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Abstract: Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in
the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible
protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the
retrograde neuroprotective control done by muscles, which is necessary for motor neuron function.
BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for
synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies
the tight communication between nerve terminals and myocytes to promote synaptic function and
reveals a new view about the complementary and essential role of pre and postsynaptic interplay
in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ)
could establish new intervention targets across neuromuscular diseases characterized by deficits
in presynaptic activity and muscle contractility and by the interruption of the connection between
nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other
therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and
maintaining motor function to increase the life quality of patients. Altogether, we review synaptic
activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’
disturbances in ALS and physical and molecular mechanisms to delay disease progression.
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1. Introduction

Neuromuscular disorders refer to different syndromes and diseases that impair skeletal muscle
function. One of the most common neuromuscular disorders is amyotrophic lateral sclerosis (ALS),
a neurodegenerative disease that progresses from a subtle decline in motor function to lethal respiratory
paralysis within a few years of diagnosis [1]. Its onset is in adulthood, usually after the age of 50.
It has a prevalence of about five people per 100,000 worldwide and is slightly more frequent in men.
The disease can be familial (10%) and caused by dominant mutations in one of several genes, including
SOD1, C9orf72, TDP43 and FUS among others [1]. However, the disease is sporadic in most cases (90%).

Corticospinal tract loss, involving both upper and lower motor neuron (MN) death is a hallmark
feature of ALS. Despite that nowadays it is impossible to define a chronological order of neuron
affectation equally for all patients, the loss of neuromuscular junctions (NMJs)—the cholinergic synapses
between lower MN and skeletal muscles—occurs before, and seems to be the primary cause of motor
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paralysis in both familial and sporadic forms of ALS [2–5]. The loss of a correct nerve-muscle contact
significantly contributes to motor impairment and leads to pathological non-communication between
the two tissues in different diseases. However, despite of data describing MN degeneration and early
NMJ alterations through mechanisms such as axonal transport disruption, genomic and proteomic
changes, abnormal cellular metabolism and tropism during ALS pathogenesis [6], few studies have
addressed the changes occurring at the NMJ. Consequently, the pathological mechanisms leading to
the detachment of motor nerve terminals from the muscle cells that result in NMJ degeneration are
still poorly understood. Nevertheless, because NMJs are the first weakened points, any approach to
preserve them can be valuable, especially if applied from the beginning of the disease.

The signaling pathways that control attachment and communication of motor axon terminals
to muscle are only beginning to be understood, but neurotrophins, and especially, the brain-derived
neurotrophic factor (BDNF)/tropomyosin-related kinase B receptor (TrkB) signaling and its downstream
pathways, play important roles. This review focuses on BDNF/TrkB signaling at the neuromuscular
system, its alteration in ALS and on therapeutic approaches designed to preserve NMJs maintain motor
function to preserve lower MNs and increase the life quality of patients.

2. The NMJ Is Essential in Nerve–Muscle Bidirectional Communication

The neuromuscular system is a complex and interconnected network that links the nervous system
with skeletal musculature. It comprises individual motor units, each one integrating one α-motor
neuron and all the myocytes it innervates [7]. Thus, motor unit elements are the indivisible quantal
elements in all movements, as each action potential in the MN activates all the fibers. Furthermore,
the interaction between the two tissues is fundamental for their health. On the one hand, presynaptic
MNs and Schwann cells indicate to skeletal muscles how to grow, differentiate and function. On the
other hand, skeletal muscles, which are essential for postural retention and locomotion, function as
an endocrine organ to produce myokines that work both autocrinally and paracrinally over MNs,
to sustain them during development, maintenance and disease and reinforce NMJs [8,9]. Indeed,
recent research shows that signals from the skeletal muscles to the brain are as important as the signals
from the brain to the muscles. This bidirectional communication between the two tissues starts at the
NMJ and is fundamental for the health of its three cellular components (Figure 1). To control it, two
fundamental mechanisms work coordinately to link the nervous system and skeletal muscles. They
are the synaptic control, by which muscle contraction is initiated by nerve impulses generated in the
central nervous system (CNS), and the neurotrophic control. We have recently shown that the two
mechanisms regulate each other to modulate the synapse functionality and make it more efficient
and stable.Cells 2019, 8, x FOR PEER REVIEW 3 of 24 

 

 
Figure 1. Cellular components of the neuromuscular junction (NMJ). Representative confocal 
micrographs of healthy NMJs from levator auris longus muscle showing a NMJ in a front view in (a) 
and an NMJ in side view in (b). The synapses are multiply immunofluorescent-stained: SNAP-25 in 
green to stain the nerve terminal (NT); S100 in blue to stain the Schwann cells (SC) and AChRs in red 
to stain the postsynaptic membrane. Scale bars = 10 μm. 

Multiple retrograde signals released by myofibers and Schwann cells that regulate presynaptic 
differentiation and maturation may play significant roles in NMJ adult stability. Among others, those 
include fibroblast growth factors, glial cell-derived neurotrophic factor (GDNF), transforming 
growth factor β (TGFβ) and neurotrophins [22–26]. The neurotrophic factor signaling at the 
neuromuscular synapses involve MN, muscle fibers and perisynaptic glia [27–29]. 

