
NOLTA, IEICE

Paper

Delay effects on the limit cycling behavior
in resonant inverters with state feedback

Luis Benadero 1a), Abdelali El Aroudi 2 , and Enrique Ponce 3

1 Departament de F́ısica, Universitat Politècnica de Catalunya
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Abstract: Bifurcations of limit cycles in an H-bridge LC resonant inverter are reexamined
taking into account a time delay in the switching transition. The analysis is accomplished by
means of a model of the inverter that compresses, in only three parameters, all the elements
associated to both series and parallel topologies of the inverter, to the parasitic effects, to the
state feedback control, and to the switching time delay. Emphasis is made in the deviation of
preexisting bifurcations without delay and the new ones arising when the time delay is taken
into account. It is shown from the analysis and numerical simulations that the delay can
degrade the quality of oscillations and even inhibit them, but it is also demonstrated that to
some extent, this drawback can be compensated by an appropriate state feedback.
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1. Introduction
Switch-mode power converters are nonlinear circuits widely used for power management systems
in many industrial applications such as in renewable energy technologies [1], electric and hybrid
vehicles [2], efficient lighting [3] and servers telecommunications [4], among others. In particular, DC-
AC resonant converters are switched-mode power converters, in which a DC voltage is converted into
an AC one by means of oscillations in an H-bridge LC resonant tank circuit. The objective of this paper
is focused in this kind of circuits. Sometimes also, the AC output is converted back to a DC voltage
using a diode bridge rectifier, thus resulting a DC-DC resonant converter. Due to their potential to
achieve increased efficiencies and high power densities [4], resonant converters are finding applications
in many emerging fields with increasing prevalence in different consumer electronics applications such
as in induction heating [5], wireless power transfer technologies like in battery charging for electrical
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vehicles [2] or in implantable biomedical operations [6]. However, resonant inverters in particular,
and in general switched-mode power supplies, are circuits that can exhibit complex dynamics related
to the switching nonlinearity. Different causes of limit cycle instability have been documented for
these circuits, for instance in [7, 8]. Moreover, the dynamics of many power electronics systems,
including the one analyzed here, can be described by a set of piecewise-linear differential equations,
then belonging to the class of dynamical systems frequently named Filippov systems [9]. Even the
Filippov vector field describing the dynamics at the switching manifold is smooth, it induces a non-
smooth global vector field. The propagation delay is another problem of switching converters that has
rarely been taken into account. Clearly, the relevance of the propagation time delay effects increases
with the switching frequency.

Many approaches used by scientists and engineers to study the dynamics of switched systems such
as averaging [10], the time-domain Hamel locus [11] describing function (DF) or First Harmonic
Approximation (FHA) method [12–14] fail to give accurate results whenever the repulsive sliding
dynamics plays a relevant role [15, 17]. Mostly, the sliding region, a subset of the switching manifold
i.e., the region of the state-space where the field is discontinuous, is attractive and then techniques
of sliding control can be applied [18]. However, in our case, the sliding region is repulsive and then,
as it will be demonstrated, it plays a significant role in the boundary between the possible basins
of attraction of the different coexisting steady-state solutions. To summarize, the analysis of the
resonant inverter exposed in this paper can help designers to get knowledge of the regions in the
parameter space for which the desired oscillatory regime is possible and the set of initial conditions
in the state-space guarantying the convergence to this regime.

Concerning the time delay in a real switching, which is mainly due to capacitive effects in the
physical switches and drivers, it can produce some changes in the limit cycle and even in its existence
conditions. Moreover, not only bifurcations are shifted due to the presence of delay in the switching
action, but also new ones emerge as it will be shown in this paper. Following our initial work in
[19], a detailed analysis of the system is given in this paper. Some work related to the role of the
time delay in switching systems can be found in [9]. In [20], the switching time delay is included to
compute the saltation matrix and the resulting monodromy matrix in this kind of switched systems.
In particular, in the power electronics field, the effect of the propagation delay in the current feedback
was determined in [8, 21].

This paper is structured in six different sections and its outline is as follows. First, the system
under study is described in Section 2 and mathematically modeled in Section 3. The equilibrium
points and the dynamics of the system without taking into account the time delay effect are revisited
in Section 4. Then, the analysis is extended in Section 5 by including the time delay in the switching
decision. Finally, the conclusions of this study are drawn in the last section.

2. System description and operation principle

2.1 Description of the circuit

The schematic circuit diagram of the system under study is depicted in Fig. 1. The scheme can be
used to encompass both series and parallel topologies. It also includes parasitic resistances in the
energy storage components. The control strategy used in this paper is an extended version of the one
presented at [19], where it was considered a Zero Current Switching (ZCS) strategy using only the
inductor current in the control feedback. Here, the control is generalized in the sense that the output
voltage also intervenes, leading to a state feedback control. In [22], the analysis of such a change in the
control is provided and some advantages for the parallel topology regarding the oscillatory dynamics
are examined.

The following elements can be identified in Fig. 1: the input voltage Vg; the output series resistance
Ros; the inductor with inductance L and parasitic series resistor rls; the output parallel conductance
Gop = 1/Rop; the capacitor with capacitance C, parasitic parallel conductance gcp = 1/rcp and
parasitic series resistance rcs; and the switches S1, S2, S3 and S4. Note that for the series topology,
the parallel resistor is removed (Gop = 0) and that for the parallel topology, the series resistor is
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Fig. 1. Generalized schematic diagram of an H-bridge LC resonant inverter.
Note that if one of the two output resistors is missing, either its corresponding
conductance (Gop) or resistance (Ros) vanishes, thus leading to a series or to
a parallel topology, respectively.

