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Wine production processes still rely on post-production evaluation and off-site laboratory analyses 14 

to ensure the quality of the final product. Here we propose an at-line methodology that combines a 15 

portable ATR-MIR spectrometer and multivariate analysis to control the alcoholic fermentation 16 

process and to detect wine fermentation problems. In total, 36 microvinifications were conducted, 17 

14 in normal fermentation conditions (NFC) and 22 intentionally contaminated fermentations (ICF) 18 

with different lactic acid bacteria (LAB) concentrations. ATR-MIR measurements were collected 19 

during alcoholic and malolactic fermentations and relative density, pH, and L-malic acid were 20 

analyzed by traditional methods. Partial Least Squares Regression could suitably predict density 21 

and pH in fermenting samples (root mean squared errors of prediction of 0.0014 g·mL-1 and 0.06 22 

respectively). With regard to ICF, LAB contamination was detected by multivariate discriminant 23 

analysis when the difference in L-malic acid concentration between NFC and ICF was in the order 24 

of 0.7-0.8 g·L-1, before the end of malolactic fermentation. This methodology shows great potential 25 

as a fast and simple at-line analysis tool for detecting fermentation problems at an early stage. 26 
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1. Introduction 34 

The production of wine is based on alcoholic fermentation, which consists in the biochemical 35 

transformation of sugar into ethanol by yeasts. There are many factors that have an influence over 36 

the complexity and quality of the final product such as the grape quality and variety, yeast strain or 37 

cellar practices used (Suárez-Lepe & Morata, 2012). However, even with the best raw materials and 38 

starting under the optimal conditions, problems during alcoholic fermentation can occur, in which 39 

yeast or other microorganisms synthetize undesirable compounds that negatively affect the quality 40 

of the wine. Stuck and sluggish fermentations along with contamination-related processes are the 41 

most common problems that can appear during alcoholic fermentation (Hernández, León, & 42 

Urtubia, 2016). Nutrient deficiencies, sudden temperature changes or the imposition of undesired 43 

and non-inoculated yeast are the main causes of stuck and sluggish fermentations. Spoilage 44 

processes are due to the growth of unwanted microorganisms in the must, such as acetic acid or 45 

lactic acid bacteria (LAB), which are part of the normal microbiota found on the surface of leaves 46 

and grapes but can also be found in the environment of wineries (Portillo, Franquès, Araque, 47 

Reguant, & Bordons, 2016). Although the “piqûre acétique” is the most widely known spoilage, the 48 

“piqûre lactique” can also pose very important problems in some wines.  49 

LAB are responsible for the biochemical transformation of L-malic acid into L-lactic acid releasing 50 

carbon dioxide. This process, called malolactic fermentation, is promoted in red wines to decrease 51 

their acidity since, from an organoleptic point of view, a lower acidity is more compatible with the 52 

high tannicity of these wines (Cappello, Zapparoli, Logrieco, & Bartowsky, 2017). However, in 53 

white wines, this second fermentation  is usually undesired because it increases pH and reduces 54 

their typical freshness, leading to wines with worse organoleptic quality (Cozzolino, Mccarthy, & 55 

Bartowsky, 2012). 56 

In the winemaking industry, a control of the alcoholic fermentation process is required in order to 57 

avoid problems that result in low quality wines and consequently, in economic losses. In the cellar, 58 

the process is mostly controlled by determining temperature, density and pH, which are usually 59 
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measured twice a day, together with a visual and aroma evaluation of the fermenting grape must. 60 

These parameters are related to sugars, acids and other minor compounds that ultimately impact 61 

substantially the colour and/or aroma of the wine (Bisson, 1999). These parameters are sufficient to 62 

control the process when the fermentation progresses well. However, these control measures 63 

sometimes fail to timely detect problems when they could still be solvable by applying corrective 64 

measures to the must. This is why the implementation of novel process control strategies to obtain 65 

real-time information during alcoholic fermentation has a growing interest in the oenological field 66 

(Cozzolino, 2016). 67 

The Process Analytical Technologies (PAT) approach follows this trend. PAT is a system for 68 

designing, analysing and controlling a manufacturing process, through timely measurements of 69 

critical quality attributes of raw and in-process materials and processes in order to ensure final 70 

product quality. The hypothesis behind PAT is that quality must be controlled through process 71 

control and not only by evaluating postproduction information (Simon, Pataki, Marosi, Meemken, 72 