Among the neurotrophins, BDNF signaling is one of the most studied and representative of the 
neurotrophic control that regulates the development, differentiation, survival and function of 
neuromuscular system components [30]. Throughout the last few years, we have been studying 
several metabotropic signaling pathways inside the presynaptic terminal that could be involved in 
the control of NMJ bidirectional communication, especially regarding to those that converge on 
common intracellular kinases of the exocytotic machinery and that could be regulated by the BDNF 
signaling. This includes muscarinic acetylcholine autoreceptors (mAChRs) [31–35], TrkB [36] and 
adenosine receptors (AR) [37]. Moreover, we widely investigated the functional complex network 
constituted by these receptors and the presynaptic serine-threonine kinases, PKC and PKA, to 
regulate ACh release at the NMJ [38]. Furthermore, we presented the individual and complementary 
actions of presynaptic activity and the resulting muscle contraction over presynaptic kinases, and 
showed that BDNF/TrkB signaling is key in their regulation [36,39,40], which reveals the mutual 
intercommunication and regulation between the nerve terminal and the myocyte activities. 

3. BDNF/TrkB Signaling in the NMJ Is Regulated by Pre and Postsynaptic Activity 

BDNF/TrkB signaling is implicated in synaptic maintenance and neuronal survival in the CNS 
[41]. In the peripheral nervous system (PNS), TrkB has been implicated in the maintenance of the 
synaptic function and the structural integrity in adult muscular synapses [42]. Moreover, TrkB 
signaling also plays an important role in the neuromuscular bidirectional communication, as both 
the synaptic activity and the postsynaptic muscle contraction potentiate its action to activate 
presynaptic kinases on demand to control ACh release [36,39,40] (Figure 2a). 

BDNF is strongly expressed in the brain [43], and, to a lesser extent, in skeletal muscle [27]. It is 
initially synthesized as a precursor protein (proBDNF) and subsequently cleaved into mature BDNF 
(mBDNF). Each BDNF isoform binds distinct receptors to mediate divergent neuronal actions [23,44–
46]. ProBDNF preferentially interacts with p75NTR, whereas mBDNF selectively binds and activates 
its specific receptor TrkB. There are several isoforms of TrkB, generated by alternative splicing, with 
the same affinity to neurotrophins, including one full length isoform (TrkB.FL) and two truncated 
ones (TrkB.T1 and TrkB.T2), which lack part of the intracellular kinase domain [47,48]. Evidence 

Figure 1. Cellular components of the neuromuscular junction (NMJ). Representative confocal
micrographs of healthy NMJs from levator auris longus muscle showing a NMJ in a front view
in (a) and an NMJ in side view in (b). The synapses are multiply immunofluorescent-stained: SNAP-25
in green to stain the nerve terminal (NT); S100 in blue to stain the Schwann cells (SC) and AChRs in red
to stain the postsynaptic membrane. Scale bars = 10 µm.
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Different signaling pathways control the structural connection between pre and postsynaptic
components of the NMJ, contributing to its stability. One of the best characterized molecular
mechanisms is the agrin/lipoprotein receptor-related protein 4 (Lrp4)/muscle-specific tyrosine kinase
receptor (MuSK)/rapsyn pathway [10], which is essential for stabilizing acetylcholine receptors
(AChR) clusters at synaptic sites [11,12]. Extracellular matrix proteins (such as laminins β2, α4 and α5;
collagens IV and XIII) are also important for regulating the proper alignment between pre and postsynaptic
membranes [13–16]. Neural cell adhesion molecules [17], ErbB kinase receptors [18,19] and many of
the pathways required for NMJ formation [20,21] are also involved in its maintenance.

Multiple retrograde signals released by myofibers and Schwann cells that regulate presynaptic
differentiation and maturation may play significant roles in NMJ adult stability. Among others, those
include fibroblast growth factors, glial cell-derived neurotrophic factor (GDNF), transforming growth
factor β (TGFβ) and neurotrophins [22–26]. The neurotrophic factor signaling at the neuromuscular
synapses involve MN, muscle fibers and perisynaptic glia [27–29].

Among the neurotrophins, BDNF signaling is one of the most studied and representative of
the neurotrophic control that regulates the development, differentiation, survival and function of
neuromuscular system components [30]. Throughout the last few years, we have been studying
several metabotropic signaling pathways inside the presynaptic terminal that could be involved in the
control of NMJ bidirectional communication, especially regarding to those that converge on common
intracellular kinases of the exocytotic machinery and that could be regulated by the BDNF signaling.
This includes muscarinic acetylcholine autoreceptors (mAChRs) [31–35], TrkB [36] and adenosine
receptors (AR) [37]. Moreover, we widely investigated the functional complex network constituted by
these receptors and the presynaptic serine-threonine kinases, PKC and PKA, to regulate ACh release at
the NMJ [38]. Furthermore, we presented the individual and complementary actions of presynaptic
activity and the resulting muscle contraction over presynaptic kinases, and showed that BDNF/TrkB
signaling is key in their regulation [36,39,40], which reveals the mutual intercommunication and
regulation between the nerve terminal and the myocyte activities.

3. BDNF/TrkB Signaling in the NMJ Is Regulated by Pre and Postsynaptic Activity

BDNF/TrkB signaling is implicated in synaptic maintenance and neuronal survival in the CNS [41].
In the peripheral nervous system (PNS), TrkB has been implicated in the maintenance of the synaptic
function and the structural integrity in adult muscular synapses [42]. Moreover, TrkB signaling also
plays an important role in the neuromuscular bidirectional communication, as both the synaptic
activity and the postsynaptic muscle contraction potentiate its action to activate presynaptic kinases on
demand to control ACh release [36,39,40] (Figure 2a).

