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Abstract: In this study we explored the implementation of the vapor induced phase separation (VIPS)
to produce cellulose acetate microcapsules for the encapsulation of a complex mix of fragrances. VIPS
is a technique used for membrane preparation, but barely mentioned for microencapsulation. We
compared the products from VIPS and a more common microencapsulation process, the immersion
precipitation technique (IPS). The capsules prepared via VIPS show a core-shell structure with a
thin polymeric shell surrounding the internally empty space, conversely to those produced via
IPS, showing an incomplete spherical morphology. This can be attributed to a better control of the
precipitation rate of the encapsulation material in the non-solvent thanks to the longer exposition
time to the vapor. The activity and encapsulation efficiency of the capsules, obtained through TGA
analysis, reached a maximum of ≈75% and ≈90%, respectively. Moreover, a growing trend between
the initial active concentration and the encapsulation efficiency is noticed.
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1. Introduction

Fragrance chemicals are widely used nowadays to enhance the consumer’s enjoyment for several
consumer goods, such as personal care products, laundry detergents, and fabric softeners [1]. However,
fragrances generally exhibit high volatility, resulting in the loss of their aroma when exposed to the
atmosphere [2]. Among the technologies developed to overcome this issue, the most commonly used
is the microencapsulation of the fragrance materials in a protective coating.

Microencapsulation offers an ideal and unique carrier system for active ingredients, allowing
the controlled and targeted release, isolation, and protection of the active compounds and improved
stability and efficacy [3]. Several preparation technologies for the encapsulation of core material have
been reported and, among them, phase inversion precipitation is quite common.

Briefly, this technique is based on the interaction of at least three compounds: a polymer, a
solvent for the chosen polymer, and a non-solvent for the polymer. The solvent and non-solvent
should be miscible with each other [4]. Between the several different ways in which it is possible to
induce the phase separation, the immersion precipitation technique (IPS) is probably the most common
for microcapsules production. In that specific technique a polymer solution (polymer and solvent)
is cast on a suitable support and immersed in a coagulation bath containing the non-solvent. The
precipitation occurs because of the exchange of the solvent and non-solvent. The solvent diffuses
into the coagulation bath, whereas the non-solvent will diffuse into the cast film. After a certain time,
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the exchange of solvent and non-solvent proceeds until the solution becomes thermodynamically
unstable and de-mixing takes place [5]. This process is very fast and is usually completed within a few
seconds, which makes it almost impossible to determine the kinetics [6]. The liquid–liquid de-mixing
is associated to the Flory–Huggins interaction parameter between the polymer and the non-solvent
(χ13). In our case, considering cellulose acetate and water, it is [1,4,7]. This leads to rapid liquid–liquid
de-mixing when the polymer solution comes into contact with the coagulation bath.

Vapor induced phase separation (VIPS) is a similar process that involves a dry-wet casting process;
the dope solution is exposed to non-solvent vapor prior to immersion in a coagulation bath. It can
be considered as an intermediate process between the IPS and the controlled solvent evaporation. In
solvent evaporation, however, the non-solvent is originally contained in the solution, along with the
polymer and a more volatile solvent. Due to that, the phenomenon responsible for phase separation is
the solvent outflow, while in VIPS is the non-solvent outflow. For that reason, VIPS is more assimilable
to a wet method, where the initial solution composed by polymer and solvent is immersed in a
non-solvent bath. By using non-solvent vapor instead of the liquid non-solvent, the process becomes
much slower and controlling the whole process becomes possible. The mass transfer rates, indeed, are
considerably reduced compared to those associated with a wet process [8]. Due to this advantage, VIPS
became a quite common technique for membrane preparation, and several articles can be found [9–12].
Despite the great interest in this technique regarding the production of membranes, it is not a common
method for microcapsules preparation. As far as we know, polysulfone microcapsules were prepared
by using that technique [13], but apart from that, no other publications have been found in literature.