Table I. Parameters of the plant in the case study A with parallel configu-
ration (Ros = 0).

Vg L C Rop rls rcs rop

12 V 1 μH 10 nF 33 Ω 0.1 Ω 0.1 Ω 1 GΩ

Fig. 2. Time response for circuit in Fig. 1 with parameters in Table I, av = 0
(ZCS), no delay in left (black) panels and 0.1 μs switching time delay in right
(blue) panels. Units are μs for time, V for the voltage output vo, and A for
the inductor current iL.

excluded (Ros = 0). Let vC be the voltage of the capacitor (C), iL be the current through the
inductor (L) and vo be the voltage in the output resistance (Rop). Besides, ai and av are the gain
parameters used in the state feedback control, related to the inductor current iL and to the output
voltage vo, respectively. Note that in this generalized model, if a pure ZCS control is used, then one
has av = 0.

The circuit operation is based on an automatically activated switching between two configurations.
The switches are driven by the signal δ and its complementary δ̄ = 1− δ. Switches S1 and S4 are on

when aiiL > avvo (and then δ = 1), and they are turned off when aiiL < avvo (δ = 0). Switches S2

and S3 are driven in a complementary way with respect to S1 and S4. It is clear that if there is no
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Fig. 3. Time response for circuit in Fig. 1 with parameters in Table I, av/ai =
0.12 Ω−1, no delay in left (black) panels and 0.1 μs switching delay in right
(blue) panels. Units are μs for time, V for the voltage output vo, and A for
the inductor current iL and for the control signal hs.

switching, the capacitor voltage and the inductor current tend to their equilibrium values. Namely,
there will be an equilibrium point with positive values if δ = 1, and its symmetrical point with negative
values if δ = 0. Consequently, depending on the starting conditions, the dynamics could be addressed
to one of these undesired equilibria. On the contrary, a limit cycle is possible when the switching is
active. This oscillating regime is built by a suitable aggregation of two orbits, each one being a part
of the transient regime towards the corresponding equilibrium. However, this desired objective is only
achieved for certain values of the parameters and some initial conditions, as it is shown later.

2.2 Case study A
Let us illustrate the operation of the system by considering a first case study where the parallel
configuration is assumed (Ros = 0), being the remaining physical parameters of the circuit as specified
in Table I.

The significative signals for four different situations regarding control and time delay are represented
in Figs. 2–3. In Fig. 2, the control is ZCS, that is av = 0, while in Fig. 3, it is taken av/ai = 0.12 Ω−1.
For these two cases, no time delay is considered in the left (black) panels, but a switching time delay
of 0.1 μs exists on the right (blue) panels.

Notice that in the case with av/ai = 0.12 Ω−1 and 0.1 μs for the time delay, the amplitude and
the frequency of the output are rather similar to those with ZCS and without time delay. Later
on, in Section 5.1.1 this same case study will be handled in the normalized frame and further, in
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Section 5.5.1, the range of parameters will be extended to get a picture of the bifurcation pattern.

3. Mathematical modeling

3.1 State-space piecewise-linear model
First, a piecewise-linear model for the system shown in Fig. 1 will be obtained by ignoring the delay.
Figure. 4 shows a simplified diagram of the system where the H-bridge output voltage is replaced
by the controlled voltage source uVg, by using the control variable u = 2δ − 1. Then u = 1 when
S1 and S4 are on, otherwise u = −1. By applying KVL and KCL to this simplified diagram, it is
straightforward that

uVg = L
diL
dt

+ iL(Ros + rls) + icsrcs + vC ,

iL = ics + (icsrcs + vC)Gop,

where ics, that is the current through rcs, is

ics = C
dvC

dt
+ gcpvC .

Also, the output voltage can be expressed in terms of the state variables as

vo = κ(vC + rcsiL),

in which
κ =

1
1 + rcsGop

.

Then, the switching condition can be expressed in terms of the state variables, vC and iL, as follows

aiiL − avvo = (ai − κavrcs)iL − κavvC = (ai − κavrcs)(iL − gCvC) = 0,

where gC is an effective control factor, with conductance dimension, defined as

gC =
avκ

ai − κavrcs

Note that the switching condition (ai − κavrcs)(iL − gCvC) = 0 does not depend explicitly on time
and therefore, the system is autonomous. Moreover, since 0 < κ ≤ 1 and rcs is small in practice, it
turns out that κ is close to 1 and the factor gC differs only slightly from the ratio av/ai. Taking also
into account that ai must be positive in practical applications, the analysis will be restricted to the
case ai − κavrcs > 0, so that in practice the switching manifold is determined by the ratio of the two
factors, av/ai. Then, the variable u is determined by a control law such that u = 1 (that is δ = 1)
if iL > gCvC , and u = −1 (that is, δ = 0) if iL < gCvC , and so the function hs(iL, vC) associated to
the switching condition can be defined as

hs(vC , iL) = iL − gCvC . (1)

Also, by rearranging the above differential equations from KVL and KVC, the piecewise linear
model becomes

Fig. 4. Simplified diagram of the LC resonant inverter, where u = 1 when
S1 and S4 are on, while u = −1 otherwise.
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Fig. 5. The parameters γ and ν versus Q.

d

dt

(
vC

iL

)
= AC

(
vC

iL

)
+ ubC, (2)

where

AC =

(
−Gp

C
κ
C

− κ
L −Rs

L

)
, bC =

(
0
Vg

L

)
, (3)

Rs is the equivalent series resistance

Rs = Ros + rls + κrcs,

and Gp is the equivalent parallel conductance

Gp = gcp + κGop.