BDNF is strongly expressed in the brain [43], and, to a lesser extent, in skeletal muscle [27]. It is
initially synthesized as a precursor protein (proBDNF) and subsequently cleaved into mature BDNF
(mBDNF). Each BDNF isoform binds distinct receptors to mediate divergent neuronal actions [23,44–46].
ProBDNF preferentially interacts with p75NTR, whereas mBDNF selectively binds and activates its
specific receptor TrkB. There are several isoforms of TrkB, generated by alternative splicing, with the
same affinity to neurotrophins, including one full length isoform (TrkB.FL) and two truncated ones
(TrkB.T1 and TrkB.T2), which lack part of the intracellular kinase domain [47,48]. Evidence suggests
that heterodimers of TrkB.FL with the truncated isoforms inhibit trans-autophosphorylation of TrkB.FL,
reducing BDNF signaling [49–53]. Despite some studies suggesting unique signaling roles for TrkB.T1,
including modulating Ca2+ signaling in astrocytes [52], in the skeletal muscle, TrkB.T1 is the main
isoform and acts in a dominant negative fashion to decrease TrkB.FL signaling [51,54,55]. Dorsey et al.
(2012) [50] demonstrated that the deletion of TrkB.T1 increases neurotrophin-dependent activation of
downstream signaling targets (e.g., Akt and p70/S6 kinase) and increases contractibility.
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Figure 2. The BDNF/TrkB feedback signaling at the NMJs of healthy and amyotrophic lateral sclerotic
(ALS) animals. (a) Healthy animals. Synaptic activity promotes PKC phosphorylation in the membrane
through PDK1 (1). This results in the phosphorylation of PKC targets implicated in exocytosis, such as
Munc18-1 and SNAP-25 (2). Once PKC has executed its action, it is typically degraded, decreasing its
protein level (3). Consequently, ACh is released to reach its receptors in the junctional folds and trigger
muscle contraction (4). Muscle contraction functions as a feedback loop to inhibit PKC phosphorylating
activity over Munc18-1 and SNAP-25 (5). Moreover, it increases TrkB.FL signaling by secreting
BDNF and decreasing TrkB.T1 levels and its dominant negative way to decrease TrkB.FL signaling (6).
Therefore, an increased ratio TrkB.FL/T1 stimulates PKC synthesis in the presynaptic terminal, restoring
its levels after activity-induced consumption (7). (b) ALS animals. Synaptic activity-induced PKC
phosphorylation in the membrane through PDK1 is decreased (1). However, the levels of phosphorylated
PKC targets implicated in exocytosis, such as Munc18-1 and SNAP-25 are increased (2), indicating
that low PKC activity is functional. Moreover, PKC total levels are decreased, suggesting a minor
synthesis or an increased degradation activity (3). Despite of the enhanced levels of phosphorylated
exocytotic molecules, ACh release, and consequently, muscle contraction are decreased (4), suggesting
a non-functional accumulation of these molecules. Therefore, muscle contraction loses the feedback
loop to inhibit PKC’s phosphorylating activity (5), further contributing to the increase of Munc18-1 and
SNAP-25 phosphorylated levels. Finally, despite of increased BDNF levels, maybe as a compensatory
mechanism for TrkB misbalance, muscle contraction decreases the TrkB.FL signaling because the
inhibiting action over TrkB.T1 is lost (6). Therefore, TrkB.FL’s effect on PKC synthesis is decreased,
(7) contributing to the decrease of PKC levels.

BDNF transcription, translation and secretion is strongly regulated by neural activity. Specifically,
exercise training increases BDNF mRNA and protein expression in spinal cord and skeletal muscle in
rodents [56–61] and basal neuromuscular activity is required to maintain normal levels of BDNF in the
NMJ [58]. Furthermore, we showed that, in skeletal muscle, BDNF increases after presynaptic activity
and even more after the resulting muscle contraction [36]. Accordingly, Mathews et al., 2009 [27]
demonstrated that BDNF mRNA and protein expression is increased in electrically stimulated myotubes.
Therefore, in vitro and in vivo experiments demonstrate that BDNF is a contraction-inducible protein.
Moreover, Liem et al. (2001) [62] showed that mRNA is only located inside myocytes, contributing
to the idea of a postsynaptic origin through BDNF mRNA translation that is directly linked to
myofibril contraction.

There is no evidence showing that the BDNF produced by the skeletal muscle reaches the bloodstream.
Therefore, it is not clear that is BDNF that directly induces a response in the brain [27,63]. Consequently,
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one can suggest that activity-induced BDNF synthesized by muscles acts paracrinally over nerve terminals
by binding to TrkB receptors at the NMJ. Neuronal activity has been shown to rapidly activate and
potentiate TrkB signaling, due to activity dependent secretion of BDNF [64–66]. Specifically, physical
activity increases TrkB.FL mRNA levels in skeletal muscles and the spinal cord [58,60,67]. Moreover,
we found that muscle contraction per se downregulates TrkB.T1 (decreasing the ratio to FL/T1) without
changing TrkB.FL or p75NTR levels. Therefore, it appears that the ratio between TrkB.FL and TrkB.T1
could determine the net effect of BDNF signaling at the neuromuscular system [36].

