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Abstract
Urea	is	added	as	an	adulterant	to	give	milk	whiteness	and	increase	its	consistency	for	
improving	 the	 solid	 not	 fat	 percentage,	 but	 the	 excessive	 amount	 of	 urea	 in	milk	
causes	overburden	and	kidney	damages.	Here,	an	innovative	sensitive	methodology	
based	 on	 near‐infrared	 spectroscopy	 coupled	 with	multivariate	 analysis	 has	 been	
proposed	for	 the	 robust	detection	and	quantification	of	urea	adulteration	 in	 fresh	
milk	samples.	 In	this	study,	162	fresh	milk	samples	were	used,	those	consisting	20	
nonadulterated	samples	(without	urea)	and	142	with	urea	adulterant.	Eight	different	
percentage	 levels	of	urea	adulterant,	 that	 is,	0.10%,	0.30%,	0.50%,	0.70%,	0.90%,	
1.10%,	1.30%,	 and	1.70%,	were	prepared,	 each	of	 them	prepared	 in	 triplicates.	A	
Frontier	NIR	spectrophotometer	(BSEN60825‐1:2007)	by	Perkin	Elmer	was	used	for	
scanning	 the	 absorption	 of	 each	 sample	 in	 the	 wavenumber	 range	 of	 10,000–
4,000	cm-1,	using	0.2	mm	path	length	CaF2	sealed	cell	at	resolution	of	2	cm

-1.	Principal	
components	analysis	(PCA),	partial	least‐squares	discriminant	analysis	(PLS‐DA),	and	
partial	 least‐squares	 regressions	 (PLSR)	methods	were	applied	 for	 the	multivariate	
analysis	of	the	NIR	spectral	data	collected.	PCA	was	used	to	reduce	the	dimensional-
ity	 of	 the	 spectral	 data	 and	 to	 explore	 the	 similarities	 and	differences	 among	 the	
fresh	milk	samples	and	the	adulterated	ones.	PLS‐DA	also	showed	the	discrimination	
between	the	nonadulterated	and	adulterated	milk	samples.	The	R‐square	and	root	
mean	square	error	(RMSE)	values	obtained	for	the	PLS‐DA	model	were	0.9680	and	
0.08%,	respectively.	Furthermore,	PLSR	model	was	also	built	using	the	training	set	of	
NIR	spectral	data	to	make	a	regression	model.	For	this	PLSR	model,	 leave‐one‐out	
cross‐validation	procedure	was	used	as	an	internal	cross‐validation	criteria	and	the	
R‐square	and	the	root	mean	square	error	 (RMSE)	values	for	the	PLSR	model	were	
found	 as	 0.9800	 and	 0.56%,	 respectively.	 The	 PLSR	 model	 was	 then	 externally	
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1  | INTRODUC TION

The	analytical	methods	 resulting	 from	the	use	of	 the	NIR	spectro-
scopic	 region	 reflect	 some	 significant	 characteristics	 such	 as	 fast,	
nondestructive,	 noninvasive,	with	 high	 penetration	 of	 the	 probing	
radiation	beam,	suitable	for	in‐line	use,	nearly	universal	application	
(any	molecule	containing	C‐H,	NH,	S‐H,	or	O‐H	bonds),	and	with	min-
imum	sample	preparation	demands.	The	combination	of	these	char-
acteristics	with	 instrumental	 control	and	data	 treatment	has	made	
it	possible	to	coin	the	term	Near‐Infrared	Technology	(Celio,	2003).

Milk	 and	 other	 dairy	 products	 are	 consumed	 all	 around	 the	
globe	 and	 are	 highly	 nutritious	 (De	 Toledo,	 Toci,	 Pezza,	 &	 Pezza,	
2017).	Milk	has	been	considered	the	“complete	food”	as	it	contains	
enough	essential	nutrients	required	by	infants,	children,	and	adults	
(Park	 &	Haenlein,	 2013).	 It	 is	 a	 key	 source	 for	 proteins,	 fats,	 car-
bohydrates,	vitamins,	and	minerals	 (De	La	Fuente	&	Juarez,	2005;	
Pehrsson,	Haytowitz,	Holden,	Perry,	&	Beckler,	2000).	Calcium	and	
phosphorus	are	the	main	mineral	nutrients	of	milk	that	are	required	
for	growth	of	newly	borne	babies	and	essential	for	stronger	bones	
in	human	 (Dobrzański,	Kołacz,	Górecka,	Chojnacka,	&	Bartkowiak,	
2005;	Mabood	et	al.,	2017;	Malbe,	Otstavel,	Kodis,	&	Viitak,	2010).	
The	good	effects	of	milk	proteins	on	human	health	include	anti‐mi-
crobial,	 immunomodulatory,	 anti‐thrombotic,	 antihypertensive	 ac-
tivities,	and	antioxidative	(Antanasova	&	Ivanova,	2010).