Let det(AC) and tr(AC) be the determinant and the trace of matrix AC in (3). Hence, the natural
frequency ω0 and the quality factor Q of the LC tank are

ω0 =
√

det(AC) =

√
RsGp + κ2

LC
, (4)

Q = − ω0

tr(AC)
=
(
Gp

ω0C
+

Rs

ω0L

)−1

. (5)

The case Q > 1/2 is the most interesting one in applications, and so we assume such inequality in
the sequel.

For convenience, the parameters γ and ν are defined as follows

γ =
−1√

4Q2 − 1
, (6)

ν =
−1
2Qγ

=

√
1 − 1

4Q2
. (7)

Notice that νω0 is the damped oscillation frequency for each one of the linear subsystems in (2). The
two parameters γ and ν are represented in Fig. 5 in terms of the quality factor Q.

Below, system (1)–(2) will be redefined in a canonical form.

3.2 Canonical form
In order to simplify the switching condition, let us first redefine the state variables in the form

ṽ = vC , ĩ = iL − gCvC ,

then system (1)–(2) becomes
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d

dt

(
ṽ

ĩ

)
= Ã

(
ṽ

ĩ

)
+ ub̃, (8)

h(ṽ, ĩ) = ĩ, (9)

where the matrix Ã and vector b̃ are given by

Ã =

⎛
⎝ κgC−Gp

C
κ
C

− κ
L − gC

(
Rs

L + κgC−Gp

C

)
−Rs

L − κgC

C

⎞
⎠ , b̃ = b.

Notice that the natural frequency ω0 and the quality factor Q remain unchanged, since matrices AC

and Ã are similar.
In searching for a canonical form as in [23], let us define the dimensionless time variable and state

vector as follows
θ = νω0t,

x =

(
x1

x2

)
=

⎛
⎝ C(κ+gCRs)+gCL(κgC−Gp)

CVg

L(κgC−Gp)
CVg

0 νω0L
Vg

⎞
⎠( ṽ

ĩ

)
.

Let us also define a new parameter β as follows

β =
(Gp − κgC)L
LGp + CRs

, (10)

which can be varied by changing the control factor gC . In particular, under ZCS control, gC = 0 and
then 0 ≤ β ≤ 1, with β close to 0 for the series topology or β close to 1 for the parallel one. As it
will be shown later, the possibility of oscillation is related to the parameter β, mainly for low values
of the quality factor Q. In this sense, by means of the state feedback control, β can be conveniently
adjusted to any real number by varying gC . Therefore, the following result is obtained.

Proposition 1 System (8)–(9) becomes as follows

dx
dθ

= Ax + ub, (11)

h(x) = x2, (12)

where matrix A and vector b are given by

A =

(
0 1 + γ2

−1 2γ

)
, b =

(
2βγ

1

)
, (13)

and u = 1 if h(x) > 0, and u = −1 if h(x) < 0.

Note that the signal u changes whenever the orbit crosses the switching manifold Σ given by

Σ = {x = (x1, 0), x1 ∈ R}, (14)

which splits the state-plane in the two regions

Σ+ = {x = (x1, x2), x2 > 0},

Σ− = {x = (x1, x2), x2 < 0}.
The eigenvalues of the matrix A are as follows

λ± = γ ± i. (15)

Let us now reformulate the system by including the time delay in the switching action. According to
the switching function given in (12), the switching decision is performed in accordance to the strategy
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already described before, i.e. u = 1 if x2(θ) > 0, or u = −1 if x2(θ) < 0. However, if a time delay in
the switching decision is taken into account, the control signal u is determined by a past state of the
system. Let us consider, as an approximation to the problem, a fixed switching time delay Td due to
switches and driving circuitry. Taking into account the time delay, the switching function expression
(12) is redefined as

hτ (x, θ) = h(x(θ − τ)) = x2(θ − τ), (16)

where τ is the normalized switching time delay defined as follows

τ = νω0Td, (17)

The switching decision becomes now in such a way that u = 1 if x2(θ − τ) > 0, or u = −1 if
x2(θ − τ) < 0.

Then, the canonical form of the system taking into account the time delay in the switching decision
can be summarized as follows

Proposition 2 System (1)–(2) with a fixed time delay Td in the switching action can be reduced
to the piecewise linear field defined in (11), with the switching function hτ as given in (16) and the
matrix A and the vector b defined in (13).

Remark 1 Under Proposition 2, the parameter space of system (1)–(2) with a fixed switching time
delay, have been reduced, from the starting ten physical parameters, to three independent normalized
parameters: γ, β and τ defined in (6), (10) and (17) respectively.