BDNF binds to TrkB.FL and activates its intrinsic tyrosine kinase domain, leading to
autophosphorylation in the activation loop (tyr701, tyr706 and tyr707; [43,68]). The phosphorylation of
these residues triggers the transphosphorylation of others tyrosine residues [69,70], tyr515 and tyr816
being the most extensively studied phosphorylation sites [71,72]. At the NMJ, synaptic activity induces
a quick increase in pTrkB.FL at tyr816 while muscle contraction decreases it by increasing phosphatase
activity [36]. These results suggest a complex mechanism regulating phosphorylation of TrkB.FL that
involves complementary actions of the pre and postsynaptic activities.

One of the most important signaling pathways triggered by the phosphorylation of TrkB-FL in the
tyr816 residue, after the BDNF binding, is the PLCγ one, which produces diacylglycerol (DAG) and
inositol trisphosphate (IP3) [73,74]. IP3 leads to Ca2+ release, and, as a result, mature protein kinases C
(PKCs) are cleaved to the membrane, leading to massive conformational changes in them, allowing for
substrate binding, phosphorylation and downstream signaling effectors’ activations [75,76]. However,
before PKCs can be functional, they need to be phosphorylated by PDK1 [77–81]. PDK1 activates
multiple signaling pathways and seems to be constitutively active at the NMJ [82]. PDK1-induced PKC
phosphorylation is enhanced by synaptic activity but is not directly linked to BDNF/TrkB signaling,
which is, contrarily, involved in PKC activation once the isoforms are phosphorylated and mature [36].

PKC isoforms are differently regulated and localized in the NMJ [83]. Depending on the isoform,
they require Ca2+ and/or diacylglycerol and phosphatidyl serine. Two PKC isoforms, nPKCε and
cPKCβI, are exclusively presynaptic at the NMJ and participate in regulating ACh release [36,84–86].
Thus, they are ideal targets for both presynaptic and retrograde neurotrophic control induced by muscle
contraction activity. Presynaptic activity decreases nPKCε and cPKCβI by an activation-induced
degradation mechanism and muscle contraction increases its protein levels and both mechanisms
are linked to the BDNF/TrkB activity [36,84–86]. This evidences the cross-linking between the pre
and postsynaptic activities and the neurotrophic retrograde control to maintain a stable and sufficient
pool of these PKC isoforms at the nerve terminal. Synaptic activity and BDNF/TrkB signaling directly
increase the actions of nPKCε and cPKCβI, probably linked to the regulation of neurotransmission
process, as the isoforms maintain and potentiate, respectively, the ACh release at the NMJ [36,86].

In skeletal muscles, nerve-induced stimulation, high Ca2+ concentrations and muscarinic
signaling couple PKC to result in neurotransmitter release at the adult NMJ [84,87,88]. In particular,
nPKCε maintains ACh release and modulates muscarinic signaling [86], while cPKCβI enhances
neurotransmission [82] at the NMJ. Furthermore, evidence supports the importance of neurotrophic
signaling via TrkB activity to regulate neuromuscular ACh release at short times and to maintain
synaptic function and structural integrity in adult rodent NMJs long term [28,36,42,89,90]. Moreover,
electrophysiological studies also demonstrated that the TrkB pathway needs an operative PKC to
enhance ACh release, and PKA and PKC actions are related [91]. These effects of BDNF/TrkB signaling
on neuromuscular transmission involve the interaction with presynaptic adenosine A2A receptors [92]
and mAChRs [90,93]. We know that the normal function of the mAChR mechanism is a permissive
prerequisite for the TrkB pathway to couple to ACh release. Reciprocally, the normal function of TrkB
modulates M1 and M2-subtype muscarinic pathways [90]. However, the molecular interaction between
TrkB and mAChRs to modulate ACh release in motor nerve terminals and how neuromuscular activity
can modulate this relationship is still unknown.

A molecular approach recently demonstrated that several key proteins of the exocytotic mechanism
of the synaptic vesicles at the NMJ are targets of nPKCε and cPKCβI [39,40]. In brief, the activity-induced
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phosphorylation of Munc18-1, a regulatory molecule of the exocytotic apparatus in the nerve terminals,
depends on the coordinated action of both kinases and involves retrograde BDNF/TrkB signaling [39].
Moreover, SNAP-25, a member of the soluble N-ethyl maleimide sensitive-factor attachment protein
receptors (SNARE) complex, is only phosphorylated by nPKCε independently of the neurotrophic
control [40]. These pieces of evidence show that the activity-induced phosphorylation of molecules that
are essential for neurotransmitter secretion at the NMJ depend on the synaptic activity-induced action
of presynaptic PKCs that are controlled retrogradely by the BDNF/TrkB, which in turn is enhanced by
the pre and postsynaptic activities. This accurately and reciprocally regulated molecular system is
an example of the tight communication between nerve terminals and myocytes to promote synaptic
function and opens a new view of the complementary and essential role of pre and postsynaptic
interplay to contribute to keeping the synapse healthy and strong. Altogether, this signaling at the
NMJ could establish new intervention targets across neuromuscular diseases characterized by deficits
in presynaptic activity and muscle contractility and by the interruption of the connection between
nervous and muscular tissues, such as ALS.

