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Abstract: Several results relating additive ideals of numerical semigroups and algebraic-geometry
codes are presented. In particular, we deal with the set of non-redundant parity-checks, the code
length, the generalized Hamming weights, and the isometry-dual sequences of algebraic-geometry
codes from the perspective of the related Weierstrass semigroups. These results are related to
cryptographic problems such as the wire-tap channel, t-resilient functions, list-decoding, network
coding, and ramp secret sharing schemes.
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1. Introduction

In a previous survey chapter [1], numerical semigroups were presented together with some of
the related classical problems, and their importance for algebraic-geometry codes was explained. In
particular, numerical semigroups can be used to establish decoding conditions, are useful to define
bounds for the minimum distance of codes, and to improve the code dimension. In this contribution,
which is a continuation of that chapter, we will present some results relating ideals of numerical
semigroups and the set of non-redundant parity-checks, the code length, the generalized Hamming
weights, and the isometry-dual sequences of algebraic-geometry codes. The reader not familiar with
algebraic geometry may be interested in the introductory sections of [1].

The organization of this contribution is as follows. Section 2 introduces numerical semigroups
and states basic notions, in particular the Frobenius number and symmetric semigroups, which will be
important in the following sections. Section 3 presents ideals of numerical semigroups and some results
connecting the maximum gap of an ideal with the size of the complement of the ideal. Maximum
sparse ideals are defined as those ideals for which this maximum gap is maximum restricted to a given
size of the complement, and this connects with symmetric semigroups. Section 4 presents one-point
algebraic-geometry codes and relates redundant checks with ideals of numerical semigroups. Section 5
deals with the Geil–Matsumoto bound for the number of points a curve can have and so with the
length of codes. Section 6 deals with the sequences of one-point algebraic-geometry codes that satisfy
the isometry-dual property and the effects of puncturing such sequences. The results are derived from
the results on maximum sparse ideals of numerical semigroups. Section 7 deals with the generalized
Hamming weights of algebraic-geometry codes by means of Feng–Rao numbers and Weierstrass
semigroups. These results are related to cryptographic problems such as the wire-tap channel or ramp
secret sharing schemes.
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2. Numerical Semigroups

2.1. Basic Notions

A numerical semigroup is a subset Λ of N0 that contains 0, contains any finite sum of its elements,
and its complement in N0 is finite. Weierstrass semigroups are indeed numerical semigroups.

The genus of a numerical semigroup Λ is the amount g = #(N0 \Λ). The elements belonging to
the semigroup Λ are its non-gaps while the positive elements in its complement are its gaps. There is a
unique increasing bijective map λ : N0 −→ Λ. We call it the enumeration of Λ, and the notation λi will
be used for λ(i).

The generators of a semigroup are those nonzero elements in the semigroup that are not the result
of adding two other nonzero elements in the semigroup. The whole set of generators is necessarily
finite and coprime. Conversely, if a finite set G of positive integers is coprime, the set of finite sums of
the elements in G is called the semigroup generated by G and it is denoted by 〈G〉.

2.2. Frobenius Number and Symmetric Semigroups

The conductor of a numerical semigroup Λ is the least integer in the semigroup for which all
integers larger than it belong to the semigroup. The conductor minus one is then the maximum gap
of the numerical semigroup, which is called the Frobenius number of the semigroup. It can be easily
proved using the Pigeonhole Principle that the conductor is at most twice the genus. The semigroups
that attain this bound are called symmetric semigroups. The symmetry of a semigroup Λ comes from
the fact that, if the Frobenius number F and the genus g of the semigroup satisfy F = 2g− 1, then the
semigroup satisfies i ∈ Λ⇐⇒ F− i 6∈ Λ.

2.3. Semigroups Generated by Two Integers

Weierstrass semigroups generated by two integers are very common as is the case in hyperelliptic
curves or Geil’s norm-trace curves [2]. Most important, for any coprime positive integers a and b, one
can find a curve with a point whose Weierstrass semigroup is 〈a, b〉 [3].

Sylvester’s formula [4] states that the Frobenius number of the semigroup 〈a, b〉 is ab− a− b,
while its genus is (a−1)(b−1)

2 . Hence, semigroups generated by two positive integers satisfy the
symmetry property.

Example 1 (Hermitian curveHq). Let q be a prime power. The Hermitian curveHq over Fq2 is defined by the
affine equation xq+1 = yq + y and homogeneous equation Xq+1−YqZ−YZq = 0. The point P∞ = (0 : 1 : 0)
is the unique point of Hq at infinity. It can be proved (see, for instance, [1]) that vP∞(

Z
Y ) = q + 1 and

vP∞(
X
Z ) = −q. Hence, the Weierstrass semigroup Λ at P∞ contains the semigroup generated by q, q + 1 whose

complement in N0 has q(q−1)
2 = g elements. Since we know that the complement of Λ in N0 also has g elements,

this means that both semigroups are the same. For further details on the Hermitian curve, see [3,5].

3. Ideals of Numerical Semigroups

3.1. Ideals

A subset I of a numerical semigroup Λ is an ideal of Λ if I + Λ ⊆ I. We say that I is a proper ideal
of Λ if I 6= Λ. Because of the finiteness of the complement of Λ and the definition of an ideal, the
complement of an ideal (either with respect to the ideal or with respect to N0) must be finite as well.
Hence, we can consider the largest integer in the complement of an ideal (with respect to N0). It is
called the Frobenius number of the ideal.

Next, we will prove an upper bound on the Frobenius number of an ideal which extends the upper
bound for the Frobenius number of a numerical semigroup that is twice the genus minus one. Indeed,
we will see that the Frobenius number of an ideal is less than or equal to the number of elements in
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the semigroup which do not belong to the ideal plus the double of the genus of the semigroup minus
one. Notice that, if we take the ideal to be the whole semigroup, then we get the already known bound
for the Frobenius number of a numerical semigroup. Hence, this result, stated in Theorem 1, can be
seen as a generalization of the upper bound for the Frobenius number of the numerical semigroup.
The ideals for which the Frobenius number attains the bound are called maximum sparse ideals. All the
results in this section were first proved in [6].