4. Revisiting attractors and bifurcations without delay

4.1 Existence of equilibrium points
First, note that system (11) with a constant value u = ±1, has the following equilibria

x± = (x1, x2)u = ±
(

1 − 4βγ2

1 + γ2
,
−2βγ
1 + γ2

)
, (18)

which may also be constant solutions of the switched system, whenever β > 0, since x2 > 0. This is a
key question because under the existence condition in the parameter space (β > 0) and certain initial
conditions which will be clarified later, these equilibria can attract the orbits of the system, instead
of the desired limit cycle.

4.2 Limit cycles: existence conditions and bifurcations
Apart from the stable equilibria x±, another steady-state behavior of system (11)–(12) can be a limit
cycle. It is known that, without delay, the only possible stable oscillation is made up by two linked
trajectories, see [15]. The conditions for existence of stable and unstable limit cycles are detailed in
the quoted paper; for the sake of completeness, the most relevant results are reproduced below. Let
us remark that unstable limit cycles play a relevant role as they are boundaries between the basin of
attraction of the equilibrium points and that of the stable limit cycle.

The state vector solution x(θ) for any of the two linear configurations in (11), starting at x(0), can
be expressed as follows

x(θ) = Φ±(θ,x(0)) = φ(θ)
(
x(0) − x±)+ x±, (19)

where φ(θ) = eAθ is the evolution operator. Using the expression of the eigenvalues of matrix A,
given in (15), this operator is defined as

φ(θ) = eγθ

(
cos θ − γ sin θ (1 + γ2) sin θ

− sin θ cos θ + γ sin θ

)
.

Let us recall that, without delay, the system switches whenever the orbit crosses the switching manifold
Σ defined in (14). Furthermore, Σ can be partitioned into different sections according to the field
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Fig. 6. Diagram of field in the vicinity of the switching manifold Σ for sys-
tem (11)–(12), with parameters Q > 1/2 and β > 0. Note the field points out
the escaping sliding section Σs (in red), but crosses Σ in its crossing section
Σc. The sliding field pointing from the sliding boundary (boxed points), and
also the equilibrium points (small blue circles) have also been represented.

direction in its neighborhood, see Fig. 6 for an illustrative case. For the crossing section Σc, the field
points to Σc on one side and points outward Σc on the other side. Otherwise, in the sliding section
Σs, the field points either to or outward Σs at its both sides. If the field addresses to Σs, the sliding
it is said to be attractive, otherwise, it is called escaping or repulsive. In our system, the crossing and
sliding partitions are found to be

Σc = {x = (x1, 0), x1 > 1} . (20)

Σs = {x = (x1, 0),−1 ≤ x1 ≤ 1} , (21)

Moreover, the sliding subset Σs is of escaping type, i.e., the vector field points outward at its both
sides. Actually, this property justifies the relevance of Σs in the existence of unstable sliding cycles.

Firstly, the sliding limit cycles and its associated bifurcations are described. These cycles act as
boundaries between the basin of attraction of the oscillatory dynamics (stable limit cycle) and that
of the equilibrium points. They are defined by an orbit partly located in Σ+, Σ− or both, and also in
Σs. More precisely, they link in backward time the two closure points of the sliding region

±xB = (±1, 0) ∈ Σs,

with a point xsc ∈ Σs, and also in backward time, connects xsc again to +xB or −xB moving on Σs

itself.
Let xsc = (xsc

1 , 0) ∈ Σ be a point and θsc be a time, such that the following condition holds

Φ+(θsc,xsc) = φ(θsc)
(
xsc − x+

)
+ x+ = xB,

and also Φ+(θ,xsc) lies entirely in Σ+ for all 0 < θ < θsc.
Then, the following three regular cases are possible: if xsc

1 < −1 so that xsc /∈ Σs then there are
no sliding limit cycles; if −1 < xsc

1 < 0 then there exists one sliding limit cycle which defines an
invariant region including the origin and the basin of attractions of the two equilibrium points; and if
0 < xsc

1 < 1 then there are two sliding limit cycles, each one encircling the corresponding equilibrium
point. In the last case, the origin in the state-plane is placed outside the unstable limit cycles and,
consequently, an orbit starting at this point evolve to a stable limit cycle, as desired in practical
applications of this circuit.

Let us assume γ < 0 as a fixed parameter and a variable parameter β in order to force a transition
in the sliding limit cycle pattern between the three situations described above. Let ε be an enough
small real number. One transition corresponds to the critical value βcc(γ) such that xsc

1 = −1. Then,
a critical crossing bifurcation [24] is produced so that the unstable crossing limit cycle existing for
β = βcc(γ) + ε becomes a symmetric unstable sliding limit cycle for β = βcc(γ) − ε. The second
transition occurs for the critical value βhc(γ) such that xsc

1 = 0. Then, a homoclinic bifurcation of
cycles is given so that the symmetric unstable sliding limit cycle existing for β = βhc(γ) + ε splits in
two smaller cycles, which are symmetric with respect to each other, for 0 < β < βhc(γ).
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Fig. 7. Plots of the critical values of the parameter β: βsn, βcc and βhc versus
parameter γ, in black solid, red dashed and blue dash-dotted, which account
for fold, critical crossing and homoclinic connection bifurcations respectively.