Hungerbühler, et al., 2015). This is specially advantageous when applied over expensive or 73 

complex samples such as pharmaceuticals or food products (Lourenço, Lopes, Almeida, Sarraguça, 74 

& Pinheiro, 2012; Van Den Berg, Lyndgaard, Sørensen, & Engelsen, 2013). For this reason, the 75 

winemaking industry is a sector where PAT could be widely applied.  76 

In the last decades, the use of spectroscopy to determine oenological parameters has increased 77 

considerably. Spectroscopic methods are fast, clean and provide large amounts of information with 78 

minimum sample preparation. Near and Mid Infrared Spectroscopy (FT-NIR and FT-MIR) have 79 

been widely used to monitor wine fermentations because information can be obtained on-time all 80 

along the process (Buratti, Ballabio, Giovanelli, Zuluanga Dominguez, Moleset al., 2011; Urtubia, 81 

Pérez-Correa, Meurens, & Agosin, 2004). Several authors have reported good prediction of sugars 82 

(glucose and fructose), ethanol, volatile acids, phenolic compounds or volumic mass in must, 83 

fermenting must and wine samples (Cozzolino, 2016; Di Egidio, Sinelli, Giovanelli, Moles, & 84 

Casiraghi, 2010; dos Santos, Páscoa, & Lopes, 2017). In some cases, the prediction of chemical 85 
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parameters has allowed detecting some problems such as sluggish fermentations (Urtubia, Pérez-86 

Correa, Pizarro, & Agosin, 2008). Among these studies, those using MIR spectroscopy with 87 

attenuated total reflectance (ATR-MIR) stand out because this technique only requires one drop of 88 

sample and provides well resolved water peaks (Teixeira dos Santos, Páscoa, & Lopes, 2017; Shah, 89 

Cynkar, Smith, & Cozzolino, 2010). All these advantages, together with the fact that modern MIR 90 

spectrometers can also be portable, make this technique a very suitable tool in a cellar not only to 91 

monitor different fermentation parameters but also to detect fermentation problems as we 92 

demonstrated in a previous study (Cavaglia, Giussani, Mestres, Puxeu, Busto, et al., 2019). 93 

The present research aims to evaluate the application of a portable ATR-MIR spectrometer and 94 

multivariate analysis techniques to control the progress of alcoholic fermentations and to detect 95 

problems at an early stage. Density and pH were evaluated using regression models, whereas 96 

discriminant models were used to detect wine fermentation deviations due to LAB contamination. 97 

  98 

2. Materials and methods 99 

2.1.  Grape must and microorganisms 100 

Concentrated white must was provided by Mostos Españoles S.A., (Ciudad Real, Spain) and it was 101 

stored at -20 ºC until its use. Its defrosting was done at 5 ºC and it was then diluted with MilliQ 102 

water to adjust the sugar concentration to 200 ± 10 g/L. The diluted must was supplemented with 103 

0.30 g/L of ENOVIT® (SPINDAL S.A.R.L. Gretz Armainvilliers, France) and 0.30 g/L of 104 

Actimaxbio* (Agrovin, Ciudad Real, Spain) in order to ensure a sufficient final concentration of 105 

yeast assimilable nitrogen.  106 

The commercial dry Saccharomyces cerevisiae yeast strain used was “E491” (Vitilevure Albaflor, 107 

YSEO, Danstar Ferment A.G., Denmark). Regarding to lactic acid bacteria, a commercial freeze-108 

dried blend of Oenococcus oeni and Lactobacillus plantarum “Co-inoculant Bacteria 3.2” (Anchor 109 

Oenology, South Africa) was used. Rehydration of the microorganisms was done following the 110 

suppliers’ instructions. 111 
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2.2.  Microvinifications 112 

Three small-scale alcoholic fermentation or microvinification batches were carried out as follows. 113 

For each sample, 350 mL of diluted must were added into 500 mL Erlenmeyer flasks and they were 114 

inoculated with 0.105 g of active dry yeast rehydrated in 2 mL of MiliQ water for 30 minutes at 25 115 

ºC, reaching a final concentration of 3·106 CFU·mL-1. To prepare the simulated contaminated 116 

samples, LAB co-inoculations were done taking into account the producer instructions (1 g = 1·1011 117 

CFU·mL-1) to reach different final concentrations ranging between 1·106 and 1·107 CFU·mL-1. All 118 

microvinifications were kept under a constant temperature of 18 ºC until the end of alcoholic and 119 

malolactic fermentations. Alcoholic fermentation was considered finished when density was under 120 