Cellulose acetate (CA) is the most widely used ester of cellulose [14]. In a world where
environmental protection is becoming increasingly important, cellulose acetate is playing an increasingly
important role since it is a green polymer and that it derives from acetyl substitution of cellulose, which
is the most abundant organic polymer on Earth [15,16].

The biodegradability of CA has been subject of attention for many years and numerous studies
have been conducted to assess it. Currently, CA is generally recognized as a biodegradable polymer
within the scientific community [17–20]. The active material to encapsulate is a complex mix of
fragrance molecules made to improve the freshness and enjoyability of consumer goods related to
home-care and personal-care applications.

In this work, we focused our attention on the VIPS technique, exploring the possibilities to
implement the process for capsules preparation. We compared CA microcapsules prepared via IPS
and VIPS, noticing the interesting opportunities offered from this technique.

2. Materials and Methods

Cellulose acetate (Mn ≈ 30.000 gmol−1) and Acetone were purchased from Sigma-Aldrich (Madrid,
Spain). Glacial acetic acid was purchased from Scharlab (Barcelona, Spain). All the compounds were
used as received without any further purification. The technical accord was prepared and supplied by
Procter & Gamble (Brussels, Belgium).

Microcapsules were prepared via IPS and VIPS. The preparation of the solution was the same
for both. A 3% or 6% CA solution in 30:70 (wt%) acetic acid/acetone mixture was prepared. Then, a
certain amount of active was added in the solution and the solution was stirred for 24 h.

For the IPS, an airbrush, constituted by an air-atomizing nozzle (0.8 mm diameter) was used to
disperse the polymeric solution by a simple shearing action, which was provided by a compressed air
stream. Air pressure was set at 2.5 bar. The airbrush was positioned in such a way that the outlet flow
direction was perpendicular to the surface of a water precipitation bath. The nozzle was located at
different distances from the precipitation bath and the water content of the bath was varied as well, to
observe possible influence of the microcapsules production. The precipitation bath was always stirred.
When the polymeric solution microdroplets were in contact with the precipitation bath, microparticles
began floating on it immediately. Particles removal was necessary after a while to avoid collision with
the new microdroplets and aggregates. Therefore, the production of particles was stopped regularly
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and the liquid in the precipitation bath was filtered using a 0.8 µm nylon filter. The microparticles
were then collected into a vial and stored for further analysis.

The main difference between the previous technique and the VIPS technique is in the use of
non-solvent vapor prior to immersion in the coagulation bath. For this purpose, the airbrush was
placed into a chamber, which has been specially designed and built for this work. The chamber
dimensions were 110 × 30 × 30 cm3 (length ×width × height). The chamber was designed with this
dimension after the observation of the outflowing sprayed flux of solution at the selected pressure
of 2.5 bar. For achieving a highly humid atmosphere inside the chamber, a compressed air flow was
forced to pass through a bubble bottle containing distilled water and, in addition, heated to 80 ◦C in
a water bath, to increase water content in the air flow. The conditions of temperature and relative
humidity inside the chamber were controlled through a hygrometer and they were 25 ◦C and 95%,
respectively. At the bottom of the chamber, a 300 mL water precipitation bath was placed to complete
the solvent/non-solvent exchange and complete the particles formation. When the surface of the water
bath was covered by the microparticles, the production was stopped. The resulting products were
filtered using a 0.8 µm nylon filter. The microparticles were then collected into a vial.

The microcapsules morphology was investigated by means of ESEM FEI Quanta 600 apparatus
(Thermo Fisher Scientific, Hillsboro, OR, USA). To obtain the microcapsules cross-section micrographs
without modifying their structure, they were cryogenically cut [21]. First microcapsules were attached
over a specimen disc with a freezing medium. An embedding medium for frozen tissue specimens was
used (Tissue-Tek, OCT Compound, Sakura Tissue, Alphen aan den Rijn, The Netherlands). Once the
capsules were fixed over the specimen disc, the disc was immersed into a liquid nitrogen bath in order
to freeze the sample. Next, the specimen disc was located in the cryochamber. Then, the sample was
cut with thickness intervals of 1 µm at −20 ◦C and deposited over a glass. Finally, the cross-sections
were analyzed by ESEM.