3.2. The Frobenius Number of an Ideal

Suppose that Λ is a numerical semigroup and that I is an ideal of Λ. The difference of the ideal I
with respect to Λ is the number of elements in Λ \ I. One can prove (see [3], Lemma 5.15) that, in the
case of principal ideals, that is, ideals of the form a + Λ for some nonnegative integer a, the difference
is exactly a. From this, it is straightforward to deduce that the Frobenius number of a + Λ is less than
or equal to twice the genus of the semigroup plus a (which is the difference) minus one. This will
be generalized to the bound in Theorem 1 for any ideal. Furthermore, the semigroups for which the
bound is attained will be characterized.

3.3. Upper Bounding the Frobenius Number of an Ideal

For each nonnegative integer i, define D(i) = {λj ≤ λi : λi − λj ∈ Λ}. The set D(i) is often
called the set of divisors of λi, and its cardinality is denoted νi = #D(i). The sequence νi has many
implications in coding theory. It is fundamental in the computation of bounds for the minimum
distance of algebraic-geometry codes based on a single point as well as in the optimization of the
redundancy of those codes. Its properties and applications can be seen in [7–14] and in the survey [1].
As a curiosity, it was proved in [7,15] that the set of elements of a numerical semigroup is determined
by its ν sequence. However, it was proved in [8] that, given a finite subset of values of the ν sequence,
it is contained in the ν sequence of infinitely many numerical semigroups. We will see how the sets
D(i) are related to ideals of semigroups. Next, we present two lemmas proved by Barucci in [16] and
by Høholdt, van Lint, and Pellikaan in [3], respectively, and the main theorem that can be derived
from the two lemmas.

Lemma 1 ([16]). Every ideal of a numerical semigroup Λ can be expressed as an intersection of finitely many
irreducible ideals and irreducible ideals are expressible as Λ \ D(i) for some i.

Lemma 2 (([3] Theorem 5.24)). Let g(i) be the number of gaps in the interval from 1 to λi − 1 and let G(i) be
the number of pairs of gaps whose sum equals λi. Then, νi = i− g(i) + G(i) + 1.

Theorem 1. Suppose that I is an ideal of a numerical semigroup of genus g so that Λ \ I has d elements. Then,
d + 2g + i ∈ I for all i ≥ 0. Equivalently, the Frobenius number of I is less than or equal to d + 2g− 1.

Proof. It is straightforward to see that the intersection of two ideals satisfying the result also satisfies
the result. Now, by Lemma 1, it will be enough to show that the result holds for the ideals expressible
as I = Λ \ D(i). Equivalently, νi + 2g ≥ max{c, λi + 1}, with c the conductor of Λ. This holds if
c ≥ λi + 1 since c ≤ 2g. Otherwise, if λi + 1 > c, then g(i) = g, λi = i + g, and as a consequence of
Lemma 2, νi + 2g = (i− g + G(i) + 1) + 2g = i + g + 1 + G(i) = λi + 1 + G(i) ≥ λi + 1.

The ideals for which the Frobenius number attains the previous bound will be called maximum
sparse ideals.

3.4. Maximum Sparse Ideals

In next theorem, we characterize the ideals that are maximum sparse.



Symmetry 2019, 11, 1406 4 of 16

Theorem 2. The statements that follow are equivalent for an ideal I with difference d > 0 of a semigroup Λ
with genus g:

1. The Frobenius number of the ideal I equals d + 2g− 1.
2. I = Λ \ D(i) for some i such that G(i) = 0.

Proof. On one hand, let the Frobenius number of the ideal I be d + 2g − 1. If I is a non-trivial
intersection of the ideals I′ and I′′, whose differences are, respectively, d′ and d′′, then the difference d
of I is strictly larger than both d′ and d′′. If d+ 2g− 1 is not an element of I, then it is neither an element
of I′ nor an element of I′′, but the value d+ 2g− 1 is strictly larger than both d′+ 2g− 1 and d′′+ 2g− 1.
This contradicts Theorem 1. This implies, by Lemma 1, that I is of the form Λ \ D(i) for some i. Now,
d = νi because I = Λ \ D(i). If λi is smaller than c, then νi + 2g− 1 ≥= 2g ≥ c, hence d + 2g− 1 ∈ I,
contradicting our assumption. Consequently, λi ≥ c and by Lemma 2, νi = i− g + G(i) + 1. Thus,
d + 2g− 1 = i + g + G(i) = λi + G(i). However, d + 2g− 1 6∈ I, and so G(i) = 0.

On the other hand, suppose I is of the form Λ \ D(i) for some i with G(i) = 0, and so d = νi.
By the former remarks, since G(i) = 0, one deduces that λi = i + g and, by Lemma 2, it follows that
d + 2g− 1 = λi 6∈ I.

Example 2 (Weierstrass semigroup of H4). The Weierstrass semigroup of H4 is Λ =

{0, 4, 5, 8, 9, 10, 12, 13, . . . }. We wish to find all the maximum sparse ideals of Λ. Since the Frobenius number
of Λ is 11 and 11 + 11 = 22 = λ16, it holds that G(16) > 0 while G(i) = 0 for all i ≥ 17. This implies that
all ideals of the form Λ \ D(i) with i ≥ 17 are maximum sparse. Let us see now whether G(i) = 0 for all i
with 6 ≤ i ≤ 15. On one hand, G(6) > 0 since λ6 = 12 = 11 + 1; G(7) > 0 since λ7 = 13 = 11 + 2;
G(8) > 0 since λ8 = 14 = 11 + 3; G(9) = 0 because the difference between 15 and any gap is a non-gap,
indeed, {15− 1 = 14, 15− 2 = 13, 15− 3 = 12, 15− 6 = 9, 15− 7 = 8, 15− 11 = 4} ⊆ Λ; G(10) = 0
because the difference between 16 and any gap is a non-gap, indeed, {16− 1 = 15, 16− 2 = 14, 16− 3 =

13, 16 − 6 = 10, 16 − 7 = 9, 16 − 11 = 5} ⊆ Λ; G(11) > 0 since λ11 = 17 = 11 + 6; G(12) > 0
since λi = 18 = 11 + 7; G(13) = 0 because the difference between 19 and any gap is a non-gap, indeed,
{19− 1 = 18, 19− 2 = 17, 19− 3 = 16, 19− 6 = 13, 19− 7 = 12, 19− 11 = 8} ⊆ Λ. G(14) = 0 because
the difference between 20 and any gap is a non-gap, indeed, {20− 1 = 19, 20− 2 = 18, 20− 3 = 17, 20− 6 =

14, 20− 7 = 13, 20− 11 = 9} ⊆ Λ. G(15) = 0 because the difference between 21 and any gap is a non-gap,
indeed, {21− 1 = 20, 21− 2 = 19, 21− 3 = 18, 21− 6 = 15, 21− 7 = 14, 21− 11 = 10} ⊆ Λ.