Unfortunately,	 milk	 is	 one	 of	 the	 most	 vulnerable	 targets	 for	
economically	motivated	 adulteration	 (Moore,	 Spink,	&	 Lipp,	 2012)	
and	 these	 adulterants	 cause	 serious	 illnesses	 to	 the	 consumers	
which	may	lead	to	death	in	some	cases.	The	milk	adulterants	include	
mainly	the	vegetable	proteins,	whey,	watering,	and	milk	from	differ-
ent	 species	 (Singh	&	Gandhi,	 2015).	 The	major	hazardous	 adulter-
ants	 of	milk	 include	 urea,	 formalin,	 ammonium	 sulfate,	 boric	 acid,	
detergents,	caustic	soda,	salicylic	acid,	hydrogen	peroxide,	benzoic	
acid,	melamine,	and	sugars.	Urea	adulteration	up	to	500	mg/L	can	
result	into	cancer	and	failure	of	kidneys	(De	et	al.	2011;	De	Toledo	
et	 al.,	 2017).	 The	 allowed	 limit	 for	 the	 presence	 of	 urea	 in	 fresh	
milk	by	Some	researchers	has	recommended	a	range	of	10–14	mil-
ligrams	per	deciliter	(mg/dl)	while	others	have	recommend	at	range	
of	8–12	mg/dl	 (Penn	State	Extension	 report).	Cow	milk	 containing	
urea	as	contaminant	has	been	reported	to	cause	ulcer,	acidity,	kid-
ney	stones,	and	indigestion	(Ezhilan	et	al.,	2017),	as	urea	adulterated	
milk	 is	considered	to	overburden	the	kidneys	 (Kandpal,	Srivastava,	

&	Negi,	2012).	The	milk	adulterated	with	excessive	starch	can	accu-
mulate	undigested	starch	in	colon,	which	can	cause	diarrhea	and	in	
some	cases	can	also	lead	to	fatality	in	diabetic	patients	(Singuluri	&	
Sukumaran,	2014).

Adulteration	or	adding	 illegal	additives	 to	 food	products	 is	be-
coming	a	global	 issue	 for	 the	consumers.	Due	 to	 lack	of	adequate	
monitoring	policies,	the	underdeveloped	and	the	developing	coun-
tries	are	prone	to	higher	risk	of	human	health	(Azad	&	Ahmed,	2016).	
Various	optical	 detection	 techniques	 (Castillo‐Ortega	et	 al.,	 2002;	
Lakard,	 Herlem,	 Lakard,	 Antoniou,	 &	 Fahys,	 2004)	 have	 been	 ex-
plored	for	the	qualitative	and	quantitative	detection	of	adulteration	
in	milk.	Examples	 include	 fluorescence	spectroscopy	 (Xiang,	Zeng,	
Zhai,	Li,	&	He,	2011),	Raman	spectroscopy	(Khan,	Krishna,	Majumder,	
&	Gupta,	2015;	Okazaki,	Hiramatsu,	Gonmori,	Suzuki,	&	Tu,	2009),	
nuclear	magnetic	resonance	(NMR)	spectroscopy	(Hilding‐Ohlsson,	
Fauerbach,	 Sacco,	 Bonetto,	 &	 Cortón,	 2012),	 diffuse	 reflectance	
spectroscopy	 (De	 Toledo	 et	 al.,	 2017),	 and	 MID‐IR	 spectroscopy	
(Kishor	&	Thakur,	2015).	Colorimetric	sensor	array	(Yang,	Huo,	Jiang,	
Hou,	&	Zhang,	2013),	voltamperometric	method	(Hilding‐Ohlsson	et	
al.,	2012),	and	enzyme‐linked	immunosorbent	assay	(ELISA)	(Garber,	
2008)	have	also	been	used	as	the	sensing	techniques	for	milk	adul-
terant	detection	(Kamal	&	Karoui,	2015;	Tittlemier,	2010).