4. BDNF/TrkB Signaling Is Impaired in ALS NMJ

Due to the relevance of the BDNF/TrkB signaling pathway in synapses’ regulation and maintenance,
especially regarding the NMJ, it has been studied in pathologies where synaptic function is impaired.
Specifically, the BDNF/TrkB signaling is strongly impaired in brains affected by ALS, and all the
approaches used around it were summarized in a recent review [94]. The present review summarizes
how the retrograde BDNF/TrkB signaling pathway and the downstream alteration of protein kinases C
is disturbed from its physiological mechanism in ALS at the NMJ and how exercise and other therapies
that modulate kinases are effective at delaying ALS’s progression.

We recently showed the strong impairment of the BDNF/TrkB signaling at the plantaris muscle, one
of the most affected by the disease [95] (Figure 2b). The molecular changes observed in the BDNF/TrkB
pathway at the end stage of ALS may be either the cause or the consequence of the disease. However,
it has key relevance, as in unaffected extraocular muscles in ALS mice it remains unaltered [96],
while in limb muscles BDNF is accumulated because of TrkB.FL (and pTrkB.FL) reduction in favor
of the negative TrkB.T1 isoform [95]. The resistance of extraocular muscles and MN results from
their differences in relation to the rest of the musculature, including different myosin heavy chains
and multi-innervated fibers even in mature individuals [97]. In symptomatic ALS animals, MN loss
mainly affects the medium and large ones, innervating fast-twitching muscles in parallel with muscle
phenotype changes [98], inducing a fast-to-slow transition from type II to type I fibers, and, within
the type II population, from type IIb/IIx to IIa fibers [98,99]. Some of the alterations regarding BDNF
and TrkB, but not all of them, respond to this fast-to-slow transition. They could be directly related
with the etiology of ALS because among many possible causes, a genetic (or epigenetic, in sporadic
ALS) change in the free-radical defense enzyme SOD1 could be detrimental for TrkB expression and
turnover in MNs or NMJs and impair neuromuscular activity. However, some others may represent an
adaptative effort to reduce the impairment of the neuromuscular function, as the levels of protein at
the end stage of the disease describe the molecular pattern of survivor motor units.

ALS patients and mice have increased BDNF in skeletal muscle and the spinal cord [95,100,101].
This seems to be the result of the remaining slow muscle fibers that predominantly express BDNF [102]
to function as a compensatory mechanism for the TrkB isoforms’ misbalance. Indeed, patients have
decreased pTrkB.FL [100,101] despite increased total TrkB mRNA in the spinal cord [101]. However,
functional TrkB.FL is lost in favour of TrkB.T1 increase [95]. Indeed, some of the changes are
already found in presymptomatic mice [95], which may lead to an early impaired neuromuscular
function [3,103] underlying forthcoming motoneuron loss. This suggestion is supported by experiments
in which TrkB.T1 deletion in mutant SOD1 mice delays the onset of the disease, slows down the
motoneuron loss and improves mobility tests results at the end stage of the disease compared with
normal mutant SOD1 mice [104]. In addition, the deletion of TrkB.T1 increases neuromuscular function
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and nerve-evoked muscle contraction in healthy mice [50]. Altogether, the over-presence of TrkB.T1
limits the neurotrophic effect by masking TrkB.FL, with a direct impact on its autophosphorylation
and signal transduction. Because of that, it seems that the increase of BDNF in ALS is an insufficient
compensatory mechanism to promote neuronal survival of injured MNs.

Indeed, in normal mice, muscle-specific deletion of BDNF did not induce any change in NMJ
integrity in healthy animals [105] nor did it have the same effect as TrkB disruption, which adversely
affects NMJ structure and function [42,54,106,107]. This could decrease the importance of BDNF/TrkB
signaling for maintaining NMJ function. However, this could be in accordance with results showing that
exogenous BDNF and ALS-induced BDNF accumulation do not induce, by themselves, an improvement
in patients nor mice [108,109]. Consequently, the activation of TrkB may be, rather than BDNF levels,
the critical mechanism to influence the NMJ maintenance. Thus, this adds new evidence of the relevance
of BDNF being able to work, which spotlights the importance of the mechanism of activation of TrkB,
which depends on the TrkB.FL/TrkB.T1 ratio. Indeed, in the absence of BDNF, TrkB can be transactivated
through A2R [110] and mAChR [90] and has been proposed as a therapy for neurodegenerative
diseases [94].

Furthermore, Neurotrophin-4 (NT4) can also initiate intracellular signaling through TrkB [111].
It is significatively increased in ALS NMJ, probably because it is strongly expressed in slow, type I
muscular fibers [102], which correlates with the fast-to-slow shift done by fast ALS affected fast
muscles and with the surviving fibers. Furthermore, NT4 expression also depends on NMJ activity
and increases in skeletal muscle electrically stimulated through motor nerves [102]. Thus, it could be
possible that under BDNF lack, NT4 could activate TrkB instead as a compensation.

