 68.208***
Netherlands (women) 2.654** −4.287*** −1.633 10.830*** 9.046***
Portugal (men) 2.654** −4.695*** −2.041 22.167*** 133.026***
Portugal (women) 3.062*** −3.674*** −0.612 15.500*** 20.059***
Spain (men) 2.858** −4.491*** −1.633 20.667*** 68.208***
Spain (women) 3.062*** −4.082*** −1.021 14.083*** 15.621***
United Kingdom (men) 2.654** −4.082*** −1.429 5.417* 3.207*
United Kingdom (women) 2.654** −4.491*** −1.837 16.417*** 23.815***
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively. (2) Friedman𝜒2 follows a Squared-Chi
with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(24) grades of freedom.

Table 9d Results of Friedman rank tests and pairwise Friedman rank tests for the accuracy of the confidence interval predictions on life
expectancies by BLC, FRLC, and FKSLC in sample populations in the period 2001–2012 (Item 2).

Pairwise Z Scores from Friedman Ranks Friedman Test
FRLC versus BLC FKSLC versus FRLC FKSLC versus BLC Friedman𝜒2 Iman–Davenport F

Austria (men) 3.164*** −4.185*** −1.021 19.042*** 42.247***
Austria (women) 2.449** −3.266*** −0.816 7.750** 5.246**
Belgium (men) 2.143* −4.287*** −2.143* 18.370*** 35.892***
Belgium (women) 2.245* −4.491*** −2.245* 20.100*** 56.692***
France (men) 2.347* −3.470*** −1.123 12.540*** 12.037***
France (women) 1.123 −3.572*** −2.449** 9.375*** 7.051***
Italy (men) 2.449** −4.899*** −2.449** 24.000*** ∞***
Italy (women) 2.041 −2.449** −0.408 6.500** 4.086**
Netherlands (men) 4.695*** −2.041 2.654** 22.167*** 133.026***
Netherlands (women) 2.347* −3.470*** −1.123 12.542*** 12.041***
Portugal (men) 2.245* −3.572*** −1.327 13.040*** 13.088***
Portugal (women) 1.429 −3.878*** −2.449** 11.420*** 9.986***
Spain (men) 2.756** −3.980*** −1.225 16.250*** 23.065***
Spain (women) 2.960*** −2.449** 0.510 14.083*** 15.622***
United Kingdom (men) 2.552** −4.491*** −1.939 20.000*** 55.000***
United Kingdom (women) 2.654** −4.695*** −2.041 22.167*** 133.026***
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively. (2) Friedman𝜒2 follows a Squared-Chi
with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(24) grades of freedom.

Regarding Item 1, when evaluating predictions about central mor-
tality rates, Table 10a shows that BLC and FRLC have greater accu-
racy than FKSLC method and it is significant. From Table 10b
we can also indicate that point predictions on life expectancy by
BLC/FRLC are more accurate than those by FKSLC but this better
performance has not enough statistical significance.

Tables 10c and 10d reveal that Friedman rank test undoubtedly
rejects that the three evaluatedmethods provide interval confidence
predictions with homogenous accuracy. Likewise, we can observe
in these tables that from the interval confidence prediction perspec-
tive, our method improves BLC and FKSLC. Also, that BLC pro-
vides better predictions than FKSLC. In this sense, multiple sign
tests reveal that whereas FRLC improves BLC significantly, FKSLC
performs poorer than the control method.

7. CONCLUSIONS AND FURTHER
EXTENSIONS

This paper proposes a fuzzy-random approach of the LC model. A
fuzzy version of the LC model was firstly proposed by [14], who
considered two different formulations. In the first one, which was
refined in the works [15,16], the authors introduced fuzziness in all
the parameters of themodel by usingTFNs.Nevertheless, themodel
developed in this paper assumes, as it was done in the seminal paper
[1] and its subsequent extensions, that the trend of mortality across
time is captured with an ARIMA model.