Nowadays,	milk	adulteration	is	being	carried	out	more	sophis-
ticatedly	 (Azad	&	Ahmed,	2016),	whereas	 the	 standard	methods	
for	food	protein	analysis	rely	mainly	on	the	measurement	of	nitro-
gen	content	by	using	classical	detection	techniques	(Garcia	et	al.,	
2012).	Therefore,	it	has	become	difficult	to	differentiate	the	adul-
terant	nitrogen	from	the	milk	protein	and	the	nitrogen‐rich	chem-
icals	commonly	used	as	the	adulterants	(Qin	et	al.,	2017).	Hence,	
there	is	a	direct	need	for	cutting	edge	research	through	dissemina-
tion	and	 implementation	of	more	advanced	techniques	to	detect	
these	adulterants.	In	a	previous	study,	we	reported	(Mabood	et	al.,	
2017)	a	NIRS	method	coupled	with	chemometrics	to	authenticate	
the	 level	of	 adulteration	of	goat	milk	 in	 camel	milk.	The	present	
study	was	 intended	 to	 contribute	 toward	 the	 development	 of	 a	
robust,	 highly	 sensitive,	 and	 reproducible	 Fourier	 transformed	
infrared	 spectroscopy	 (FT‐NIRS)	 with	 the	 help	 of	 application	 of	
chemometric	 methods	 method	 to	 determine	 the	 urea	 adulter-
ant	concentration	 in	cow	milk.	The	fresh	cow	milk	samples	were	
intentionally	 adulterated	 with	 various	 concentrations	 of	 com-
mercial	urea	and	 then	 submitted	 to	NIR	 spectral	measurements.	

validated	using	a	 test	 set.	The	 root	means	 square	error	of	prediction	 (RMSEP)	ob-
tained	was	0.48%.	The	present	proposed	study	was	intended	to	contribute	toward	
the	development	of	a	robust,	sensitive,	and	reproducible	method	to	detect	and	deter-
mine	the	urea	adulterant	concentration	in	fresh	milk	samples.

K E Y W O R D S

milk	adulteration,	NIR	spectroscopy,	partial	least‐squares	discriminant	analysis,	partial	least‐
squares	regressions,	principal	components	analysis,	urea
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Multivariate	analysis	was	finally	applied	to	authenticate	and	quan-
tify	the	levels	of	adulteration.

2  | MATERIAL S AND METHODS

2.1 | Preparation of the urea adulterated fresh milk 
samples

In	this	study,	162	fresh	milk	samples	were	used,	those	consisting	of	
20	nonadulterated	samples	(without	urea)	and	142	with	urea	adul-
terant.	Eight	different	percentage	levels	of	urea	adulterant,	that	is,	
0.1%,	0.3%,	0.5%,	0.7%,	0.9%,	1.1%,	1.3%,	and	1.7%,	each	of	them	
prepared	in	triplicates,	were	used.	The	measured	NIR	spectral	data	
were	split	into	two	sets.	A	training	set	including	70%	of	the	data	was	
used	for	building	the	PLSR	model,	while	the	second	set	was	the	test	
set	including	30%	of	the	spectra	and	used	for	external	validation	of	
the	PLSR	model.

2.2 | Fourier transform near‐infrared 
spectroscopic analysis

A	Frontier	NIR	spectrophotometer	 (BSEN60825‐1:2007)	by	Perkin	
Elmer	was	used	for	measuring	 the	absorption	of	each	milk	sample	
in	the	wavenumber	range	of	10,000–4,000	cm-1,	using	0.2	mm	path	
length	CaF2	sealed	cell	at	a	resolution	of	2	cm

-1.