0.995 g·L-1 whereas malolactic fermentation ended when L-malic acid concentration was < LOD 121 

(0.06 g·L-1).  122 

The number of samples of each batch, the initial must parameter values (which are slightly different 123 

to simulate the natural maturity variability in grapes) and codification used are specified in Table 1. 124 

The normal fermentation conditions were coded as NFC and the intentionally contaminated 125 

fermentations as ICF. ICF samples were divided into 5 groups: ICF1, ICF2, ICF3, ICF4 and ICF5, 126 

according to the concentrations of LAB inoculated. The aim of using different concentrations of 127 

LAB was to promote the transformation of L-malic acid into L-lactic acid at different points of the 128 

alcoholic fermentation. 129 

 130 

2.3.  ATR-MIR analysis 131 

The samples were collected at least once a day to follow both alcoholic and malolactic 132 

fermentations until both were finished. The sampled volume was 1.5 mL, which was centrifuged at 133 

10000 rpm for 10 minutes to avoid the scattering effect in the spectroscopic measurements due to 134 

the presence of microorganisms. The pellet was discarded while the supernatant was kept in 1.5 mL 135 

eppendorfs for further analysis. Right after sample collection, spectra were obtained using a 136 

portable 4100 ExoScan FTIR instrument (Agilent, California, USA), equipped with an 137 
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interchangeable spherical ATR sampling interface, consisting on a diamond crystal window. A drop 138 

of sample was placed onto the crystal using a Pasteur pipette and the spectra were acquired right 139 

afterwards. Each sample was analysed in triplicate and an air background was recorded between 140 

samples. Each sample was measured applying our previously optimized methodology (Cavaglia, 141 

Giussani, Mestres, Puxeu, Busto, et al., 2019). After each measurement, the crystal was thoroughly 142 

cleaned with deionized water and cotton wipes. Spectra were collected in absorbance mode from 143 

4000 to 650 cm-1. The resolution and number of scans that provided the best results were 8 cm-1 and 144 

32, respectively. Measurements were made at 63 ± 1 ºC, as this was the stabilization temperature of 145 

the crystal. Spectra were examined using the Microlab PC software (Agilent, California, USA), and 146 

saved as .spc files. 147 

 148 

2.4.  Standard sample analysis 149 

As it is done in a cellar, density and pH were determined along the alcoholic fermentation to ensure 150 

the normal progress of this process. Density was measured using an electronic portable densimeter 151 

(Densito2Go, Mettler Toledo, United States) and pH was measured with a portable pH-meter with a 152 

201 T portable electrode (7+ series portable pH-meter, XS Instruments, Italy). The remaining 153 

volume of the supernatant was used for L-malic acid analysis using an Y15 Analyser (Biosystems, 154 

Barcelona, Spain) in order to follow the malolactic fermentation. Measurements were performed in 155 

parallel to ATR-MIR analysis of the samples.  156 

 157 

2.5.  Multivariate analysis 158 

For each sample, the average of the three recorded spectra was used in all the models described 159 

below.  160 

The collected data had a three-dimensional structure, with I samples, J wavenumbers and K 161 

sampling times. This 3-way array was rearranged in different ways (Figure 1), depending on the 162 

aim of the study.  163 



7 
 

First, a global approach was developed using all the spectra collected throughout the fermentation 164 

process for all the experiments, to explore the main information contained in the data and to 165 

correlate the spectra with the fermentation parameters. A time-wise unfolding of the 3-way array 166 

was performed to obtain a matrix with dimensions (IK x J), in which rows were the spectra recorded 167 

for I samples at K sampling times and columns were the J spectroscopic wavenumbers.  168 

The individual examination of each sampling time was also considered for the discrimination 169 

between NFC and ICF samples for each experimental batch following a local approach. For each 170 

experimental batch, different K matrices (one for each time sampled) with dimensions (I x J) were 171 

thus independently investigated. 172 

Principal Component Analysis (PCA) was applied to visualize the variability among data both 173 

through alcoholic and malolactic fermentations and to detect potential outliers, while Partial Least 174 

Squares Regression (PLSR) models were developed to predict fermentation parameters.  175 

Finally, Partial Least Squares Discriminant Analysis (PLS-DA) was used to detect LAB spoilage. 176 

PLS-DA is similar to PLSR, but in this method the vector y contains dummy variables (0 or 1) for 177 

the classes you want to discriminate (here, NFC and ICF). The method seeks the optimal number of 178 

latent variables (LVs) that maximize the covariance (and thus the discrimination) between the 179 

infrared spectra and the classes. A discrimination threshold (between 0 and 1) is calculated taking 180 

into account the probability of classification error of the samples into the classes (Pérez, Ferré, & 181 