This fuzzy-random approach of the LC model can also be used
to derivate variables linked to central mortality rates as probabil-
ities of death or survival and life expectancies. From these vari-
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Table 9e Results of multiple sign test for the confidence interval predictions of FRLC and FKSLC with a control method (BLC)
(Item 2).

Central Mortality Rates Predictions
FRLC versus BLC FKSLC versus BLC

Wins Losses rj Wins Losses rj
Austria (men) 12 0 0 ** 3 8 3
Austria (women) 10 0 0 ** 3 8 3
Belgium (men) 10 0 0 ** 2 10 2 **
Belgium (women) 10 0 0 ** 1 11 1 **
France (men) 11 0 0 ** 2 9 2 **
France (women) 6 0 0 ** 0 9 0 **
Italy (men) 12 0 0 ** 0 12 0 **
Italy (women) 8 0 0 ** 0 8 0 **
Netherlands (men) 12 0 0 ** 12 0 0 **
Netherlands (women) 10 0 0 ** 3 9 3
Portugal (men) 11 0 0 ** 2 10 2 **
Portugal (women) 6 0 0 ** 1 10 1 **
Spain (men) 12 0 0 ** 2 9 2 **
Spain (women) 11 0 0 ** 6 5 5 **
United Kingdom (men) 11 0 0 ** 1 10 1 **
United Kingdom (women) 12 0 0 ** 1 11 1 **

Life Expectancy Predictions
FRLC versus BLC FKSLC versus BLC

Wins Losses rj Wins Losses rj
Austria (men) 12 0 0 ** 3 8 3
Austria (women) 10 0 0 ** 3 8 3
Belgium (men) 10 0 0 ** 0 10 0 **
Belgium (women) 10 0 0 ** 1 11 1 **
France (men) 11 0 0 ** 2 9 2 **
France (women) 6 1 1 ** 0 9 0 **
Italy (men) 12 0 0 ** 0 12 0 **
Italy (women) 8 0 0 ** 2 6 2 **
Netherlands (men) 12 0 0 ** 12 0 0 **
Netherlands (women) 10 0 0 ** 3 9 3
ortugal (men) 11 0 0 ** 2 10 2 **
Portugal (women) 6 0 0 ** 1 10 1 **
Spain (men) 12 0 0 ** 2 9 2 **
Spain (women) 11 0 0 ** 6 5 5 **
United Kingdom (men) 11 0 0 ** 1 10 1 **
United Kingdom (women) 12 0 0 ** 1 11 1 **
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “**” stands for the rejection of the null hypothesis with a significance level of at least 5%. (2) “Wins/losses” stands for the number of wins/losses of the
evaluated method over the control method. (3) rj stands for the minimum between number of wins and losses of the evaluated method.

Table 10a Mean value of RMSE, NMSE, and MAE of the predictions on central mortality rates in 2001–2012 in sample populations
(Item 1).

RMSE NMSE MAE
BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC

Austria (men) 0.0462 0.0538 0.0711 0.0698 0.0249 0.0295
Austria (women) 0.0037 0.0024 0.0003 0.0002 0.0017 0.0029
Belgium (men) 0.0207 0.0151 0.0295 0.0150 0.0096 0.0074
Belgium (women) 0.0150 0.0425 0.0208 0.1658 0.0076 0.0213
France (men) 0.0059 0.0178 0.0029 0.0245 0.0033 0.0096
France (women) 0.0056 0.0114 0.0043 0.0135 0.0030 0.0053
Italy (men) 0.0125 0.0204 0.0147 0.0327 0.0062 0.0105
Italy (women) 0.0083 0.0108 0.0086 0.0118 0.0042 0.0050
Netherlands (men) 0.0141 0.0150 0.0129 0.0146 0.0073 0.0086
Netherlands (women) 0.0080 0.0124 0.0067 0.0219 0.0043 0.0060
Portugal (men) 0.0117 0.0176 0.0130 0.0210 0.0063 0.0089
Portugal (women) 0.0124 0.0115 0.0075 0.0061 0.0126 0.0086
Spain (men) 0.0138 0.0170 0.0165 0.0247 0.0078 0.0084
Spain (women) 0.0055 0.0080 0.0032 0.0061 0.0029 0.0037
United Kingdom (men) 0.0101 0.0143 0.0080 0.0149 0.0049 0.0082
United Kingdom (women) 0.0104 0.0093 0.0114 0.0086 0.0052 0.0047