Microcapsules mean size was determined using a HELOS BR supplied by Sympatec GmbH
System Partikel Technik (Sympatec GmbH, Clausthal-Zellerfeld, Germany) equipped with a R1 cuvette
and a Helium-Neon Laser 5 mW max output at 633 nm. The analysis of 0.1 g of the microcapsules was
carried out in ≈50 g of water. The software setup and sample analysis were achieved using the Windox
5.8.0.0 software. The data were collected twice, at 5 s each.

Thermogravimetric analysis (TGA) was used to determine the activity of the capsules. Capsule
activity is defined as the weight percentage of active encapsulated in the capsule. Different methods
have been proposed to calculate the activity of the capsules [22], presenting slightly different results.
TGA is a thermal analysis in which the changes in weight of a sample are constantly measured over
time as the temperature changes. The heating rate needs to be set to avoid the overlap between the
evaporation temperature of the encapsulated active materials and the temperature of the degradation
of the shell. TGA response curves of the pure components, the active materials and the shell, are
needed for a comparison between their response profiles and that of the capsules. This correlation is
used to determine the temperature range where only the mass loss of encapsulated active occurs. Once
the correct temperature range is identified, it is possible to estimate the mass of the encapsulated active
(active in capsules) as the weight loss of the capsules in that temperature range. The encapsulation
efficiency (EE) can be defined as the mass of encapsulated active material compared to the mass of the
active material added to the initial formulation [23], as reported in Equation (1) below:

EE =
active in capsules

total active
(1)

TGA was carried out with a Mettler TGA/SDTA 851e thermo-balance (Mettler Toledo, L′Hospitalet
de Llobregat, Barcelona, Spain). The samples with an approximate weight of 10 mg were degraded
between 30 and 600 ◦C at a heating rate of 10 ◦C min−1 in nitrogen (100 mL min−1) measured under
normal conditions.



Processes 2019, 7, 865 4 of 10

The stability of the dried capsules was evaluated by means of TGA analysis, as described before.
Samples of the capsules in powder form were stored in an ambient condition and the TGA was
performed at different times. The activity of the capsules at t = 0 (freshly prepared capsules) was
compared to the activity after six months and one year.

3. Results

In Figure 1, the products of the IPS process are showed. The formation of the shell was
interrupted before a complete spherical structure was reached. The morphology of the product is very
homogeneous and their internal structure appears composed of a thin polymeric layer surrounding an
empty internal volume.
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Figure 1. Micrographs of capsules prepared via immersion precipitation (IPS) technique.

Despite several attempts to modify some parameters of the process, such as the polymer
concentration and the distance between the nozzle and the bath, the morphology of the prepared
capsules has not changed, and no complete formation of the shell was achieved.

Samples with different ratios between the active and polymer were prepared by VIPS technique,
as reported in Table 1.

Table 1. Sample composition and process parameters of the VIPS microparticles.

Sample CA [wt%] Active: CA RH [%]

VIPS1 3 1:1 95

VIPS2 3 3:1 95

VIPS3 3 5:1 95

In Figure 2, generic images of the microcapsules are shown. It is possible to note the spherical
and complete structure that they assume, unlike those previously shown and prepared through the
IPS technique.
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In Figure 3 the particle size distribution of the VIPS capsules is reported. The distribution is quite
wide, and in fact both large capsules and much smaller capsules are present. The mean diameter
resulted 51 µm; 80% of the capsule diameters were in the range 19–84 µm.
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Figure 3. Particle size distribution of VIPS2.

In Figure 4 SEM images of the VIPS microcapsules are presented. The microcapsules have a
rounded outer surface that show continuous walls with no fissures, cracks or interruptions. It is
possible to see the microcapsules formed with different core concentrations and conclude that it is
not interfering in microcapsule morphology. Ortiz et al. [24] and Rocha et al. [25] also observed
that the core concentration did not interfere with particle morphology when casein hydrolysate was
encapsulated using soybean protein isolate, and when lycopene was encapsulated using modified
starch, respectively.