Hence, all maximum sparse ideals are I9 = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, . . . },
where D(9) = {0, 5, 10, 15}, d = 4, and d + 2g − 1 = 15; I10 = Λ \ D(10) =

{5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, . . . }, where D(10) = {0, 4, 8, 12, 16}, d = 5, and d + 2g− 1 = 16;
I13 = Λ \ D(13) = {8, 12, 13, 16, 17, 18, 20, 21, 22, . . . }, where D(13) = {0, 4, 5, 9, 10, 14, 15, 19},
d = 8, and d + 2g − 1 = 19; I14 = Λ \ D(14) = {9, 13, 14, 17, 18, 19, 21, 22, . . . }, where D(14) =

{0, 4, 5, 8, 10, 12, 15, 16, 20}, d = 9, and d + 2g− 1 = 20; I15 = Λ \ D(15) = {10, 14, 15, 18, 19, 20, 22, . . . },
where D(15) = {0, 4, 5, 8, 9, 12, 13, 16, 17, 21}, d = 10, and d + 2g − 1 = 21; I17 = Λ \ D(17) =

{12, 16, 17, 20, 21, 22, 24, . . . }, where D(17) = {0, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 23}, d = 12, and d + 2g−
1 = 23; and finally Λ \D(i) for all i > 17. Here, D(i) = {0, 4, 5, 8, 9, 10, 12, 13, . . . , i + 6− 12, i + 6− 10, i +
6− 9, i + 6− 8, i + 6− 5, i + 6− 4, i + 6}, d = i− 5, and d + 2g− 1 = i + 6.

The next corollary characterizes maximum sparse ideals of symmetric semigroups.

Corollary 1. Maximum sparse ideals of a symmetric semigroup are exactly the principal ideals of the semigroup.

Proof. It has already been explained that the difference of the principal ideal a + Λ is exactly a, and so
it is obvious that principal ideals of symmetric semigroups are maximum sparse.

Suppose now that I is a maximum sparse ideal of a symmetric semigroup Λ. If I = Λ, the result
is obvious. Otherwise, by Theorem 2, I = Λ \ D(i) for some i with G(i) = 0. Let a be the minimum
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element of I. Since I = Λ \ D(i), the difference λi − a is a gap of Λ. By the minimality of a, the
gap λi − a must be the Frobenius number F of Λ since, otherwise, λi − F would be an element in Λ
(because G(i) = 0) not in D(i) and, so, an element of I smaller than a. Now, it remains to see that any
element µ ∈ Λ \ D(i) belongs to a + Λ. Indeed, µ− a = µ− (λi − F) = F− (λi − µ). Since µ 6∈ D(i),
we have (λi − µ) 6∈ Λ and, by the symmetry of Λ, we have F− (λi − µ) ∈ Λ. Thus, µ− a ∈ Λ.

Example 3 (Weierstrass semigroup of H4). The Weierstrass semigroup of the point at infinity of H4 is
generated by two integers and so it is symmetric. The previous corollary in this case can be checked for the set of
maximum sparse ideals listed in Example 2.

Remark 1. It is important to remark that the hypothesis in Corollary 1 is necessary. A counterexample
can be found in the semigroup Λ = {0, 4, 8, 9, . . . }, of Frobenius number 7 and genus 6, and so,
not symmetric. The semigroup Λ has the ideal I = {9, 10, 11, 13, 14, 15, 17, . . . }, which equals Λ \ D(10) =
Λ \ {0, 4, 8, 12, 16}. The ideal I has difference d = 5 and Frobenius number 16 = d + 2g− 1. Hence, I is a
maximum sparse ideal, but it is not principal because it is, indeed, I = (9 + Λ) ∪ {10, 11, 14, 15}.

3.5. The Ideal of Frobenius Numbers of Sparse Ideals

The next lemma shows that the Frobenius numbers of the maximum sparse ideals of a numerical
semigroup constitute in turn another ideal of the numerical semigroup.

Lemma 3. The nonzero non-gaps λi such that G(i) = 0 constitute an ideal L of Λ.

Proof. First of all, notice that G(i) = 0 is not satisfied if λi is smaller than the conductor. Indeed,
if λi is smaller than the conductor c, then there must be a gap a smaller than λi with λi − a < λ1,
since, otherwise, λi would not be smaller than the conductor. Now, λi − a must be a positive gap and
λi = (λi − a) + a, a contradiction with G(i) = 0. Hence, the elements in L are equal than or equal to
the conductor of Λ.

It remains to show that, if λi ∈ L, then λi + λj ∈ L for any λj ∈ Λ. Assume that λj 6= 0.
Let k be such that λi + λj = λk. Suppose that λk 6∈ L, that is, G(k) 6= 0. Then, there are two
gaps a, a′ with λk = a + a′. Note that both a, a′ < λi = λk − λj since λi is greater than or equal
to c. From a + a′ = λk, we have λj < a, a′ < λi. Then, a − λj does not belong to Λ because,
otherwise, a = λj + (a− λj) ∈ Λ + Λ ⊆ Λ. In particular, (a− λj) + a′ is a sum of two gaps equal to
a + a′ − λj = λk − λj = λi, a contradiction with G(i) = 0.