Wins/losses 12/4** Wins/losses 11/5 Wins/losses 13/3**
W 50 W 62 W 30**

RMSE, root mean squared error; NMSE, normalized mean squared error; MAE, mean absolute error; BLC, basic LC model; FRLC, Fuzzy-random extension of
the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC. (2)W stands for the value of the
Wilcoxon rank test statistic. (3) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively.
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Table 10b Mean value of RMSE, NMSE, and MAE of the predictions on life expectancies in 2001–2012 in sample
populations (Item 1).

RMSE NMSE MAE
BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC

Austria (men) 1.284 1.429 1.26E-03 1.42E-03 0.999 1.122
Austria (women) 0.3710 0.2432 2.97E-04 1.95E-04 0.3293 0.2158
Belgium (men) 0.6309 0.5018 6.31E-04 5.02E-04 0.5594 0.4443
Belgium (women) 0.1325 0.3647 1.06E-04 2.91E-04 0.1169 0.3298
France (men) 0.3806 0.5661 3.61E-04 5.44E-04 0.3155 0.4776
France (women) 0.1896 0.2127 1.41E-04 1.58E-04 0.1627 0.1818
Italy (men) 0.5940 0.9189 5.50E-04 8.65E-04 0.4933 0.7639
Italy (women) 0.1770 0.1739 1.34E-04 1.32E-04 0.1595 0.1558
Netherlands (men) 1.3555 1.2628 1.34E-03 1.25E-03 1.1806 1.1047
Netherlands (women) 0.3707 0.2834 3.00E-04 2.31E-04 0.3242 0.2526
Portugal (men) 0.6177 0.7797 6.27E-04 8.03E-04 0.4653 0.5970
Portugal (women) 1.2565 1.2897 2.34E-03 2.51E-03 0.5543 0.5793
Spain (men) 0.4146 0.6287 3.87E-04 5.95E-04 0.1495 0.2130
Spain (women) 0.2247 0.1671 1.68E-04 1.26E-04 0.1944 0.1433
United Kingdom (men) 0.9079 0.9679 8.82E-04 9.48E-04 0.7989 0.8514
United Kingdom (women) 0.5779 0.5256 4.74E-04 4.32E-04 0.4970 0.4516

Wins/losses 9/7 Wins/losses 9/7 Wins/losses 9/7
W 61 W 55 W 65

RMSE, rootmean squared error; NMSE, normalizedmean squared error;MAE,mean absolute error; BLC, basic LCmodel; FRLC, Fuzzy-random
extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) “Wins/losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC. (2)W stands
for the value of the Wilcoxon rank test statistic. (3) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of
10%, 5%, and 1%, respectively.

Table 10c Mean proportion of successful predictions on central mortality rates in 2001–2012 by BLC, FRLC,
and FKSLC in sample populations (Item 2).

Proportion of Successful
Predictions

Test Results

BLC FRLC FKSLC Global comparison
Austria (men) 0.326 0.729 0.295 Friedman 𝜒2 = 32***
Austria (women) 0.524 0.847 0.431 Iman-Davenport F Statistic =∞32∗∗∗
Belgium (men) 0.434 0.576 0.236 Pairwise comparisons

 FRLC versus BLC
Z score = 2.858
p-values: (a) 0.005; (b) 0.014;
(c) 0.005

 FKSLC versus FRLC
Z score = −5.567
p-values:(a) 0.000; (b) 0.000;
(c) 0.000

 FKSLC versus BLC
Z score = −2.828
p-values: (a) 0.005; (b) 0.014;
(c) 0.009

Belgium (women) 0.576 0.760 0.354
France (men) 0.618 0.733 0.340
France (women) 0.587 0.767 0.396
Italy (men) 0.514 0.656 0.306
Italy (women) 0.681 0.802 0.476
Netherlands (men) 0.385 0.590 0.316
Netherlands (women) 0.618 0.806 0.483
Portugal (men) 0.566 0.705 0.257
Portugal (women) 0.583 0.778 0.451
Spain (men) 0.587 0.750 0.410
Spain (women) 0.556 0.792 0.486
United Kingdom (men) 0.458 0.688 0.358
United Kingdom (women) 0.698 0.858 0.451