Secondly, the crossing limits cycles are addressed. These cycles, which can be either stable or
unstable, can be easily obtained, taking into account the symmetry of the system, by solving

Φ+(θcc,xcc) = φ(θcc)
(
xcc − x+

)
+ x+ = −xcc,

where xcc = (xcc
1 , 0) is the crossing point of the limit cycle on the left side of Σc, which evolves in

Σ+ during a flight time θcc, until reaching its symmetric point −xcc. Note that one unknown xcc
1 is

related to the amplitude of the oscillation and the other unknown θcc is the normalized half-period of
the limit cycle.

The number of possible crossing limit cycles, as shown in [15, 17], are found to be between 0 and 2.
Furthermore, if there is only one hyperbolic crossing cycle, then it is stable; if there are two crossing
cycles, then the outer cycle is stable and the inner one is unstable.

By assuming also a fixed parameter γ < 0, a varying parameter β and a small real ε, the following
two bifurcations related to the crossing cycles are given. The smooth fold (also called saddle-node)
bifurcation of cycles happens for the critical value βsn(γ) such that one non hyperbolic crossing cycle
appears. Then, if β > βsn(γ) there are no oscillatory solutions, and if β < βsn(γ) − ε there are two
crossing limit cycles, stable the outer and unstable the inner. The second transition given for βhc(γ)
is the homoclinic bifurcation of cycles already stated above, for which the unstable cycle changes from
crossing to sliding type when simultaneously reaching the closure points of the sliding region: +xB

and −xB.
To summarize, for system (11)–(12) without time delay and from the perspective of existence and

stability of limit cycles, four regions are found in the parameter plane (γ, β). These regions are
bounded by the three functions βsn(γ), βcc(γ) and βhc(γ), which are codimension-one lines corre-
sponding to a smooth fold bifurcation of cycles, to a critical crossing-sliding cycle and to a double
homoclinic saddle connection, respectively. These three functions are depicted in Fig. 7. The complete
classification of limit cycle configurations, as appearing in Theorem 1 at [15], is reproduced below,
and representative pictures corresponding to each of the six cases (a)–(f) are given in Fig. 8.

(a) If 0 < β < βhc(γ) then there exist one stable crossing limit cycle and two unstable sliding limit
cycles.

(b) If β = βhc(γ) then there exist one stable crossing limit cycle and two homoclinic connections to
the origin.
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Fig. 8. Limit sets for parameters τ = 0, γ fixed and β given in the caption.
The equilibrium points and the outer stable limit cycle are depicted in blue
color, while unstable limit cycles appear in red color. The black cycle in (f)
is the non hyperbolic limit cycle at the fold bifurcation. The red straight line
corresponds to the sliding set Σs.

(c) If βhc(γ) < β < βcc(γ) then there exist one stable crossing limit cycle and one unstable sliding
limit cycle.

(d) If β = βcc(γ) then there exist one stable crossing limit cycle and one unstable critical crossing
limit cycle.

(e) If βsn(γ) < β < βcc(γ) then there exist two crossing limit cycles having opposite stability.

(f) If β = βsn(γ) then there is one crossing limit cycle which is semi-stable.

(g) If β > βsn(γ) then there are no crossing limit cycles.

Remark 2 The parameter condition β < βhc(γ) is the advisable one for a standard application of the
inverter, because this condition implies that the origin of the state-space, which is the likely starting
point for the dynamics, is not on on the basin of attraction of the equilibrium points. Moreover, to
ensure that the equilibrium points are not real attractors for the switched system, the factor gC in the
state feedback control should be chosen to get, at least during some initial time interval, a parameter
value β < 0 [16].

Note that for the series inverter under ZCS control, the parameter β is a positive small value
(without parasitic elements, β = 0). Then the oscillatory dynamics is available even with reduced
values of the quality factor, even if approaching critical Q = 1/2.

However, for the parallel inverter under ZCS control, the value of β is closed to 1, then the oscillation,
depending on the quality factor, could not be guaranteed. For instance, if β = 1, the parameter γ takes
the critical values β−1

sn (1) ∼ −0.2799, β−1
cc (1) ∼ −0.2744 and β−1

hc (1) ∼ −0.1954, which correspond
to the critical Q values 1.8553, 1.8894 and 2.6075, respectively. Thus to guarantee the oscillation for
values of Q lower than those critical, the state feedback control can be used by choosing an appropriate
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value of gC , or equivalently of the ratio av/ai, in order to reduce the parameter β at least below to
the critical βhc(γ(Q)).

5. Limit cycles with switching time delay: existence and bifurcations
Although the switching is theoretically induced at time instants such that the orbit crosses the switch-
ing manifold Σ, actually, the transition between the two configurations is delayed due to the non-ideal
features of the switches and driving circuitry, as illustrated in Fig. 9. It should be noticed that, in
practice, the switching delay is relevant only for significant values of τ , i.e., when Td is significative
when compared to the period of the oscillation, like in high frequency applications.

5.1 Some illustrative examples
Let us first show some examples of limit cycles with different parameter sets before formalizing their
direct computation and examine the possible bifurcations.

5.1.1 Case study A in the normalized frame
This first case is the same one considered in the case study A, which was introduced in Section 2.2
with physical parameters in Table I, thus resulting from (4–7), ω0 ∼ 10 Mrad/s, Q ∼ 3.1048, γ ∼
−0.1632, ν ∼ 0.9870. Also, β ∼ 0.9380 if av = 0 or β ∼ −2.8101 if av/ai = 0.12 Ω−1 and, in the
switching delayed cases, from (17), τ ∼ 0.9870. In the following, for this case study, the constant
value for the parameter γA = −0.1632 will be assumed.