The internal structure represented in Figure 5, is obtained from the cross-section of the capsules
after being cryogenically cut. The images show a layer of the polymeric shell surrounding an internally
empty structure, typical of a core-shell morphology. Furthermore, the polymeric shell does not show
porosity, appearing as a dense, compact and homogeneous layer. This is an essential quality to ensure
lower gas permeability, better protection, and fragrance retention.
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Figure 4. ESEM pictures of microcapsules prepared by VIPS technique. (A–C) VIPS 1; (D–F) VIPS 2;
(G,H) VIPS 3.

By means of TGA analysis, we were able to determine the activity of the capsules, defined as the
active encapsulated inside the capsules. In our case, the degradation temperature of the polymer was
higher than the highest of the perfume evaporation temperature. Therefore, it is possible to choose a
temperature in the interval between the degradation temperature of the polymer and the evaporation
temperature of the perfume and evaluate the active content value, associable to the weight loss at
that determined temperature. In Figure 6, TGA curves are shown. The red line represents the CA
capsules prepared without the active. Therefore, it is possible to evaluate the weight loss associable to
the core material.



Processes 2019, 7, 865 7 of 10

Processes 2019, 7, x FOR PEER REVIEW 6 of 10 

 

 
Figure 4. ESEM pictures of microcapsules prepared by VIPS technique. (A–C) VIPS 1; (D–F) VIPS 2; 
(G,H) VIPS 3. 

The internal structure represented in Figure 5, is obtained from the cross-section of the capsules 
after being cryogenically cut. The images show a layer of the polymeric shell surrounding an 
internally empty structure, typical of a core-shell morphology. Furthermore, the polymeric shell does 
not show porosity, appearing as a dense, compact and homogeneous layer. This is an essential quality 
to ensure lower gas permeability, better protection, and fragrance retention. 

 
Figure 5. Cross-section of VIPS capsules. 

By means of TGA analysis, we were able to determine the activity of the capsules, defined as the 
active encapsulated inside the capsules. In our case, the degradation temperature of the polymer was 
higher than the highest of the perfume evaporation temperature. Therefore, it is possible to choose a 
temperature in the interval between the degradation temperature of the polymer and the evaporation 
temperature of the perfume and evaluate the active content value, associable to the weight loss at 
that determined temperature. In Figure 6, TGA curves are shown. The red line represents the CA 
capsules prepared without the active. Therefore, it is possible to evaluate the weight loss associable 
to the core material. 

 

E 

G 

F 

H 

Figure 5. Cross-section of VIPS capsules.Processes 2019, 7, x FOR PEER REVIEW 7 of 10 

 

Figure 6. TGA plot of VIPS capsules. 

In Table 2, the activity and the encapsulation efficiency for the VIPS capsules prepared with 
different core-shell ratios are summarized. It is possible to notice that increasing the active content in 
the polymeric solution, the activity of the capsules and thus the encapsulation efficiency increase as 
well. The explanation of this phenomenon could be in the saturation of the chamber. It means that 
once a certain concentration limit has been reached for each fragrance molecule, it is no longer 
possible for the active to spread within the internal space of the chamber, which is then forced to 
remain inside the polymeric shell of the capsule. 

Table 2. Activity and encapsulation efficiency of VIPS capsules. 

Sample Activity [%] EE [%] 
VIPS 1:1 30 60 
VIPS 3:1 62 82.5 
VIPS 5:1 74 88.5 

The stability of the VIPS capsules was assessed in dry condition. In Figure 7, the TGA plots of 
the VIPS3:1 microcapsules stored for 1 year in powder form and at ambient condition are reported. 

 
Figure 7. TGA curves of VIPS3:1 at different timing. 