4. One-Point Algebraic-Geometry Codes

In coding theory, by a linear code of length n, it is meant a linear subspace C of Fn
q , with Fq the field

of order q, for some prime power q. Its dimension is usually denoted k. The dual code of a linear code is
its orthogonal space. It has the same length than C and dimension n− k. A knowledge of the dual
code is useful in most decoding algorithms. To compare two different vectors of Fn

q , one counts the
number of differing positions and this number is referred to as the Hamming distance between the two
vectors. The weight of a vector is defined as its Hamming distance to the all-zero vector. An important
parameter of a code is its minimum distance, representing the minimum of the Hamming distances
between each pair of different vectors in the code. The correction capability of a code tells how far we
can go from any code vector with the guarantee that we will not get closer to a code vector different
than the originary one. The correction capability is exactly b d−1

2 c if the minimum distance of the code
is d.

An important class of error-correcting codes are the algebraic-geometry codes. Let X be a smooth
irreducible algebraic curve over Fq and let Q be a rational point of X . Let Λ be the Weierstrass
semigroup at Q and let A =

⋃
m≥0 L(mQ) be the ring of rational functions of X only having poles

at Q. There exists a basis z0, z1, . . . , zi, . . . of A such that vQ(zi) = −λi. Now, for each collection
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of rational points P1, . . . , Pn, all of them different from Q, and each set of indices B ⊆ N0, define
the one-point code CB =< (zi(P1), . . . , zi(Pn)) : i ∈ B > . The elements in the set B are called parity
checks of CB and the one-point code is said to be classical if B = {0, 1, . . . , m}. We will use Cm to
refer to C{0,...,m}. In the present survey, we consider only the codes Cm. Ref. [1] is a survey on results
related to the minimum distance, the error-correction capability, and the redundancy of the codes CB
from the perspective of Weierstrass semigroups. In that case we considered, though, the dual codes
< (zi(P1), . . . , zi(Pn)) : i ∈ B >⊥.

It can be shown that Cm = {( f (P1), . . . , f (Pn)) : f ∈ L(λmQ)}. Note that it can be the case that
Cm = Cm−1. The next lemma is stated in other words in ([17], Corollary 3.3).

Lemma 4. Suppose that Λ is the Weierstrass semigroup at a rational point Q and define Λ∗ = {0} ∪ {m ∈
N, m > 0 : Cm 6= Cm−1} = {m0 = 0, m1, . . . , mn}. Then, the set Λ \Λ∗ is an ideal of Λ.

5. Ideals and the Length of Algebraic-Geometry Codes

From the previous definition of algebraic-geometry codes, we see that the length of a code defined
over an algebraic smooth irreducible curve is conditioned by the number of points of the curve.
Thus, bounding the number of points of smooth irreducible curves becomes an important problem of
algebraic-geometry codes.

5.1. The Geil–Matsumoto Bound

Define Nq(g) as the maximum number of points an irreducible smooth curve of genus g can
have over the finite field of q elements. The Hasse–Weil bound is |Nq(g) − q − 1| 6 2g

√
q ([18],

Theorem V.2.3), which is refined by Serre’s bound |Nq(g)− q− 1| 6 gb2√qc ([18], Theorem V.3.1).
The web page [19] is devoted to give the best known examples of curves with many points for any
fixed pair q, g.

Suppose that, for an irreducible smooth curve X over Fq, we not only know its genus but also
the Weierstrass semigroup Λ at a given point. We may wonder, with this assumption, how many
points X can have. For this goal, we define Nq(Λ) to be the maximum number of possible points.
The first bound is due to Lewittes [20], and it uses only the first element λ1 of Λ different than 0. It is
Nq(Λ) 6 Lq(Λ) := qλ1 + 1. On the other hand, Geil and Matsumoto [21] proved that

Nq(Λ) 6 GMq(Λ) := #(Λ \ ∪λi generator of Λ(qλi + Λ)) + 1. (1)

Using the fact that
#(Λ \ (qλ1 + Λ)) = qλ1, (2)

proved in [3,21], one can deduce Lewittes’ bound from the Geil–Matsumoto bound.

Remark 2. The set Λ \∪λi generator of Λ(qλi +Λ) is the complement of an ideal of Λ. Hence, any advance in the
comprehension of ideals of numerical semigroups may result in new bounds for the length of algebraic-geometry codes.

For a numerical semigroup generated by two coprime integers a, b, it can be proved [22] that the
Geil–Matsumoto bound is exactly as follows:

GMq(〈a, b〉) =
a−1

∑
n=0

min
(

q,
⌈

q− n
a

⌉
· b
)
+ 1 (3)

=


qa + 1 if q 6 b q

a cb,
(q mod a)q + (a− (q mod a))b q

a cb + 1 if b q
a cb < q 6 d q

a eb,
abd q

a e − (a− (q mod a))b + 1 if q > d q
a eb.

(4)
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5.2. Coincidences of Lewittes’s and the Geil–Matsumoto Bound

It was proved by Beelen and Ruano in ([23], Proposition 9) that, if q ∈ Λ, then the Lewittes
and the Geil–Matsumoto bounds coincide. For two-generated semigroups, Equation (3) implies that
both bounds coincide if and only if q 6 b q

a cb. Otherwise, the Lewittes bound is improved by the
Geil–Matsumoto bound. This result for two-generated semigroups can be generalized to semigroups of
any number of generators (larger than or equal to two). This is the goal of this subsection. The results
are taken from [22].

Theorem 3. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λi for all i > 1. The next statements are equivalent

1. GMq(Λ) = Lq(Λ);
2. Λ \ ∪n

i=1(qλi + Λ) = Λ \ (qλ1 + Λ);
3. q(λi − λ1) ∈ Λ for all i > 1.

Proof. By Equation (2), it is straightforward to prove that 2 implies 1. The reverse implication
follows from the inclusion Λ \ ∪n

i=1(qλi + Λ) ⊆ Λ \ (qλ1 + Λ) and the equality GMq(Λ) = Lq(Λ),
which, by Equation (2), implies that #(Λ \ ∪n

i=1(qλi + Λ)) = #(Λ \ (qλ1 + Λ)).
For the equivalence of the last two statements, notice that q(λi − λ1) ∈ Λ for all i > 1⇐⇒ qλi ∈

qλ1 + Λ for all i > 1⇐⇒ qλi + Λ ⊆ qλ1 + Λ for all i > 1⇐⇒ Λ \ ∪n
i=1(qλi + Λ) = Λ \ (qλ1 + Λ).

Notice that Theorem 3 implies Beelen–Ruano’s result since q ∈ Λ implies q(λ− λ1) ∈ Λ for all
λ ∈ Λ.