Boqué, 2008).  182 

To proceed with the study of the spectra, different pre-processing strategies were tested including 183 

first and second derivatives (to emphasise small peaks), Savitzky-Golay smoothing (to reduce 184 

noise) and Standard Normal Variate (SNV) (to reduce the variability between samples due to 185 

scatter). This step is crucial because the outcome of a multivariate model has a strong dependence 186 

on the pre-processing applied. According to the data matrix used in the calculation, different pre-187 

processing combinations were tried and compared. Only those giving the best results are shown. 188 
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After spectral pre-processing, data were mean-centered. The theoretical basis of these treatments 189 

can be found elsewhere (Rinnan, Van Den Berg, & Engelsen, 2009). 190 

In addition, to optimize the regression models and further reduce their complexity, a variable 191 

selection strategy based on the Selectivity Ratio algorithm was considered. It is based on the idea of 192 

progressively excluding variables in the X data block and evaluate the effectiveness of the Y 193 

prediction until the combination of X variables is optimized (Rajalahti, Arneberg, Berve, Myhr, 194 

Ulvik, et al., 2009). 195 

Regression models were validated considering three different validation strategies and the best 196 

model was selected by evaluating the best compromise between the higher percentage of explained 197 

variance in Y and the minimum RMSECV/RMSEP (Root Mean Square Error of Cross-198 

Validation/Prediction). In the first validation strategy, an internal cross-validation (CV) was 199 

performed, where groups of samples (accounting for 5% of the total number of samples) were left 200 

out each time and used for prediction. The procedure was iterated 20 times and the average 201 

RMSECV was considered. In the second strategy, data were split into random halves and each half 202 

was used as calibration set in one model and as validation test set in the other. Thus, a random 203 

vector of zeros and ones was built, where zeros were considered calibration samples and ones were 204 

validation samples.  The data split procedure was repeated 10 times to reduce the dependence of 205 

data splits in the performance of the models and the average RMSEP error was evaluated. Finally, 206 

the third strategy consisted on applying the Kennard-Stone sample selection algorithm which 207 

divides the data into calibration and test sets taking into account the distribution of the samples in 208 

the principal components space. This algorithm selects the samples for the calibration set providing 209 

uniform coverage over the X data, including samples at the limits of the measurements ranges 210 

(Kennard & Stone, 1969). This methodology tends to be overoptimistic, and for this reason the 211 

number of samples to be included in the calibration test was optimized, assuring a RMSEP 212 

comparable to the ones obtained by the other strategies. 213 
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In the case of the PLS-DA models, different internal CV strategies were tested, depending on the 214 

number of samples available in each case. A leave-one-out CV was used when the number of 215 

samples ≤ 6, while a leave-two-out CV was used when the number of samples ≥ 6.  216 

All multivariate data analyses were performed using the PLS Toolbox v8.7 (Eigenvector Research 217 

Inc., Eaglerock, USA) with MATLAB R2015b (The MathWorks, Natick, USA). 218 

 219 

3. Results and discussion 220 

3.1. ATR-MIR spectra  221 

The evolution of the ATR-MIR spectra during alcoholic fermentation is shown in Figure 2. The 222 

region from 850 to 649 cm-1 was excluded as it did not contain useful information, resulting in low 223 

quality models. As previously reported (Cozzolino & Curtin, 2012; Wu, Xu, Long, Zhang, Wang, et 224 

al., 2015), the regions that show most of the variability during wine alcoholic fermentation in the 225 

mid-infrared region are mainly found between 950 to 1500 cm�1, where CH2, C-C-H, H-C-O bonds 226 

and C-C, C-O stretching vibrations absorb, and between 3000 to 3700 cm−1, where O-H stretching 227 

absorbs.  228 

 229 

3.2. Alcoholic fermentation  230 
 231 

All the spectra arranged in a time-wise unfolded matrix (Figure 1) were used to build a global PCA 232 

model. The evolution of each batch during alcoholic fermentation was best described when 233 

applying the following pre-processing combination: Savitzky-Golay second order polynomial 234 

smoothing through 7 points, SNV and mean-centering. The first 2 principal components accounted 235 

for the 99.31% of the data variability (97.39% for PC1 and 1.92% for PC2). As it can be noticed in 236 

figure 3, when comparing the evolution in time of the PC1 scores with the evolution of the density 237 

curve with the values registered during the fermentation process, both plots show a similar trend. 238 