Moreover, p75NTR regulates neuronal survival and death by binding to different ligands and
co-receptors [112,113]. It promotes survival by binding Trk receptor and enhancing its ability to
bind and respond to neurotrophins [113] and mediates cell death by binding to other receptors and
proneurotrophins [114,115]. In ALS disease, when p75NTR is decreased at the NMJ [95], it is not able to
bind functional TrkB [116,117] which is also decreased [95], and under high doses of neurotrophins,
p75NTR acquires a proapoptotic role which goes through the activation of caspase 3 [118,119].
Consequently, p75NTR seems implicated in motoneuron death in humans and in SOD1-G93A. Indeed,
the extracellular domain of p75NTR was found to be increased in urine samples from SOD1-G93A mice
and ALS patients, being higher in rapidly progressing patients than in slowly progressing ones. Thus,
this p75NTR domain has been proposed as a candidate biomarker to detect ALS [120]. In accordance,
therapeutic blocking or genetic depletion of p75NTR in SOD1-G93A mice delayed onset and improved
motor function and survival [119,121].

In summary, the neurotrophic signaling that under normal conditions guarantees the stability and
functionality of the NMJ through synaptic activity [36] is highly and precociously affected in ALS. Thus,
recovering the BDNF signaling is a good option for ALS therapy, due to its strong pro-survival effects
through TrkB and p75NTR in developing and injured MN [122–124]. However, because intrathecally
administered exogenous BDNF does not improve motor function and survival in ALS patients [108] or
autonomic nervous system function [109,125], it is essential to target the altered alternative splicing of
the TrkB, as it is strongly related to the maintenance of NMJs done by the bidirectional synaptic and
neurotrophic controls, as has already been pointed out.

5. BDNF/TrkB Downstream Protein Kinases and Targets Are Impaired in the ALS NMJ

TrkB.FL stimulates the PLCγ, which activates PKC [36,51,71,126]. Consequently, in ALS, where
TrkB.FL is downregulated, PKC activation is affected, yet at the presymptomatic stage in some
isoforms [95], suggesting a profound and complex molecular implication in the progression of the
disease. Furthermore, other presynaptic metabotropic receptors related with PLCβ (such as adenosine
receptor A1 and muscarinic receptor M1) may contribute to the selective modulation of different PKC
isoforms in the muscle, as their activity is also related with TrkB and PKC [127–129].
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In ALS limb muscles, the constitutive upstream kinase for PKCs, the PDK1 activity, is enhanced,
resulting in the consumption of the phosphorylated PDK1 [95]. This has a direct and unequal impact
in PKC isoforms’ phosphorylation and activity. Several PKC isoforms located at the presynaptic and
postsynaptic components that regulate neurotransmission at the healthy NMJ [36,84–86,130,131] are
differently affected in ALS muscles [95,132] (Figure 2b), probably due to their different mechanisms
of activation. Firstly, the major activation of nPKCθ is linked with the inhibition of its target ClC-1
chloride channel [132] that results in morphological alterations of the neuromuscular presynaptic
terminals, a high turnover rate of AChR and NMJ dismantlement in ALS mice [133]. On the other hand,
the imbalance of cPKCβI and nPKCεmay directly affect neurotransmission at the NMJ as it coincides
with a significant increase in the phosphorylation of some of their targets, such as pMunc18-1 ser313 and
pSNAP-25 ser187, indicating a dysregulation of the exocytotic synaptic machinery, as they are directly
linked to it [95]. The increased levels of both molecules may be due to the remaining MNs generating
and accumulating large amounts of pMunc18-1 and pSNAP-25 to maintain neurotransmission. At the
same time, a decrease of PKCs in spinal cord MNs affected by ALS has been associated with a
selective degeneration of the largest MNs [134]. At the presymptomatic phase of ALS, endplate
potentials’ (EPPs’) amplitude and quantal content are increased, suggesting an abnormal upregulation
in Ca2+ levels in the nerve terminals [135]. This coincides with molecular results that report a high
phosphorylating efficacy on SNAP-25, indicating a good operation of vesicle release to support the
high quantal content in presymptomatic stage. However, high Ca2+ concentrations have been related
with apoptosis due to ion imbalance [136,137] and sustained calcium-dependent PKC activation [138].
Indeed, increased levels of adducin, another PKC target that participates in NMJ stabilization, have
been found in ALS patients [139], which is another piece of evidence that elevations of Ca2+ lead to
NMJ destabilization. Thus, as expected, large MN progressively die and EPPs’ amplitude and quantal
release is reduced [140,141]. This phenomenon would explain selective MN loss and the fast-to-slow
transition, because small and slow MN EPPs have smaller quantal content than big and fast MNs [142];
that would make them more resistant.

6. Exercise Reduces the BDNF/TrkB/PKC Signaling Impairment in ALS NMJ

Through the years, the benefits of physical activity on the nervous system health, including
improvements and effectiveness in the NMJ function [143–145], morphology [146] and ACh
released [147] have been consolidated. Physical exercise promotes cellular adaptations in the brain,
spinal cord and skeletal muscles that could counteract the oxidative stress complication in ALS [148].
In skeletal muscle, training reduces oxidative stress following exercise [149], increases the mitochondrial
capacity [150] and increases the expression of neurotrophic factors [57] that could prevent motoneuron
degeneration, preserve muscle innervation and inhibit muscle atrophy [151–153].