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400

W
ei

gh
t [

%
]

Temperature [°C]

TGA
Shell (CA) 

VIPS1:1 

VIPS3:1 

VIPS5:1 

0

20

40

60

80

100

120

60 110 160 210 260 310 360

W
ei

gh
t [

%
]

Temperature [°C]

TGA VIPS 3:1 - Stability

6 months 

Fresh 

1 year 

Figure 6. TGA plot of VIPS capsules.

In Table 2, the activity and the encapsulation efficiency for the VIPS capsules prepared with
different core-shell ratios are summarized. It is possible to notice that increasing the active content in
the polymeric solution, the activity of the capsules and thus the encapsulation efficiency increase as
well. The explanation of this phenomenon could be in the saturation of the chamber. It means that
once a certain concentration limit has been reached for each fragrance molecule, it is no longer possible
for the active to spread within the internal space of the chamber, which is then forced to remain inside
the polymeric shell of the capsule.

Table 2. Activity and encapsulation efficiency of VIPS capsules.

Sample Activity [%] EE [%]

VIPS 1:1 30 60
VIPS 3:1 62 82.5
VIPS 5:1 74 88.5

The stability of the VIPS capsules was assessed in dry condition. In Figure 7, the TGA plots of the
VIPS3:1 microcapsules stored for 1 year in powder form and at ambient condition are reported.
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In Table 3, the results of the TGA analysis on the same sample are summarized.

Table 3. Activity of dry VIPS capsules at different time.

Sample Activity T = 0 [%] Activity T = 6 Months [%] Activity T = 1 Year [%]

VIPS 1:1 30.4 29.6 29.9
VIPS 3:1 62.2 61.8 62.2
VIPS 5:1 73.8 73.5 73.4

The capsules show the same weight loss and consequently the same activity after 1 year of
storage at ambient conditions. The slight difference in the value can be assimilated to the error of the
measurement. The results of the analysis show that the activity of the samples does not change over
time, remaining constant throughout the test. This means that the active contained within the shell
does not diffuse through the polymeric material and remains contained within it in absence of external
stimuli. Considering these results, we can conclude that the cellulose acetate capsules prepared in this
work are stable if stored in dry and powder form, in ambient conditions.

4. Conclusions

Microcapsules containing a complex mix of fragrances have been tried to be prepared through the
IPS and the VIPS technique. VIPS technique is a modification of the IPS, mostly used for the preparation
of capsules. The main difference lies in the use of solvent vapor to promote better precipitation of
the polymer through a solvent/non-solvent exchange of the solution, in a more controllable manner.
This was accomplished by building a chamber and filling it with water vapor. Then, the polymer
solution was sprayed using an airbrush. The results of this study show us the opportunities of the VIPS
technique, by slightly changing a simple process like IPS. The main advantage stays in the controllable
polymer precipitation rate through the promotion of different concentrations of non-solvent vapor in
the chamber.

Through the ESEM images, it was possible to notice the different morphology reached through the
two techniques and the decided increase in the achievement of a spherical and complete structure. The
preparation of cellulose acetate capsules was therefore successful with the use of the VIPS technique.
The key factors were the longer exposition time to the vapor of the non-solvent and the distance
between the drop formation and the collection bath. By using non-solvent vapor, on the other hand,
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the kinetics of the process is slowed down and phase precipitation can occur completely before the
spherical shape of the drop is lost. The obtainment of a core-shell structure was confirmed by the
morphological analysis of the cross-section of the capsules.

Activity and EE of the products have been evaluated through the TGA and reach a maximum of
≈75% and≈90%, respectively, in the case of a core-shell ratio 5:1. Furthermore, a growing trend between
the initial active concentration and the encapsulation efficiency is noticed. This can be attributed to the
saturation of the chamber that makes it impossible for part of the active material to escape from the
encapsulation process.

Moreover, the stability of the VIPS capsules was assessed in dry conditions. The capsules show a
high stability, maintaining the same activity after one year; this means that there is no diffusion of the
fragrances through the shell without external stimuli.
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