From Theorem 3, it makes sense to analyze the conditions under which q(λi − λ1) ∈ Λ for some
i > 1. Notice that, if gcd(λ1, λi) = d, then {xλ1 + yλi : x, y ∈ N0} = d〈 λ1

d , λi
d 〉, where, by d〈 λ1

d , λi
d 〉, we

mean the set {dλ : λ ∈ 〈 λ1
d , λi

d 〉}. Obviously, d〈 λ1
d , λi

d 〉 ⊆ Λ. The next lemma is proved in [22].

Lemma 5. If gcd(λ1, λi) = d, then q(λi − λ1) ∈ d〈 λ1
d , λi

d 〉 if and only if qd 6 b qd
λ1
cλi. In particular, if

q 6 b q
λ1
cλi, then q(λi − λ1) ∈ d〈 λ1

d , λi
d 〉.

Now, one can deduce the next result.

Proposition 1. Suppose λ1 < λ2 < · · · < λn and let Λ = 〈λ1, λ2, . . . , λn〉. If q 6 b q
λ1
cλ2 then GMq(Λ) =

Lq(Λ).

Remark 3. We have seen that for two-generated semigroups the converse is also true.
For semigroups with any number of generators, the converse is not true in general. As a
counterexample, let Λ = 〈5, 7, 18〉 = {0, 5, 7, 10, 12, 14, 15, 17, 18, . . . } and consider q = 9.
We have Λ \ ∪λi generator of Λ(qλi + Λ) = {0, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 56, 58, 61} =
Λ \ (qλ1 + Λ). Hence, GMq(〈5, 7, 18〉) = 46, which coincides with Lq(〈5, 7, 18〉). Observe though that q,
which is 9 is strictly larger than b q

λ1
cλ2, which is 7.

5.3. Simplified Computation

In [22], it was investigated whether the computation of the number Λ \ ∪λi generator of Λ(qλi +

Λ) could be performed as the simpler computation of Λ \ ∪i∈J(qλi + Λ) for some proper subset of
indices J ⊆ {1, . . . , n}. This is the purpose of the next lemma.

Lemma 6. Suppose that Λ = 〈λ1, . . . , λn〉 and let J ⊆ {1, . . . , n} be an index subset. The following statements
are equivalent

1. Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪i∈J(qλi + Λ);
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2. For all i 6∈ J there exists 1 6 j 6 n, j ∈ J such that q(λi − λj) ∈ Λ.

The next lemma is a consequence of the previous one.

Lemma 7. Suppose that Λ = 〈λ1, . . . , λn〉, where λ1 < λ2 < · · · < λn and suppose that λ1 < q.

1. If λj is the maximum of the generators that are strictly smaller than q
b q

λ1
c , then Λ \ ∪n

i=1(qλi + Λ) =

Λ \ ∪j
i=1(qλi + Λ).

2. If λj is the maximum of the generators that are strictly smaller than 2λ1 − 1, then Λ \ ∪n
i=1(qλi + Λ) =

Λ \ ∪j
i=1(qλi + Λ).

Proof. The first statement follows directly from Lemma 5 and Lemma 6. To prove the second statement,
assume that q = xλ1 + y, where x ≥ 1 and y are integers. Then, q

b q
λ1
c = λ1 +

y
x and the statement is a

consequence of the inequalities x > 1 and y 6 λ1 − 1.

We call Geil–Matsumoto generators those generators that are strictly smaller than 2λ1− 1. As follows
from the previous results, to compute the Geil–Matsumoto bound, one only needs to subtract the
ideals qµ + Λ from Λ for µ a Geil–Matsumoto generator. Because of the fact that, in general, one needs
to subtract the ideals qλ + Λ for all generators λ, this gives a computational improvement. In [22],
we observed that, although it decreases with the genus, the portion of non-Geil–Matsumoto generators
remains still significant for genus 25 with a portion of more than 30%.

We notice that Lemma 7 is a direct consequence of Lemma 6. We leave it as an open research
problem to find other consequences of Lemma 6 to find further computational improvements.

6. Ideals and Isometry-Dual Sequences of One-Point Algebraic-Geometry Codes

6.1. Characterization of Isometry-Dual Sequences of Algebraic-Geometry Codes by Means of Sparse Ideals

We say that the codes C, D ⊆ Fn
q are isometric with respect to x, for x ∈ Fn

q if D = χx(C),
where χx is the map χx : Fn

q → Fn
q defined component-wise by χx(v) = x ∗ v. More generally,

we say that the sequence (C(i))i=0,...,n of codes satisfies the isometry-dual condition if a vector x ∈

(F∗q)n exists so that C(i) is x-isometric to
(

C(n−i)
)⊥

for every i = 0, 1, . . . , n. Suppose now that
P1, . . . , Pn, Q are different rational points of a projective, smooth, irreducible curve of genus g and
let Cm = {( f (P1), . . . , f (Pn)) : f ∈ L(mQ)}. As it has been previously stated, if Λ is the Weierstrass
semigroup at Q and Λ∗ = {0} ∪ {m ∈ N, m > 0 : Cm 6= Cm−1} = {m0 = 0, m1, . . . , mn}, then Λ \Λ∗ is
an ideal of Λ. Furthermore, Geil, Munuera, Ruano, and Torres proved the next lemma for n > 2g + 2
(in a different but equivalent formulation). The strict inequality was improved to a non-strict inequality
in [24].

Lemma 8 (([17] Proposition 4.3.)). Let Λ∗ = {m0, . . . , mn} be as defined with n ≥ 2g + 2. The sequence
of codes Cm0 , Cm1 , . . . , Cmn satisfies the isometry-dual poperty whenever 2g + n− 1 ∈ Λ∗. Equivalently, the
sequence Cm0 , Cm1 , . . . , Cmn satisfies the isometry-dual property if and only if the ideal Λ \Λ∗ is maximum
sparse.