The loadings plot of PC1 shows that the most important region to follow the progress of alcoholic 239 
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fermentation is between 950-1700 cm-1 (data not shown), which was not surprising as this region 240 

mainly corresponds to sugars and ethanol absorptions (Cozzolino, Cynkar, Shah & Smith, 2011).  241 

Moreover, the PCA model built using the spectra shows small differences between batches. A 242 

hypothesis is that this behaviour could be related to small changes in the initial sample density, 243 

since all samples come from the dilution of the same must in the same experimental conditions. In 244 

other words, the spectra recorded by the portable instrument allowed to distinguish between 245 

experiments, confirming the capability of the spectroscopic technique coupled with chemometrics 246 

to spot small differences between fermentation processes.  247 

 248 

3.3. Prediction of chemical parameters  249 

As mentioned above, PC1 scores and density showed a similar trend when depicted against time. 250 

From this important result arose the idea of using the spectroscopic data to predict density by means 251 

of PLSR. All the available NFC experiments were used in this regression model (final data matrix 252 

dimensions 566 samples x 850 variables). 253 

By applying the Selectivity Ratio algorithm, the spectroscopic regions selected were 967 to 1175 254 

cm-1 and 1483 to 1771 cm-1. The validation errors for the density models using the different CV 255 

strategies are shown in Table 2. For the first model, a subset of 28 samples was used. The number 256 

of LVs to be considered was optimized taking into account the higher percentage of explained 257 

variance of Y data and the lower RMSECV/ RMSEP values. For the subsequent models, only one 258 

LV was used. The Kennard-Stone algorithm showed that only 29 calibration samples were 259 

necessary to build a model with an RMSEP value comparable to the ones obtained by the other 260 

validation methods.  261 

Similar results have been reported using NIR spectroscopy. Fernandez-Novales et al. obtained an 262 

RMSECV of 0.0065 g·mL-1 for the prediction of density in wine fermenting samples (Fernández-263 

Novales, López, González-Caballero, Ramírez, & Sánchez, 2011). In our study, we showed for the 264 

first time that the spectroscopic information obtained with a portable ATR-MIR spectrometer with 265 
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PLSR can be used to predict density in must and fermenting samples, obtaining very satisfactory 266 

results considering the lower optical robustness of the instrument compared to benchtop devices. 267 

pH is another chemical parameter that is usually determined to control alcoholic fermentation. In 268 

this study, PLSR was applied to predict pH following the same methodology as for density (in this 269 

case, the data matrix dimensions were 427 samples x 850 variables). The Selectivity Ratio 270 

algorithm selected regions all along the spectroscopic range, suggesting that pH prediction requires 271 

information from the full spectrum. A combination of Savitzky-Golay second order polynomial 272 

smoothing through 15 points, SNV and mean-centering pre-processing gave the best results. For all 273 

models, 5 LVs were needed to achieve good predictions. In the first model built with all the 274 

samples, a subset of 22 samples was used for internal validation. The validation based on the 275 

Kennard-Stone selection method needed 43 calibration samples to obtain errors comparable to those 276 

of the other validation methods; therefore, 384 validation samples were used to test the model. 277 

Results from the different validation strategies for the pH models are summarised in Table 2.  278 

Swanepoel et al. obtained an standard error of prediction (SEP) of 0.05 pH units for grape and must 279 

samples using FT-MIR in the transmission mode (Swanepoel, du Toit, & Nieuwoudt, 2007). Using 280 

ATR-MIR, Shah et al. obtained a standard error of cross-validation (SECV) of 0.07 for the pH of 281 

grape juice samples (Shah, Cynkar, Smith, & Cozzolino, 2010). Our results show that the portable 282 

spectrometer used in this study can perform a fast and simple control of the progress of alcoholic 283 

fermentation with an acceptable error when combined with a chemometric strategy to manage the 284 

recorded spectra. Additionally, the fact that similar validation errors were obtained using different 285 

validation strategies shows the robustness of the models. 286 

 287 

3.4. Malolactic fermentation deviation 288 

The spectra recorded during the experiments in which LAB co-inoculations were performed (ICF) 289 

showed only minor changes with respect to the ones recorded in NFC due to the small concentration 290 

changes involved in the malolactic fermentation process. The main information in both NFC and 291 
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ICF spectra is ascribable, in fact, to the alcoholic fermentation evolution (sugars and ethanol 292 

signals).  293 

To focus the attention on the malolactic fermentation process, each batch was individually studied 294 

to avoid the variability among batches. In addition, the PCA models were built using the 295 

spectroscopic region between 1320 and 1109 cm-1, which is related to organic acid molecules 296 

involved in the malolactic fermentation as previously reported (Grassi, Vigentini, Sinelli, Foschino, 297 