2.3 | Multivariate analysis

Principal	components	analysis	(PCA),	partial	 least‐squares	discrimi-
nant	analysis	(PLS‐DA),	and	partial	least‐squares	regressions	(PLSR)	
methods	were	applied	for	the	multivariate	analysis	of	the	measured	
NIR	spectral	data	using	the	Unscrambler	version	9.00	and	Microsoft	
Excel	2010	softwares.	PCA	was	used	to	reduce	the	dimensionality	
of	the	spectral	data	and	to	explore	the	similarities	and	differences	

among	the	fresh	milk	samples	from	the	ones	adulterated	with	urea.	
PLS‐DA	was	used	to	discriminate	between	adulterated	and	nonadul-
terated	milk	samples.	Furthermore,	the	PLSR	models	were	also	built	
to	quantify	 the	 levels	of	urea	 in	 the	 fresh	milk	samples.	The	PLSR	
model	was	externally	validated	using	the	test	set	of	samples.

3  | RESULTS AND DISCUSSION

3.1 | NIR spectra

The	actual	NIR	spectral	data	obtained	by	running	all	the	adulterated	
and	nonadulterated	fresh	milk	samples	through	FT‐NIR	spectropho-
tometer	are	shown	in	Figure	1.

Prior	 to	 the	 application	 of	 various	 chemometric	methods	 on	
the	near‐infrared	spectral	data,	 spectral	 transformations	such	as	
baseline	 correction,	 1st	 derivative	with	 Savitzky–Golay	 smooth-
ing,	and	standard	normal	variate	(SNV)	were	also	applied.	The	pre-
processing	 on	 the	NIR	 spectra	was	 applied	 to	 remove	 the	 noise	
and	 to	minimize	 the	 effect	 of	 scattering	 due	 to	 the	 presence	 of	
the	 suspended	particles	 in	 fresh	milk	 samples	 (see	Table	1).	 The	
selection	 of	 the	 optimal	 spectral	 transformations	 was	 based	 on	
the	values	of	the	R2,	RMSE,	and	RMSEP	of	the	PLSR	models,	the	
best	 preprocessing	 spectral	 treatment	 being	 the	 one	with	mini-
mum	values	of	RMSE,	RMSEP	and	number	factors,	and	maximum	
value	of	R2.

As	it	can	be	seen	from	Table	1,	the	1st	derivative	function	with	
S‐Golay	including	11	smoothing	points	in	the	wavenumber	range	of	
4,000–6,400	cm-1	is	the	optimal	spectral	transformation	for	building	
the	PLSR	model.	The	preprocessing	was	optimized	using	the	criteria	
based	on	R2,	RMSE,	RMSEP,	and	less	number	of	PC	or	factors.	The	
optimum	PLSR	model	is	the	one	for	that	the	value	of	coefficient	of	
determination R2	is	maximum	close	to	1,	while	the	error	values	like	
RMSE	and	RMSEP	are	minimum	as	well	as	the	number	of	PC	or	fac-
tors	are	also	less.

F I G U R E  1  Raw	(not	preprocessed)	
NIR	spectra	for	all	the	adulterated	and	
unadulterated	fresh	milk	samples
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The	1st	derivative–transformed	NIR	spectra	for	milk	samples	are	
shown	in	Figure	2.

From	 the	 wavenumber	 4,000–6,000	cm-1,	 there	 are	 promi-
nent	absorption	peaks	as	shown	in	Figure	2.	The	NIR	spectra	for	
fresh	milk	samples	are	difficult	to	 interpret	due	to	the	presence	
of	several	chemical	compounds	that	may	cause	band	overlap.	The	
dominating	 broad	 band	 region	 between	 6,000	 and	 7,500	cm-1 
represents	 symmetric	 and	 anti‐symmetric	 stretching	 modes	
of	 water.	 The	 strong	 water	 band	 obscured	 the	 protein	 band	 in	
this	 region.	 The	 weak	 band	 at	 5,628	cm-1	 could	 be	 due	 to	 C‐H	
stretching	mode	 of	CH2	 and	C‐H	 groups	 of	 fat.	 The	 absorption	
band	at	5,255	cm-1	 is	 related	 to	O‐H	stretching	of	H‐OH	defor-
mation	mode	of	polysaccharides.	The	region	between	4,000	and	
4,600	cm-1	 can	be	associated	 to	 the	combination	of	 the	CH2 vi-
bration	of	the	protein	side	chain	(Šašić	&	Ozaki,	2000;	Sivakesava	
&	Irudayaraj,	2002).