6.2. Inclusion Relationship of Sparse Ideals

As seen in Theorem 2, a proper ideal I of Λ is maximum sparse if and only if I is of the form
Λ \ D(i) for some integer i satisfying G(i) = 0. The next lemma states the relationship between
Frobenius numbers of maximum sparse ideals of a given numerical semigroup when the ideals satisfy
inclusion relationships.
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Lemma 9. For two proper maximum sparse ideals I, I′ of a numerical semigroup Λ with Frobenius numbers
λi, λi′ , the following statements are equivalent:

1. I ⊆ I′;
2. Λ \ I′ ⊆ Λ \ I;
3. D(i′) ⊆ D(i);
4. λi − λi′ ∈ Λ;
5. #(Λ \ I)− #(Λ \ I′) ∈ Λ.

Proof. The equivalence of statements (1) and (2) is obvious. Since I, I′ are proper maximum sparse
ideals, D(i) = Λ \ I and D(i′) = Λ \ I′. Hence, statement (2) and statement (3) are equivalent.
Statement (3) is equivalent to λi′ ∈ D(i), which, in turn, is equivalent to statement (4). Statements
(4) and (5) are equivalent since λi = 2g− 1 + #(Λ \ I) and λi′ = 2g− 1 + #(Λ \ I′). Hence, λi − λi′ =

#(Λ \ I)− #(Λ \ I′).

6.3. Puncturing Sequences of Isometry-Dual One-Point Algebraic-Geometry Codes

We wonder now whether the isometry-dual property is inherited after puncturing sequences of
one-point algebraic-geometry codes. We proved in the next theorem a necessary condition for the
inheritance of the isometric-dual property. In particular, in order to mantain the property, the number of
evaluating points that are supressed when puncturing must be a non-gap of the associated Weierstrass
semigroup. This result was proved first in [24].

Theorem 4. Suppose now that P1, . . . , Pn, Q are different rational points of a projective, smooth, irreducible
curve of genus g. Let Λ be the Weierstrass semigroup at Q, let Cm = {( f (P1), . . . , f (Pn)) : f ∈ L(mQ)},
and let Λ∗ = {0} ∪ {m ∈ N, m > 0 : Cm 6= Cm−1} = {m0 = 0, m1, . . . , mn}. Suppose that the
sequence Cm0 , . . . , Cmn holds the isometry-dual property. Consider a subset {Pi1 , . . . , Pin′ } ⊆ {P1, . . . , Pn},
with 2g + 2 ≤ n′ < n, the punctured codes C′m = {( f (Pi1), . . . , f (Pin′ )) : f ∈ L(mQ)}, and the associated
index set (Λ∗)′ = {0} ∪ {m ∈ N, m > 0 : C′m 6= C′m−1} = {m′1 = 0, m′2, . . . , m′n′}. If the code sequence
{0}, C′m′1

, C′m′2
, . . . , Cm′

n′
also holds the isometry-dual property, then n− n′ ∈ Λ.

Proof. By hypothesis, the set Λ \Λ∗ is a maximum sparse ideal. If the sequence {0}, C′m′1
, . . . , Cm′

n′

also holds the isometry-dual preperty, then so is Λ \ (Λ∗)′. We have (Λ∗)′ ⊆ Λ∗ because C′m 6= C′m−1
implies Cm 6= Cm−1. Consequently, Λ \ (Λ∗)′ ⊇ Λ \ Λ∗. Using Lemma 9, we can conclude that
#Λ∗ − #(Λ∗)′ = n− n′ ∈ Λ.

7. Ideals and Generalized Hamming Weights

The number of nonzero coordinates of a word coincides with the cardinality of the support of
the one-dimension vector it generates. Hence, the minimum distance of a linear code can be thought
as the minimum number of elements the support of a one-dimension linear space can have. This is
generalized to the so-called Hamming weights, which are defined, for each given dimension as the
minimum size of the support of the linear subspaces of that dimension. The generalized Hamming
weights for algebraic-geometry codes have been analyzed in [25–27]. Applications of generalized
Hamming weights appear in a variety of fields of communications. Wei [28] first used the notion to
analyze the performance of Ozarow–Wuyner’s wire-tap channel of type II [29] and in connection to
t-resilient functions. In [30], there is an update of the connections of generalized Hamming weights
with the wire-tap channel using network coding. The reference [31] generalizes the notion for network
coding. Generalized Hamming weights have applications also in the area of list decoding [32,33].
In particular, Guruswami showed that his (e, L)-list decodibility notion in the case of erasures is
equivalent to the generalized Hamming weights for linear codes. Generalized Hamming weights have
also been used to bound the covering radius of linear codes [34] and for secure secret sharing based
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on linear codes [35,36]. One further related notion is that of relative generalized Hamming weights,
where only the support of subspaces with no intersection with a given subspace are considered. They
are applied to bound the information leakage in linear ramp secret sharing schemes. They were
proposed in [37] and analyzed for algebraic-geometry codes in [38,39].

Heijnen and Pellikaan introduced in [40] the generalized order bounds for the generalized
Hamming weights of dual one-point algebraic-geometry codes in terms of Weierstrass semigroups.
Farrán and Munuera showed the existence of a constant, which they named the Feng–Rao number,
depending only on the dimension of the Hamming weights and the Weierstrass semigroup,
which completely determined the order bounds for codes of rate low enough. The references [41–44]
deal with the generalized order bounds and the Feng–Rao numbers related to particular classes
of semigroups.

We will present a new bound on the generalized Hamming weights that was first proved in [6].
It uses a lower bound on the Feng–Rao numbers derived from the upper bound for the Frobenius
number of an ideal of a semigroup that we presented in Theorem 1. It is obtained through the analysis
of intervals of consecutive gaps of Weierstrass semigroups. The idea of consecutive gaps was already
used in [45] to bound the minimum distance of one-point codes and in [46] to bound the generalized
Hamming weights for primal codes.

7.1. Feng–Rao Numbers

In Section 3.3, we introduced the ν sequence of a numerical semigroup Λ counting the number of
pairs of non-gaps whose sum equals a given non-gap. The minimum distance of the dual one-point
code C⊥m associated with a rational point Q with Weierstrass semigroup Λ and associated sequence ν is
bounded by the order (or Feng–Rao) bound defined as δ(m) = min{νi : i > m} [3,10,47]. Some results
about the computation of the order bound can be found in [3,7,11–14,48].