Limit cycles represented in the state-space shown in Fig. 10 correspond to this case study. The top-
left panel of this figure stands for limit cycles in the physical state-plane (vC , iL) that correspond to
Fig. 2, that is for av = 0. Below, in the bottom-left panel, these orbits are depicted in the normalized
state-plane (x1, x2), thus with normalized parameter β = 0.9380. En each case, black or blue orbits
refer to switching time delay Td = 0 (τ = 0) or Td = 0.1 μs (τ = 0.9870), respectively. The resulting
limit cycles have as normalized periods T ∼ 6.6416 if τ = 0 or T ∼ 8.2042 if τ ∼ 0.9870.

Likewise, limit cycles in the top-right panel of Fig. 10 correspond to Fig. 3, that is for av/ai =
0.12 Ω−1, and in the bottom-right panel they are represented after normalization, thus being β =
−2.8101. Also, black and blue orbits refer to case without delay and with delay, respectively. The
resulting limit cycles have as normalized periods T ∼ 5.5374 if τ = 0 or T ∼ 6.4001 if τ = 0.9870.

Notice that the delay can be, at least partially, compensated by the state feedback with an appro-
priate value of β by adjusting the gain ratio av/ai. The dotted straight line shown in the diagrams is

Fig. 9. Oscillograms obtained by long time simulations up to reach the steady
state. Variables x1(θ), x2(θ) and control u(θ) are represented from top to down.
Note the time delay τ between the crossing and switching instants.
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Fig. 10. Limit cycles in the state-plane with parameters in Table I. Top
panels deal with physical state variables (with voltages in V and currents in
A), and bottom ones are in normalized coordinates. Left and right panels cor-
respond to ZCS control (av = 0) and to av/ai = 0.12 Ω−1, showing the steady
state orbits for the waveforms represented in Figs. 2 and in 3, respectively. As
in such figures, black and blue orbits stand for non delayed switching and time
delay Td = 0.1 μs, respectively. Dots stand for equilibria, blue if real and gray
if virtual; the dotted line indicates the crossing condition.

the one for crossing (Σ), which is horizontal if av = 0 and also, in any case in the normalized frame.
The position of the equilibrium points (dots in the diagrams) regarding this line determines if they
are real or virtual (marked in blue and gray colors respectively).

5.1.2 Case study B
This second case deals with the normalized system using a constant parameter βB = 1. At this stage,
γ = −0.15 has also been fixed (later, in Section 5.5.2, this parameter will be varied). In Fig. 11, stable
limit cycles have been computed for those fixed parameters and several values of the switching time
delay τ , resulting in smaller cycles as this parameter is increased. The outer cycle corresponds to the
ideal case without delay, i.e., τ = 0 and the most internal one uses a critical value, which depends on
β and γ, τcc(γ, β) ∼ 2.2526, such that the orbit collides with Σs just at the delayed switching instant,
thus resulting in a corner-collision bifurcation [9].

If τ > τcc(γ, β), the resonant oscillation does not exist. Instead, equilibria or other kind of non
resonant oscillation (with higher frequency and lower amplitude) are possible. In the left panel of
Fig. 12, the critical resonant orbit, the two equilibrium and the non resonant oscillation are shown
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Fig. 11. (a) Plot of limit cycles with parameters β = 1, γ = −0.15 and,
from the outer cycle to the internal one, τ takes the values in the set
{0, 0.5, 1, 1.5, τcc}. The inner two dots stand for the equilibrium points.

Fig. 12. Left panel stands for resonant (black continuous line) and non res-
onant (blue dotted line) cycles, both of them with parameter τ = τcc. Right
panel does for non-resonant cycles with values of τ in the set {2, 2.5, 3}. In
both panels, β = 1 and γ = −0.15.

for the parameter set β = βA, γ = −0.15 and τ = τcc(γ, βA). Also, in the right panel of Fig. 12,
non resonant oscillations are plotted for several values of τ lower and higher than τcc. The precise
difference between these two family of limit cycles is that for those in the right panel, the switching
action is delayed until the orbit crosses Σ once more, that is τ > T/2, while in all the cases previously
exposed τ < T/2, where T is the normalized period of the limit cycle.

5.2 Computation of the limit cycle with delay
Let xs = (xs

1, x
s
2) ∈ Σ+ be the point of the limit cycle, at which the switching happens a normalized

time τ after the orbit has crossed the left side of Σc at the point −xc = (−xc
1, 0). Taking into account

the vector field symmetry, the next switching will take at the point −xs = −(xs
1, x

s
2) ∈ Σ−, a time

τ after the dynamics have crossed the right side of Σc at the point xc = (xc
1, 0). Consequently, if

θs is the half-period of the time delayed limit cycle, it can be obtained by solving the two vectorial
equations

Φ+(θs,xs) = −xs, Φ+(θs − τ,xs) = xc.