Consequently, exercise has been proposed as a therapy for ALS [154,155]. Because the impairment
of the NMJ is crucial in ALS onset and progression, strategies that structurally and functionally
preserve it may improve the health of the neuromuscular cell partners. Indeed, in SOD1-G93A
mice, maintaining neuromuscular activity extends motor units’ survival along ALS progression in
partially denervated muscles [156], and, in ALS patients, moderate exercise ameliorates the disease
symptoms, improves functionality and delays the progression [154,155,157–160]. However, results
are still controversial as only modest increases in transgenic mice survival have been reported after
moderate exercise [154,155,157,161–163] but not after intense exercise [164,165], probably due to
differential effects depending on exercise characteristics. Thus, it is still necessary to find the ideal
paradigm that could preserve NMJ to rescue the cellular components.

Physical training results in limited muscular atrophy in ALS mice, and especially, a swimming based
protocol delayed disease onset and MN loss and improved motor performance [98]. One of the molecular
mechanisms underlying these benefits at the NMJ is the BDNF/TrkB signaling pathway [95,166].
In Just-Borras et al., (2019b) [166] we show that running and swimming-based training protocols reduce
or completely normalize the BDNF accumulation, respectively. Despite that exogenous BDNF therapy is
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not beneficial for ALS [124,167], BDNF and other neurotrophins are synthesized in response to myocyte
activity to ameliorate NMJ activity. However, it is not useful because of TrkB.FL downregulation and
TrkB.T1 upregulation [51,54,95]. Indeed, the adverse effect of TrkB.T1 on ALS mice has been extensively
demonstrated, and it seems that its over-presence limits the BDNF action because of its negative effect
over TrkB.FL that results in pTrkB.FL not transducing the intracellular signaling [50,104]. In contrast,
in trained animals, the increased TrkB.FL can trigger the pathway that recovers the downstream
signaling [166]. Indeed, the same effect is found in the WT diaphragm when muscle contraction is
increased [36], which suggests a general effect of the increased activity.

Furthermore, in ALS NMJ, physical training normalizes the activity balance between cPKCβI
and nPKCε over their target Munc18-1 [166], contributing to the recovery of the regulatory action of
this molecule in synaptic vesicle exocytosis. However, pSNAP-25 ser187 is still upregulated despite
the training, which may be interpreted as an adaptation to guarantee an optimal recruitment of ready
releasable vesicles [168] that may help to maintain neurotransmission. However, we cannot discard
that the dephosphorylation or degradation of pSNAP-25 may be impaired in ALS and that training is
not capable of recovering this mechanism.

In summary, the reduction, prevention or even overcompensation of the ALS-induced damaging
molecular changes in the BDNF/TrkB pathway and the downstream proteins at the NMJ by exercise
training [166] adds new molecular evidence of the benefits of physical exercise to reduce the impact of
the disease, as these molecular changes are contemporary with improvements in animals’ conditions,
where MN loss is reduced. Altogether, despite the controversial opinions on physical exercise as
therapy in ALS, it seems that it is always beneficial, but with precise exercise-dependent outcomes.

7. Other Kinases Involved in NMJ Health in ALS

Phosphorylation is probably the most widely used cellular signal in biological processes.
Consequently, it is not surprising that several kinases have been related with multiple human
diseases such as ALS. In ALS, apart from TrkB and PKC, several other kinases participate in the
functionality of the PNS. Consequently, it is incomprehensible that any attempt focused on exclusively
modulating one single protein may result in a radical improvement and in an effective delay of disease
progression, due to the multifactorial nature of ALS.

Therefore, here we briefly summarize some of the kinases that have been more strongly related
with the impairment of the NMJ function in ALS. Thus, knowing their mechanism of action will allow
a more general strategy, involving more pathways that could have a more effective outcome.

7.1. TBK1 and Ripk

One of the most studied kinases in ALS is the serine-threonine kinase TANK-binding kinase 1
(TBK1) [169–171]. In normal conditions, it phosphorylates optineurin, which promotes autophagy when
it is phosphorylated and binds to TBK1 [172–178]. However, due to TBK1 haploinsufficiency in many
ALS cases, optineurin is less phosphorylated [174,179,180] which leads to reduced TBK1-optineurin
complex and depleted pool of available phosphorylated optineurin to act as an autophagy promoter.

Furthermore, optineurin suppresses the signaling of the receptor-interacting protein kinase 1
(Ripk1); that potentiates, together with Ripk3 and the mixed lineage kinase-like protein (MLKL),
the necroptosis pathway. Therefore, the loss of optineurin results in an increased functionality of the
Ripk1/Ripk3/MLKL necroptotic pathway, leading to progressive demyelination and axonal degeneration
in the CNS [181]. Furthermore, Ripk1 and Ripk3 mediated axonal pathology has been observed in
SOD1-G93A mice and ALS patients spinal cords [181]. Thus, Ripk1 and Ripk3 play a critical role in
mediating progressive axonal degeneration and inhibiting them has been proposed as a treatment for
ALS as it preserves NMJ [182,183].
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7.2. MuSK

Muscle-specific kinase (MuSK) is one of the many proteins that sustain the connection between
nerves and muscles to maintain the neuromuscular function [184]. Yet during development, it stimulates
the attachment of the nerve terminals to the myocytes. Moreover, it participates in the Agrin/Lrp4
signaling pathway [10], which is essential for stabilizing AChR clusters at synaptic sites [11,12].
Consequently, damage or mutations in MuSK result in neuromuscular diseases [185]. On the contrary,
activating MuSK with an antibody treatment preserves NMJ innervation in ALS [186–189], although
there are dissenting results between lack of MN survival and NMJ preservation and motor activity and
life span enhancement in ALS mice that could be attributed to the differential methodologies used,
and they manifest the need for further investigation to find an effective therapy for ALS.