The order bound for the minimum distance is generalized to any dimension r by the r-th order
bound for the generalized r-th generalized Hamming weight. In this case, define D(i1, . . . , ir) =

D(i1) ∪ · · · ∪ D(ir). Then, the r-th order bound is defined as δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir >
m}. This definition was introduced in [40]. Farrán and Munuera proved in [49] that, for each integer
r ≥ 2 and for each numerical semigroup Λ, there exists a constant Er = E(Λ, r), the so-called r-th
Feng–Rao number, satisfying that

1. δr(m) = m− g + Er + 2 for every m with λm ≥ 2c− 2 ([49], Theorem 3),
2. δr(m) ≥ m− g + Er + 2 for every m with λm ≥ c ([49], Theorem 8),

where g and c stand respectively for the genus and the conductor of Λ. This is indeed an extension of
the Goppa bound in which case r = 1 and Er = 0 ([3], Theorem 5.24). The constant Er satisfies

3. r ≤ Er ≤ λr−1 if g > 0 (and r ≥ 2) ([49], Proposition 5),
4. Er = λr−1 if r ≥ c ([49], Proposition 5),
5. Er = r− 1 if g = 0.

In [41,49,50], one can find more results related to the Feng–Rao numbers.
We will use Theorem 1 to describe a new lower bound for the Feng–Rao number Er. The new

bound is strictly better than the bound Er ≥ r for semigroups having more than two intervals of gaps
and dimensions r > 2.

7.2. Bound on the Feng–Rao Numbers

To prove the new bound, we first need the next lemma, whose proof can be found in [6], and then
we can state the theorem with the bound. The proof of the theorem uses that δr(m) counts the number
of elements of a numerical semigroup not belonging to an ideal and the bound of Theorem 1.
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Lemma 10. Let

A(r, `, a1, ar) = {A ⊂ N0 : #A = r, min(A) = a1, max(A) = ar, A contains at least ` consecutive integers}.

For every A ∈ A, let α(A) = max{a ∈ A : a + 1− `, . . . , a ∈ A}. Then, min α(A) = max{a1 + `− 1, a1 +

(`− 1)(a1 − ar) + `(r− 1)}.

Theorem 5. Suppose that n`−1 is the number of intervals of at least `− 1 consecutive gaps of Λ, for ` an
integer larger than 1. Then,

Er ≥ min
{

r +
⌈

r
`− 1

⌉
− 2, r +

⌈
(`− 1)n`−1

`

⌉
− 1
}

. (5)

Proof. By definition of δr(m), there exist integers i1, . . . , ir with m < i1 < · · · < ir such that δr(m) =

#D(i1, . . . , ir). The integers i1, . . . , ir minimize #D(i1, . . . , ir). Denote A the set {i1, . . . , ir}. Suppose
that the integer m is at least 2c− g− 1. From the definition of Er, we have δr(m) = m− g + Er + 2.

As the set A minimizes the amount #D(i1, . . . , ir), then i1 = m + 1. Now, one can apply Theorem 1
to the ideal Λ \D(i1, . . . , ir), and obtain (m− g+ Er + 2) + (2g− 1) ≥ λir = g+ ir. One can reorganize
the inequality and obtain

ir ≤ m + Er + 1. (6)

If we assume that A has no ` consecutive integers, then

ir ≥ m + r +
⌈

r− (`− 1)
`− 1

⌉
. (7)

Then, by inequality (6), Er ≥ r +
⌈

r
`−1

⌉
− 2. On the other hand, assume that A has

at least ` consecutive integers. Suppose that ij is the maximum integer belonging
to A so that ij − ` + 1, . . . , ij ∈ A and so ij−`+1 = ij − ` + 1, . . . , ij−1 = ij − 1 and
λij−`+1

= λij − ` + 1, . . . , λij−1 = λij − 1. Let Γ = {λ ∈ Λ : λ + 1, . . . , λ + `− 1 6∈ Λ}. In particular,
if λ is an element of Γ, it must be strictly smaller than the conductor c of Λ. Obviously,
#Γ = n`−1. If λ ∈ Γ, then (λij − 1)− λ ∈ D(ij−1) \ D(ij), . . . , (λij − `+ 1)− λ ∈ D(ij−`+1) \ D(ij),
and so {λij − λ− 1, λij − λ− 2, . . . , λij − λ− `+ 1} ⊆ D(ij−`+1, . . . , ij−1) \ D(ij). In fact,
∪λ∈Γ{λij − λ− 1, . . . , λij − λ− `+ 1} ⊆ D(ij−`+1, . . . , ij−1) \ D(ij) and the sets in
this union are disjoint. Indeed, for λ, λ′ ∈ Γ, with λ > λ′, it holds
λ− λ′ ≥ `. Then, min{λij − λ′ − 1, . . . , λij − λ′ − `+ 1} = λij − λ′ − `+ 1 ≥ λij − λ + 1 >

max{λij − λ− 1, . . . , λij − λ− `+ 1}. Hence,

#D(i1, . . . , ir) ≥ #D(ij−`+1, . . . , ij) ≥ (`− 1)n`−1 + νij = (`− 1)n`−1 + ij − g + 1. (8)

Since D(i1, . . . , ir) = m− g + Er + 2, we get that m− g + Er + 2 ≥ (`− 1)n`−1 + ij − g + 1, so

Er ≥ (`− 1)n`−1 + ij −m− 1. (9)

Now, by Lemma 10, and by the maximality of j,

ij ≥ max{i1 + `− 1, i1 + (`− 1)(i1 − ir) + `(r− 1)}. (10)

This implies
ij ≥ i1 + `− 1, (11)

and
ij ≥ i1 + (`− 1)(i1 − ir) + `(r− 1). (12)
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On one side, we can use inequality (9) and inequality (11), and obtain Er ≥ (`− 1)(n`−1 + 1).
On the other side, we can use inequality (9) and inequality (12), and then inequality (6), as follows:

Er ≥ (`− 1)n`−1 + i1 + (`− 1)(i1 − ir) + `(r− 1)−m− 1

= (`− 1)n`−1 + (`− 1)(i1 − ir) + `(r− 1)

≥ (`− 1)n`−1 − (`− 1)Er + `(r− 1),

from where we can conclude that Er ≥ r− 1 +
⌈
(`−1)n`−1

`

⌉
.