Note that the corresponding four scalar equations must be solved for the set of four unknowns
{θs, x

s
1, x

s
2, x

c
1}, therefore, with the aim to reduce the number of equations and unknowns, taking

into account that xs = Φ−(τ,−xc), the limit cycle with delay under the restriction τ < θs, can be
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Fig. 13. Coordinates xc
1, −xs

1 and xs
2 illustrative of the limit cycle, versus

time delay τ , with parameters β = 1 and γ = −0.15. Notice the agreement
between direct computations using condition (22) (continuous line) and results
obtained by long time dynamics simulation until reaching the steady state
(dots).

obtained from
Φ+

(
θs,Φ−(τ,−xc)

)
+ Φ−(τ,−xc) = 0, (22)

where 0 ∈ R
2 is the null vector. Now the two scalar equations in (22) contains the set {γ, β, τ, θs, x

c
1}

of parameters and variables. In general, computations can determine two of them as a function of
the other three. This permits not only to calculate the limit cycle, if it exists for a parameter set
{γ, β, τ}, but also other determinations, for instance selecting parameters to force the period of the
cycle (2θs).

In Fig. 13, xc
1, −xs

1 and xs
2 have been represented versus switching time delay. These curves have

been computed from (22), and the dots have been obtained by long time running simulations to
reasonably reach the steady state.

Concerning limit cycles for which θs < τ < 2θs, it happens that switching due to certain Σ crossing,
from instance from Σ− to Σ+, is not produced while the orbit is still in Σ+, but when it is in Σ−

after crossing Σ again from Σ+ to Σ−. Then, condition (22) should be reformulated in the form

Φ+
(
θs,Φ−(τ − θs,−xc)

)
+ Φ−(τ − θs,−xc) = 0. (23)

Let apply condition (23) with parameters γ = −0.15, β = 1, τ = 2.2526, then limit cycle obtained
with data θs = 1.4862, xc

1 = 0.3590, xs
1 = 0.2075 and xs

2 = −0.9180, is the one corresponding to the
dotted line in the left panel of Fig. 12.

5.3 Corner-collision bifurcation of the limit cycle with delay
Let us go further with case study B, in which β = βB = 1. Using also a fixed value γ = −0.15 in
Figs. 11–13, it can be appreciated that if the parameter τ is increased, a critical resonant limit cycle
collides with the switching sub-manifold Σs (see the most internal cycle in Fig. 11). Note also, in the
xs

2(τ) representation given in the right panel of Fig. 13, that this variable becomes null for the critical
parameter τ = τcc(γ, β). When reaching this value, the resonant limit cycle collides with Σs and after
that, it is annihilated. This critical condition can be computed by (22) and the additional constraint

xs
2 =

[
Φ−(τ,−xc)

]
2

= 0, (24)

thus, taking another extra parameter or variable in the set {γ, β, τ, θs, x
c
1} as the third unknown.

For instance, let us take the inner cycle in Fig. 11 with βA and γ = −0.15, then the corner-collision
bifurcation point is found for τcc ∼ 2.2526, with θs ∼ 5.9651 and xc ∼ (1.7239, 0) ∈ Σc, being also
xs ∼ (−0.4483, 0) ∈ Σs.

5.4 Fold bifurcation of the limit cycle with delay
Apart from the corner-collision bifurcation due to the time delayed switching, as detailed in the above
section, it is also possible, in some regions of the parameter space, that a smooth fold bifurcation for
limit cycles takes place. This bifurcation can be understood as an evolution of the smooth saddle-node

351



Fig. 14. Bifurcation lines (blue for corner-collision and red for saddle-node)
in the parameter plane (β, τ) with normalized parameter γ = −0.1632 that
barely approaches the value for data in Table I. Gray dashed lines give the loci
of parameter points for which there exists a stable limit cycle with constant
period; such lines are drawn for periods from 5.6 to 10.4, stepped by 0.8. The
four cross-shaped points stand for the limit cycles represented in the bottom
panels of Fig. 10. The diagram on the right is an enlargement to appreciate the
region where stable and unstable limit cycles coexist. Here, dashed lines stand
for periods from 7.6 to 10.4 stepped by 0.2. The (dashed-dotted) orange part
of these dashed lines correspond to unstable limit cycles; after being tangent to
the saddle-node bifurcation line, they convert into the above mentioned gray
lines for stable limit cycles.

bifurcation of cycles explained in Section 4.2. In this case, for some critical values of the parameter set
{γ, β, τ}, a non hyperbolic limit cycle exists, such that when slightly decreasing τ , two crossing limit
cycles, the outer stable and the inner unstable, are given. Simulations show that this bifurcation,
including the switching delay, has the same qualitative features than the ideal case (without delay)
given in Section 4.2.

To get an analytical expression for this bifurcation, a zero value for dτ/dθs can be imposed. To
reach this condition, we can resort for implicit derivation rules. Let ψ1 and ψ2 be the two scalar
functions on the left side hand in (22), then the limit cycle in the saddle-node bifurcation can be
achieved from (22) itself, and in addition

∂ψ1

∂xc
1

∂ψ2

∂θs
− ∂ψ1

∂θs

∂ψ2

∂xc
1

= 0. (25)

5.5 Illustrative examples of limit cycle bifurcations involving delay
The two case study previously exposed are further developed here by expanding the range of some
parameters. The first one with fixed parameter γA = −0.1632 and in the second case, the parameter
fixed is βB = 1. Then bifurcations are examined by varying the other parameters.