Chemometrics	in	this	scenario	can	provide	the	solution	through	
empirical	models	to	overcome	these	problems,	by	relating	the	mul-
tiple	spectral	 intensities	 from	the	numerous	regression	samples	to	
known	parameter	values	of	these	samples.	A	PCA	model	was	applied	
on	the	NIR	spectra	to	reduce	the	dimensionality	and	to	explore	the	
similarities	 and	 differences	 among	 the	 samples,	 both	 adulterated	
and	nonadulterated,	as	shown	in	Figure	3.

The	score	plot	of	PCA	in	Figure	3a	shows	a	complete	segregation	
of	urea	adulterated	milk	samples	from	the	pure	milk	samples.	All	the	
urea	adulterated	milk	samples	are	appearing	on	the	left	region	of	the	
PCA	score	plot	as	compared	 to	nonadulterated	milk	 samples.	This	
indicates	that	urea	adulterated	milk	samples	have	a	different	absorp-
tion	pattern	as	compared	to	pure	milk	samples,	due	to	the	presence	
of	urea	as	adulterant.

Figure	3b	shows	the	PCA	X‐loading	plot	for	PC1.	It	describes	how	
much	of	the	difference	in	a	spectral	variable	is	explained	by	the	PC.	In	

TA B L E  1  Selection	of	preprocessing	spectral	treatment

Type of spectra Preprocessing

PLS PLS

No. of factorsRMSE R2 RMSEP R2

Full	Spectra	(4,000–10,000	cm−1) Without	spectral	
transformations

0.680 0.988 0.552 0.989 4

Spectra	from	(4,000–7,300	cm−1) Without	spectral	
transformations

0.668 0.991 0.568 0.989 4

Full	Spectra	(4,000–10,000	cm−1) Baseline 0.627 0.986 0.631 0.986 5

Spectra	(4,000–7,300	cm−1) Baseline 0.592 0.988 0.623 0.987 5

Full	Spectra	(4,000–10,000	cm−1) SNV 0.684 0.984 0.606 0.987 5

Spectra	(4,000–7,350	cm−1) SNV 0.635 0.986 0.553 0.989 5

Full	Spectra	(4,000–10,000	cm−1) 1st	derv.	spectral	
transformations

0.649 0.985 0.760 0.980 3

Spectra	(4,000–6,400	cm−1) 1st	derv.	spectral	
transformations

0.563 0.987 0.483 0.983 3

PLS‐DA:	partial	least‐squares	discriminant	analysis;	RMSEP:	root	means	square	error	of	prediction;	SNV:	standard	normal	variate.

F I G U R E  2   The 1st derivative 
transformed	NIR	spectra	for	the	fresh	milk	
samples.
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this	case,	PC	contain	56%	of	the	total	spectral	variation	X.	It	also	tells	
about	the	spectral	regions	those	contribute	more	to	the	PCA	model.

The	chemical	structure	of	the	urea	molecule	is	shown	in	Figure	3c.
The	 absorbance	 spectrum	 of	 the	 urea	 exhibited	 two	 broad	 ab-

sorption	bands	 at	4,650	and	4,550	cm-1 is associated with symmet-
ric	(3,350	cm-1)	and	asymmetric	(3,450	cm-1)	stretching	bands	of	N‐H	
coupled	with	the	bending	vibration	(1,640–1,600	cm-1)	of	N‐H.	In	the	
aqueous	environment,	a	prominent	shift	is	observed	in	vibrational	fre-
quencies	due	to	hydrogen	bonding.	For	the	combination	bands	of	urea,	
magnitude	of	 red	 shift	 is	 400	cm-1,	which	 is	 evident	 and	 consistent	
with	earlier	 reports	 for	amides	 in	aqueous	solution	 (Eddy	&	Arnold,	
2001;	Edward	&	Mahpour,	1973;	Silverstein,	Bassler,	&	Morrill,	1991).

Similarly,	the	PLS‐DA	model	was	also	showed	the	discrimination	
between	the	milk	samples,	as	shown	in	Figure	4.