7.3. ErbB

The ErbB receptors are a group of tyrosine kinases receptors involved in cell growth and survival
in response to neuregulins. They are necessary for the correct formation of axons and modulate
neurotransmitter receptor expression, playing a role also in the formation and plasticity of the
NMJ [18,19]. Furthermore, ErbB2 and ErbB3 receptors interact with the glycoprotein CD44, whose
function is to transfer extracellular signals for growth factors, such as insulin-like growth factor,
hepatocyte growth factor and neuregulin, toward inside of the cells. CD44 interacts with neuregulin
receptors in embryonic Schwann cells of peripheral nerves, thereby affecting growth and survival
of these cells. Thus, their change of expression in ALS could be related with the pathology [190].
Moreover, mutations in ErbB4 have been described in autosomal dominant familial and sporadic forms
of ALS [191] with concomitant frontotemporal dementia [192]. This supports a possible pathogenic
role of ErbB4 in ALS [193].

7.4. PINK1

ALS is a disease extensively related with oxidative stress and mitochondrial damage [194,195].
When induced by increased reactive oxygen species, production leads to the accumulation of the
PTEN-induced kinase 1 (PINK1) on the outer mitochondrial membrane (OMM). There, PINK1
phosphorylates and activates Parkin, which is a ubiquitin ligase, to ubiquitinate OMM proteins.
Afterward, optineurin binds to ubiquitinated proteins to induce autophagy of the damaged
mitochondria. The direct consequence is that when one of this proteins is mutated in ALS, mitophagy
is disrupted and may directly contribute to neurodegeneration [196–198] directly affecting NMJ and
MN due to the high density of mitochondria in the nerve terminals, where they support synaptic
function [199].

7.5. PI3K and AKT

The Phosphoinositide 3-kinase (PI3K)/Protein kinase B (Akt) pathway regulates, among other
processes, cell survival. In ALS, it is downregulated by the phosphatidylinositol-3,4,5-trisphosphate
3-phosphatase (PTEN), which is strongly altered [200]. As a result, Akt total levels and activity are
decreased in human skeletal muscle at the end stage of the disease [201]. In accordance, restoring
Akt activity resulted in a protective effect by delaying hindlimb muscles denervation [202], which is
coincident with its upregulation in surviving MNs [203].

8. Conclusions

NMJ dismantling plays a crucial role in the onset of neuromuscular diseases like ALS, which is
characterized by MN degeneration and death that ultimately leads to skeletal muscle denervation,
atrophy, and, frequently, death of the patient within five years of diagnosis. Thus, apart from
excitotoxicity and oxidative stress problems, ALS patients have to deal with a distal axonopathy,
in which NMJ degeneration precedes and may even be related with MN loss. Several pieces of evidence
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supportsthat synaptic-specific mechanisms are partially responsible for the selective synaptic loss
before MNs’ degeneration and recent research indicates that inherent characteristics of muscle fibers
likely play an important part in the onset and progression of the disease. The BDNF/TrkB neurotrophic
signaling is widely involved in the correct synapse maintenance and neuronal survival and strongly
affected in ALS muscles. Consequently, the affection of BDNF/TrkB signaling in muscles with ALS disease
deregulates presynaptic molecules—including PKCs and their targets—which could decrease synaptic
activity, and therefore, the synaptic protection, and retrogradely affect MNs (Figures 2 and 3). In this
review, we propose that the loss of the tightly regulated nerve-muscle continuous communication
in ALS pathology results in a functional motor impairment, muscle atrophy and paralysis. This
corresponds with the increasing amount of biological evidence that during the last few years have
revealed that the NMJ is a target for ALS therapies, which is a new vision of the disease. Furthermore,
because ALS concerns several cellules from different structures, such as myocytes, lower and upper
MNs, glia, etc., and has distinctive mechanisms and patterns of evolution, multifactorial personalized
approaches are necessary.
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Figure 3. Concluding remarks. Pre and postsynaptic interplay is essential to preserving the NMJ to
promote and sustain synaptic function through a tight communication between nerve terminals and
myocytes. In physiological conditions (left), BDNF and TrkB trigger presynaptic pathways to modulate
the synaptic function (pink arrows) that, meanwhile, stimulate muscle contraction (blue arrow).
Consequently, a bidirectional collaboration is established to promote MNs and muscle function and
survival. However, when the connection between nervous and muscular tissues is disrupted (right),
as in ALS, deficits in presynaptic activity and muscle contractility appear. This results in NMJ
dismantling, and, at the end stage of the disease, MN degeneration and skeletal muscle denervation and
atrophy. Therefore, the absence of synaptic control induces molecular changes regarding neurotrophins,
which lead to a loss of the neurotrophic control and, finally the deregulation of the neuromuscular
system. Thus, pathologies that interrupt the communication between MN and myocytes highlight
the importance of this double regulation. However, exercise and other future therapies based on
recovering the affected molecular pathways are effective at delaying ALS progression, preserving NMJs
and maintaining the bidirectional control between its elements (dashed lines in the arrows).
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