At this point, we have shown that either Er ≥ r +
⌈

r
`−1

⌉
− 2 or Er ≥ max{(` − 1)(n`−1 +

1), r +
⌈
(`−1)n`−1

`

⌉
− 1}, depending on whether A has or does not have ` consecutive integers.

Hence, we deduce the bounds that follow:

Er ≥ min{r +
⌈

r
`− 1

⌉
− 2, (`− 1)(n`−1 + 1)},

Er ≥ min{r +
⌈

r
`− 1

⌉
− 2, r +

⌈
(`− 1)n`−1

`

⌉
− 1}.

Let us see that the second bound is always at least as good as the first one. Hence, the first bound
can be ignored. Indeed, if r +

⌈
r

`−1

⌉
− 2 ≤ r +

⌈
(`−1)n`−1

`

⌉
− 1, then we are done. Otherwise, if r +⌈

r
`−1

⌉
− 2 > r +

⌈
(`−1)n`−1

`

⌉
− 1, then we need to prove that r +

⌈
(`−1)n`−1

`

⌉
− 1 ≥ (`− 1)(n`−1 + 1).

If r +
⌈

r
`−1

⌉
− 2 > r +

⌈
(`−1)n`−1

`

⌉
− 1, then

⌈
r

`−1

⌉
>
⌈
(`−1)n`−1

`

⌉
+ 1, which implies that

r
`−1 >

(`−1)n`−1
` + 1, and so r > (` − 1)( (`−1)n`−1

` + 1) = (` − 1)((n`−1 + 1) − n`−1
` ). This implies

r + (`−1)n`−1
` > (`− 1)(n`−1 + 1), and so r +

⌈
(`−1)n`−1

`

⌉
− 1 ≥ (`− 1)(n`−1 + 1), as desired.

Remark 4. The bound in Theorem 5 only improves the bound Er ≥ r when ` < r/2 + 1 and n`−1 > 0.

7.3. Bound on the Generalized Hamming Weights

Corollary 2. Let ` ≥ 2 and let m satisfy λm ≥ c. Then, δr(m) ≥ m + 2 − g +

min
{

r− 2 +
⌈

r
`−1

⌉
, r− 1 +

⌈
(`−1)n`−1

`

⌉}
.

Remark 5. From bound (5), taking ` = 2, we deduce that, if n is the number of intervals of (at least one) gaps
of Λ, then

Er ≥ min{2(r− 1), r + dn/2e − 1}. (13)

Remark 6. If n ≤ 2 or r = 2, the bound in the previous remark equals the bound Er ≥ r. In any other case,
this new bound is better.

Corollary 3. If the Weierstrass semigroup Λ has n intervals of gaps and its conductor is c, then, for every
integer m such that λm ≥ c,

δr(m) ≥
{

m− g + 2r, if r ≤ dn/2e+ 1,
m− g + r + dn/2e+ 1 otherwise.

7.4. Sharpness of the Bound

If one analyzes the proof of Theorem 5, it can be seen that the bound (5) may only be sharp if

1. The inequality (6) is indeed an equality. That bound is obtained when one applies Theorem 1
to the ideal Λ \ D(i1, . . . ir). The inequality being an equality means applying Theorem 2 to the
same ideal that D(i1, . . . , ir) = D(ir). Hence, i1, . . . , ir−1 ⊆ ir −Λ and so, ir − ir−1 ≥ λ1.
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2. Either inequality (7) or both inequality (8) and inequality (10) are indeed equalities. In this case,
ir − ir−1 ≤ 2.

From these observations, one can conclude that the bound may be sharp only if the Weierstrass
semigroup Λ is a hyperelliptic semigroup, that is, a semigroup containing 2. For hyperelliptic
semigroups, it was proved in ([50], Theorem 1) that Er = λr−1 = 2(r − 1). On the other hand,
the bound (5) for the unique hyperelliptic semigroup of genus g is

Er ≥


r− 1, if ` > 2,
2(r− 1), if ` = 2 and r− 1 ≤ dg/2e,
r + dg/2e − 1, if ` = 2 and r− 1 > dg/2e.

Thus, we conclude that the bound is sharp if and only if ` = 2, the Weierstrass semigroup Λ is
hyperelliptic, and r ≤ dg/2e+ 1.

7.5. The Bound Applied to the Hermitian Curve

The weight hierarchy of Hq has already been studied in [27,51]. However, for its simplicity,
we wanted to give a description of n`. As we have seen before, the Weierstrass semigroup at the rational
point at infinity is generated by q and q + 1. Its weight hierarchy was studied in [42]. The semigroup
generated by q and q + 1 is {0} ∪ {q, q + 1} ∪ {2q, 2q + 1, 2q + 2} ∪ · · · ∪ {(q− 2)q, . . . , (q− 2)q + (q−
2)} ∪ {k ∈ N0 : k ≥ (q − 1)q}. In this case, the lengths of the intervals of consecutive gaps are
q− 1, q− 2, . . . , 1. Thus,

n` =

{
q− `, if 1 ≤ ` ≤ q,
0, if ` ≥ q.

It is left as an open question to compare the results in [41] with the bound proved in Theorem 5, using
these values of n`.

8. Further Reading

It was our purpose to cite within the text the bibliography related to each specific section. However,
the reader may be interested in some more general references. The books [52–54] have many results on
numerical semigroups. Algebraic-geometry codes have been widely explained in different books such
as [18,55,56] or in chapter [57]. For a general theory of one-point codes, their decoding, and also some
of their relationships with Weierstrass semigroups, chapter [3] is probably the most important reference.
Finally, chapter [1] is a survey of results on numerical semigroups, their classification, characterization
and counting, and their relationship with algebraic-geometry codes from the perspective of decoding
algorithms, their parameters such as the minimum distance, and the optimization of their redundancy
under particular decoding restrictions.

9. Conclusions

Numerical semigroups play an important role in the analysis of error-correcting codes. More
specifically, additive ideals of numerical semigroups are involved in determining non-redundant
parity-checks, the code length, the generalized Hamming weights, and the isometry-dual sequences of
algebraic-geometry codes. These results have been presented in this survey in a unified framework.
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