The	PLS‐DA	model	in	Figure	4	shows	that	the	0%	concentration	
of	the	urea	adulterant	(pure	fresh	milk)	are	completely	discriminated	
from	those	adulterated	with	0.1%	urea	adulterant.	Therefore,	it	can	
be	used	as	a	tool	for	the	robust	detection	of	urea	adulterant	in	the	
fresh	 milk	 samples.	 The	 R‐square	 value	 obtained	 for	 the	 PLS‐DA	
model	was	0.9680	with	0.08%	value	of	the	root	mean	square	error	
(RMSE).

In	order	 to	 see	 the	variation	 in	 the	 spectral	 data	during	build-
ing	the	PLS‐DA	model,	the	x‐factor	 loading	plot	was	also	built	and	
shown	in	Figure	5.

F I G U R E  3   (a)	The	principal	
components	analysis	(PCA)	score	plot	for	
urea	adulterated	and	nonadulterated	fresh	
milk	samples.	(b)	PCA	loading	plot	for	urea	
adulterated	and	nonadulterated	fresh	milk	
samples.	(c)	Chemical	structure	of	urea
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Figure	5	illustrates	that	47%	of	the	spectral	variation	was	used	
in	building	the	PLS‐DA	model	by	factor	1.	It	also	indicates	the	wave	
numbers	that	contributed	the	most	to	building	this	model.

3.2 | PLS regression results

Furthermore,	a	PLSR	model	was	also	built	on	the	NIR	spectral	data	
in	order	to	quantify	the	levels	of	the	urea	adulterant	in	the	fresh	milk	
samples,	as	shown	in	Figure	6.	The	PLSR	model	was	built	by	using	
70%	of	the	NIR	spectral	data,	that	is,	the	training	set.

PLS	regression	model	makes	a	set	of	orthogonal	components	that	
maximizes	 the	 level	 of	 correlations	 in	 between	both	 the	NIR	 spec-
tral	 data,	 that	 is,	X,	 and	 the	 concentration,	 that	 is,	Y,	 and	 provide	

a	predictive	equation	 for	Y in terms of the X's	 for	 future	unknown	
samples.

Figure	7	 shows	 the	generalized	procedure	 as	well	 as	 validation	
methods	of	 the	multivariate	PLS	regression	analysis	applied	on	the	
obtained	NIR	 spectral	 data.	 It	 shows	 that	 the	NIR	 spectral	 data	of	
all	the	adulterated	and	nonadulterated	fresh	milk	samples	were	first	
transformed	with	the	application	of	1st	derivative	spectral	pretreat-
ment.	After	that,	the	spectral	data	of	the	urea	adulterated	milk	sam-
ples	(reference	samples/standards)	were	split	into	two	set:	training	set	
and	test	set.	The	training	set	was	used	for	building	the	PLS	regression	
model	while	the	test	set	was	used	as	a	test	set	to	check	the	perfor-
mance	of	PLS	regression	model	for	validation.	After	external	valida-
tion,	it	was	applied	to	unknown	fresh	milk	samples.	Here,	two	types	

F I G U R E  4  The	partial	least‐squares	
discriminant	analysis	model	for	urea	
adulterated	and	nonadulterated	fresh	milk	
samples

F I G U R E  5  Factor	loading	plot	of	the	
partial	least‐squares	discriminant	analysis	
model	for	factor	1
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of	validation,	that	is,	internal	validation	using	leave	on	out	on	training	
set	and	external	validation	using	the	test	set,	were	performed.

The R‐square	and	root	mean	square	error	(RMSE)	values	for	the	
PLSR	model	in	Figure	6	were	found	to	be	0.986	and	0.612%,	respec-
tively.	The	RMSE	is	a	statistical	measure	used	to	check	the	predic-
tion	ability	of	the	PLSR	model,	using	“pseudo”	external	samples	and	
using	the	leave‐one‐out	procedure.	The	best	PLSR	model	is	the	one	
which	has	the	smaller	value	of	RMSE	along	with	high	value	of	cor-
relationship.	It	is	calculated	as	in	Equation	1:

where yi	is	the	measured	value	(actual	%	of	adulteration),	ŷi is the 
%	of	adulteration	predicted	by	the	model,	and	n	is	the	number	of	seg-
ments	 left‐out	 in	 the	cross‐validation	procedure,	which	 is	equal	 to	
the	number	of	samples	of	the	training	set.	Smaller	the	value	of	RMSE	
is	a	better	indicator	for	the	prediction	ability	of	the	PLSR	model.