Multiple sign test (the control method is BLC)
Wins/losses of FRLC against BLC: 16/0 +
Wins/losses of FKSLC against BLC: 0/16 −
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) Friedman𝜒2 follows a Squared-Chi with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(32) grades
of freedom. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively.
(3) (a) indicates standard p-value and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+”
indicates that the evaluated method outperforms the control method with at least at 10% significance level, whereas “−” indicates that the
evaluated method underperforms the control method with at least at 10% significance level.

ables, it is possible to price life annuities or insurance contracts. It
can be done by using directly fitted fuzzy probabilities, as in the
framework exposed in [39] or, alternatively, by reducing these fuzzy
probabilities to a crisp value with the use of a defuzzifiyingmethod.

When applying this new model to Spanish male population within
the period 1970–2012, it is found that the model is satisfactory
when it comes to its capability of fitting outcomes in the estimation

sample (1970–2000) and forecasting central mortality rates over a
time horizon of more than 10 years (2001–2012).

Moreover, we have made a comparative assessment of our fuzzy-
random methodology with seminal LC method [1] and fuzzy ver-
sion of LC [14] and we have checked that, from interval confidence
prediction perspective, our proposed methodology improves the
models of these papers.
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Table 10d Mean proportion of successful predictions on life expectancies in 2001–2012 by BLC, FRLC, and
FKSLC in sample populations (Item 2).

Proportion of Successful
Predictions

Test Results

BLC FRLC FKSLC Global comparison
Austria (men) 0.326 0.729 0.295 Friedman 𝜒2 = 30.125***
Austria (women) 0.524 0.847 0.431 Iman-Davenport F Statistic = 241***
Belgium (men) 0.434 0.576 0.236 Pairwise comparisons
Belgium (women) 0.576 0.760 0.354 FRLC versus BLC

Z score = 3.005
p-values: (a) 0.003; (b) 0.008;
(c) 0.005

 FKSLC versus FRLC
Z score = −5.480
p-values: (a) 0.000; (b) 0.000;
(c) 0.000

 FKSLC versus BLC
Z score = −2.475
p-values: (a) 0.013; (b) 0.004;
(c) 0.013

France (men) 0.618 0.733 0.340
France (women) 0.587 0.767 0.396
Italy (men) 0.514 0.656 0.306
Italy (women) 0.681 0.802 0.476
Netherlands (men) 0.385 0.590 0.316
Netherlands (women) 0.618 0.806 0.483
Portugal (men) 0.566 0.705 0.257
Portugal (women) 0.583 0.778 0.451
Spain (men) 0.587 0.750 0.410
Spain (women) 0.556 0.792 0.486
United Kingdom (men) 0.458 0.688 0.358
United Kingdom (women) 0.698 0.858 0.451

Multiple sign test (the control method is BLC)
Wins/losses of FRLC against BLC: 16/0 +
Wins/losses of FKSLC against BLC: 1/15 −
BLC, basic LC model; FRLC, Fuzzy-random extension of the LC model; FKSLC, fuzzy version by Koissi and Shapiro of the LC model.
Notes: (1) Friedman𝜒2 follows a Squared-Chi with 2 grades of freedom and Iman–Davenport F follows a Snedecor F with 2(32) grades
of freedom. (2) “*,” “**,” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5%, and 1%, respectively.
(3) (a) indicates standard p-value and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+”
indicates that the evaluated method outperforms the control method with at least at 10% significance level, whereas “−” indicates that the
evaluated method underperforms the control method with at least at 10% significance level.
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