& Casiraghi, 2012; Picque, Lefier, Grappin, & Corrieu, 1993). 298 

Three models were calculated, one for each batch experiment. The best results were obtained with a 299 

combination of 1st derivative Savitzky-Golay second order polynomial smoothing through 15 300 

points, SNV and mean-centering as pre-processing methods. In this case, the 1st derivative 301 

emphasised the slight changes in small peaks. All models explained more than 98% of the 302 

variability using 3 PCs. 303 

The scores for two PCs against time are depicted for each batch in figure 4. Samples are labelled 304 

according to the LAB co-inoculated concentrations. It can be observed that the evolution of 305 

malolactic fermentation takes different directions in the PCA space with respect to time and it is 306 

even possible to distinguish among the different LAB concentrations in the second and third 307 

batches. The models allowed to observe the different trends between ICF and NFC samples before 308 

the end of malolactic fermentations, and in some cases, before the end of alcoholic fermentation 309 

(batch 3). A deep investigation of these plots allowed to qualitatively determine at which sampling 310 

time the trajectories of ICF samples started to deviate from NFC. In batches 1 and 2, trajectories 311 

showed different trends 100 hours after the beginning of alcoholic fermentation, whereas in batch 3, 312 

it was possible to qualitative see the different trajectories after 50 hours. 313 

 314 

3.5. Discrimination between NFC and ICF  315 

Starting from the qualitative results previously shown (section 3.4), PLS-DA models for each batch 316 

were built at individual sampling times (local models) to determine at which sampling time the 317 
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trajectories of ICF samples started to deviate from NFC. In other words, to determine as soon as 318 

possible when the deviation from the NFC occurred because of LAB spoilage. For each PLS-DA 319 

model at each sampling time (Figure 1) the y vector was built by assigning 1s to ICF samples and 320 

0s to NFC samples.  321 

The first sampling time to find a discrimination threshold between the two groups with a 100% 322 

correct classification was defined as the deviation time. The deviation time was confirmed with a 323 

local model of the consecutive sampling time when 100% correct classification was achieved. For 324 

all models, only one LV was needed for a successful discrimination of the classes. 325 

Samples deviated from NFC in the first batch 213 hours after the beginning of the fermentation. In 326 

the second batch, ICF1 deviated after 187 hours whereas ICF2 and ICF3 deviated after 145 hours 327 

and 138 hours, respectively. In the third batch the difference of ICF4 and ICF5 from NFC was 328 

detected after 56 and 58 hours, respectively.  329 

At those deviation times, malolactic fermentation was around 50%-60%, which means that it is 330 

possible to differentiate the spectra before the end of malolactic fermentation, allowing to make 331 

corrective measures in wineries. Manley et al. considered the possibility of using FT-NIR to detect 332 

if malolactic fermentation has started, is in progress or has been completed in white wine, where L-333 

lactic acid values were between 0-0.3 g·L-1, 0.3-2 g·L-1 and above 3 g·L-1, respectively. They 334 

reported good classification of each class, with >95% of recognition rates (Manley, van Zyl, & 335 

Wolf, 2001). In our study, for all PLS-DA models, the difference in L-malic acid concentration 336 

between NFC and ICF samples ranged from 0.7 to 0.8 g·L-1. Despite the fact that this decrease in L-337 

malic acid concentrations result in a slight increase in pH, this is the first time that an ATR-MIR 338 

device is used to detect deviations from NFC before the end of malolactic fermentation. 339 

 340 

4. Conclusions 341 

It has been demonstrated that a portable ATR-MIR spectrometer with multivariate analysis is a 342 

valuable analytical tool to rapidly control the progress of alcoholic fermentation in white wine. 343 
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Here, the ability of this portable device has been proved to effectively predict density and pH in 344 

fermenting must samples. The methodology presented shows great potential as a fast and simple at-345 

line analysis tool for the detection of fermentation problems, as is possible to use this instrument to 346 

rapidly assess a LAB spoilage during alcoholic fermentation. Upon this findings, further research 347 

will be developed based on PAT strategies to give the winemaker the possibility to correct the 348 

process and to obtain good quality wines.  349 

 350 
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