In	order	to	show	the	variation	in	the	spectral	data	during	building	
the	PLSR	model,	the	factor	loading	plot	is	shown	in	Figure	8.

Figure	8	shows	the	factor	 loading	plot	for	factor	1	of	the	opti-
mum	PLSR	model.	 It	 shows	 that	 factor	 1	 loading	 plot	 contributes	
43%	and	94%	to	the	modeling	of	X	(spectra)	and	Y	(%	urea),	respec-
tively.	The	factor	 loading	plot	shows	what	spectral	variables	 (wav-
enumbers)	 contribute	more	 to	 building	 the	 PLS	 regression	model.	(1)

RMSE =

�

�

�

�

�

�

n
∑

i=1

(yi−ŷi)
2

n

F I G U R E  6  Partial	least‐squares	
regressions	(PLSR)	regression	plot	for	pure	
and	urea	adulterated	fresh	milk	samples

F I G U R E  7  Generalized	flow	chart	of	
partial	least‐squares	regression	analysis
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This	loading	plot	exhibited	that	the	two	broad	absorption	bands	at	
4,650	cm-1	and	4,550	cm-1 are associated with symmetric and asym-
metric	stretching	bands	of	N‐H	of	urea.

Once	the	PLS	regression	model	was	established,	it	was	then	as-
sessed	using	 the	 external	 test	 set	 including	30%	 the	NIR	 spectral	
data,	as	shown	in	Figure	9.

Figure	 9	 shows	 that	 the	 PLS	 regression	 model	 displayed	
a	 very	 good	 prediction	 ability,	 with	 prediction	 error,	 that	 is,	
(RMSEP	=	0.483%)	with	a	high	correlation	coefficient	 (R	=	0.99).	
The	RMSEP	is	a	statistical	measure	used	to	assess	the	prediction	
ability	of	the	PLS	model	with	totally	new	samples	(not	used	during	
the	calibration	process),	and	it	is	calculated	using	Equation	2:

where yt,i	 is	 the	measured	value	 (actual	%	of	adulteration),	ŷt,texti is 
the	%	of	adulteration	predicted	by	the	model,	and	nt	is	the	number	
of	samples	in	the	test	set.	RMSEP	expresses	the	average	error	to	be	
expected	in	future	predictions	when	the	calibration	model	is	applied	
to	unknown	samples.

Based	on	the	minimum	value	of	RMSEP	(model	with	three	fac-
tors),	the	PLS	regression	model	can	be	applied	to	unknown	fresh	milk	
samples	for	detection	and	quantification	of	urea	adulteration	in	any	
fresh	milk	sample.

(2)
RMSEP =

�

�

�
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�

nt
∑

i=1
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2
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F I G U R E  8  Factor	loading	plot	for	
factor 1

F I G U R E  9  Partial	least‐squares	
prediction	plot	for	the	test	set	of	fresh	
milk	samples
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4  | CONCLUSION

The	 results	 gleaned	 from	 this	 study	 revealed	 that	 NIR	 spectros-
copy	coupled	with	multivariate	methods	can	be	deployed	as	a	 ro-
bust,	 sensitive,	 and	 nondestructive	 technique	 for	 detecting	 and	
quantifying	the	presence	of	urea	adulteration	in	various	fresh	milk	
samples.	 The	 current	 study	 revealed	 that	 PLS‐DA	 model	 can	 be	
used	 to	 discriminate	 between	 the	 milk	 samples	 those	 were	 adul-
terated	 with	 urea	 from	 the	 fresh	 milk	 samples	 (unadulterated).	
Furthermore,	 the	 PLSR	models	may	 be	 used	 to	 quantify	 the	 level	
of	 the	 urea	 adulterant	 in	milk	 samples	 (https://extension.psu.edu/
interpretation‐of‐milk‐urea‐nitrogen‐mun‐values).
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