5.5.1 Case study A. Bifurcations
Case study A with γA = −0.1632 comes from physical data in Table I. Some particular dynamics
and limit cycles with some specific feedback and delay values were depicted in panels of Figs. 2 and
3, and also in Fig. 10 using the normalized system. A more global view for this case, introduced in
Fig. 14, is attained with the help of a combined mixing of representations in the parameter plane
(β, τ). On one hand, the blue and red continuous lines account for the corner-collision and saddle-
node bifurcations respectively. Moreover, the gray dashed lines are the loci of parameter points with
constant normalized period, which is selected from 5.6 to 10.4 stepped by 0.8, and corresponding lines

352



Fig. 15. Fold (red) and corner-collision (blue) codimension-one bifurcations
of crossing limit cycles in the parameter plane (γ, τ), with fixed parameter
β = 1. The right panel is an enlarged view and the dot corresponds to a
codimension-two bifurcation.

appear sequentially from bottom-left corner to the right side, that is the period roughly increases
with delay and parameter β. All these lines start at the corner-collision bifurcation line and some
of them are tangent to the saddle-node bifurcation line. Notice also the location of the four cross-
shaped points, which are associated to the limit cycles represented in the bottom panels of Fig. 10,
for instance the one placed in the position (β ∼ 0.9380, τ = 0) corresponds to ZCS control. It can
be observed that if the switching time delay increases, the shift in the period can be compensated
by decreasing the parameter β by means of the voltage feedback, as it the case of the one diagonally
placed.

The right panel of Fig. 14 is just an enlargement to appreciate the region where stable and unstable
limit cycles coexist. More dashed lines have been depicted representing here the set of periods from
7.6 to 10.4 stepped by 0.2. The orange section of these lines refers to unstable limit cycles and the
gray part does to stable ones, and both sides link with tangency to the saddle-node bifurcation line.
Consequently, in each point inside the triangular-shaped region enclosed by the axis τ = 0 and the
bifurcation lines, the stable and unstable part of two of these lines intersect, being the period of the
unstable cycle higher than the one of the stable. Two vertices of this triangular-shaped region have
as coordinates τ = 0 with βcc(γA) ∼ 2.8264 and βsn(γA) ∼ 3.1996. The third vertex is defined by a
codimension-2 bifurcation point belonging to the corner-collision line at which the saddle-node one
tangentially ends. The parameter values for this point have been obtained from the set of four scalar
equations defined in (22), (24) and (25), with resulting values β∗

A(γA) ∼ 2.3969 and τ∗A(γA) ∼ 0.5765.

5.5.2 Case study B. Bifurcations
The second case study stands for constant parameter βB = 1. Some results concerning this case
appeared in Figs. 11 and 13. Here, a more general view is given in Figs. 15–16. In the first figure,
lines for corner-collision and saddle-node bifurcations are depicted in the parameter plane (γ, τ). The
codimension-two bifurcation point at the intersection of these lines is calculated as well, and takes
the values γ∗B(βB) ∼ −0.2624 and τ∗B(βB) ∼ 0.4886. The right panel of Fig. 15 is an enlargement for
a detailed view of these lines and the intersecting point.

Let us give a complementary description so as to enhance the relevance of the codimension-2
point. To achieve this goal, two set of diagrams are represented in Fig. 16. Variables represented
in these diagrams, as function of the time delay, are the half-period (θs), the crossing point (xc

1),
the two coordinates of the switching point (xs

1, x
s
2) and the characteristic multiplier (m, which is

obtained numerically by small perturbation of the limit cycle). Data in left or right panels of Fig. 16
are obtained along L or R dotted lines marked in Fig. 15. The left case is made with parameter
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Fig. 16. Diagrams for representative variables of the limit cycles, whenever
they exist, with switching time delay as a varying parameter. In both panels
β = 1. Besides, γ = −0.27 in the left panels and γ = −0.25 in the right panels.
The existence of unstable cycles, marked in red color, only is possible for the
first case. Notice that the extinction of the stable cycle (in blue color) is due
to a smooth fold bifurcation in that case and to a corner-collision in the second
case.

γL = −0.27 < γ∗B and so the two existing limit cycles of opposite stability extinguish in a saddle-
node bifurcation at τsn(γL, βB) ∼ 0.2651. Notice also that the unstable limit cycle is bounded
by a corner-collision bifurcation at τcc(γL, βB) ∼ 0.2134. The right case is made with parameter
γR = −0.25 > γ∗B and so only the stable limit cycle exists and it is bounded by a corner-collision
bifurcation at τcc(γR, βB) ∼ 0.8270.

6. Conclusions
In this paper the limit cycle oscillation in a generic model of resonant inverters has been addressed
using an exact solution for the system trajectory. First the switching case without delay has been
revisited. Further, the effect of the propagation delay in the switching decision has been unveiled. It
is shown that the same approach can be used for both cases, but for significant values of the switching
time delay, the existence and the stability of the limit cycles can be altered. Some cases have been
considered and simulated showing that the approach in this paper gives accurate results in terms of
the prediction of the limit cycle behavior and its stability. In particular, a smooth fold and a corner-
collision bifurcations of cycles have been predicted for an H-bridge self-resonant inverter taking into
account the propagation delay in the switching decision. Some examples in terms of ad hoc suitable
parameters have been computed.
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