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Abstract: We used barcoded sequencing to analyze the eukaryotic population in the grape berries
at different ripening states in four Australian vineyards. Furthermore, we used an innovative
compositional data analysis for assessing the diversity of microbiome communities. The novelty
was the introduction of log-ratio balances between the detected genera. Altogether, our results
suggest that fungal communities were more impacted by the geographical origin of the Australian
vineyards than grape variety and harvest time. Even if the most abundant genera were Aureobasidium
and Mycosphaerella, they were ubiquitous to all samples and were not discriminative. In fact,
the balances and the fungal community structure seemed to be greatly affected by changes of the
genera Penicillium, Colletotrichum, Aspergillus, Rhodotorula, and Botrytis. These results were not evident
from the comparison of relative abundance based on OTU counts alone, remarking the importance of
the balance analysis for microbiome studies.
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1. Introduction

The concept of “terroir,” in oenology refers to a geographic area characterized mainly by its climate,
soil, and human factors that contribute to producing typical wines. However, the term “microbial
terroir” is recently gaining interest in viticultural studies to indicate the importance of the vineyard
microbiome composition over the regional wine typicity. The grapevine microbiome is the complex
community of microorganisms, including fungi and bacteria that interact with the whole plant and
play a key role in plant health, growth, and nutrient uptake [1].

Recently, due to advances in metagenomics and the development of high-throughput sequencing
(HTS) techniques, the grapevine microbiome is receiving increasing attention. Metagenomic analyses
suggest that the microbial communities associated with grapes and grape must resemble the ones
present on leaves [2,3] and have their source mainly in the soil and surrounding fields [4]. Furthermore,
grape microorganisms can be transferred to the winery where, ultimately, they may affect wine chemical
composition and influence its quality, even at the regional scale [5–8].

Several factors and vineyard characteristics have recently shown that grape microbiome is
influenced by vineyard characteristics like climate, region, site, and grape cultivar, suggesting that
there is a nonrandom microbial fingerprint associated with the terroir [2,3,9–14]. One important factor
that has been proven to induce changes in grape microbiome composition and structure is the berry
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development process [15,16]. The grape ripening stages are defined mainly by physiochemical changes,
such as increase in levels of phenolic compounds and accumulation of sugars [17]. Large numbers
of yeast species have been identified on grape berries with population densities ranging from 101 to
103 CFU/g (Colony Forming Units) on immature grapes but increasing to 103–106 CFU/g at harvest
time [9,15,18–21]. However, previous studies analyzing microbiome changes through berry maturation
have been mostly based on culture-dependent techniques that have been proven to be insufficient to
reveal the environmental microbial diversity and ecology [22,23]. As a consequence, currently little is
known about the real influence of the grape berry maturation state on its microbiome.

One of the major drawbacks of the studies analyzing microbiome diversity by means of HTS
techniques is the derivation of statistical inferences after converting the OTU (operational taxonomic
unit) counts of the identified genera to relative abundance. The transformation of the OTU counts
to compositional data, on one hand, adds the constraint of the abundances having to sum to a
constant (i.e., 1), and on the other hand, may lead to misinterpretations when multivariate statistics
are applied [24]. Moreover, the nature of compositional data is known to hinder proper differential
abundance analysis since various normalization methods and statistical assumptions could potentially
not be appropriate for this type of data [25]. Therefore, in the current study inferences on the
differences of the microbial communities have been derived by using the compositional analysis
toolbox GNEISS [26], as incorporated into Quantitative Insights Into Microbial Ecology framework
(QIIME version 2019.1) [27]. GNEIIS introduces the concept of balances which refer to the log-ratio
between specific microbial subsets of the community, eliminating the need of using relative abundances
and statistical assumptions.

In this work, we use HTS to investigate the fungal biota (mycobiome) composition at two
maturation stages of grape berries from two grapevine cultivars, Cabernet Sauvignon and Syrah,
growing under two different geographical and environmental conditions. We also compare the
usefulness of balances obtained by the GNEISS toolbox for the microbial diversity analysis on our
data set.

2. Materials and Methods

2.1. Experimental Vineyard and Harvesting

Grapes were sourced from two Australian wine regions sampled during 2015 and denominated
Griffith (G) (Riverina, New South Wales, Australia) and Orange (O) (Coordinates and elevation in
Table S1). These wine regions represent two distinctively different grape growing regions. The Griffith
region is classified as a warm to very warm grape growing area with temperate nights [28] and is
characterized by a flat terrain (around 130 m above sea level, a.s.l.) and secure water supply, enabling
it to maintain a 15% share in the total Australian grape production. In contrast, the Orange (O) region
has an undulating to mountainous terrain with vineyard elevations spanning from 600 up to 1000 m
a.s.l. The Orange region is classified as temperate to temperate/warm with cool to very cool nights.
Two commercial vineyards were selected in both regions (designated G1, G2, O1, and O2), for Shiraz
vines (S) whereas Cabernet Sauvignon (C) vines were sampled only at vineyard G1 and O2.

Between G1 and G2 there is less than 5 m altitude difference whereas the O1 site is at 607 m a.s.l.
and the O2 site at 876 m a.s.l. thus having an approximate difference of 270 m (Table S1). Both S and C
vines were own rooted, grown under drip irrigation, and trellised to a sprawling system in G. In O,
vines were trellised to vertical shoot positioning. The nitrogen management throughout the season was
similar for both cultivars and the average crop yields of both plots were approximately 15−20 tons per
hectare. During the season, mesoclimatic temperatures, stem water potential, and soil moisture were
monitored in an attempt to characterize experimental plots. Harvest dates for vineyards (H1 and H3)
were determined at the point where sugar accumulation per berry and berry fresh mass in conjunction
with ◦Brix. The first harvest for both cultivars occurred at approximately 21 ◦Brix and was designated
H1. The second harvest, designated as H3, occurred at 23 ◦Brix for both cultivars. At each harvest date,
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60 kg of grapes was randomly harvested across the vineyards for each variety with an addition of
40 mg/kg of potassium metabisulfite prior to transport to the Charles Sturt University (CSU)/ National
Wine and Grape Industry Centre (NWGIC) experimental winery. On arrival, a 100-berry subsample
from each replicate was collected and immediately frozen at −20 ◦C for further analyses with a total of
50 subsamples.

2.2. DNA Extraction

Must samples were defrosted and centrifuged at 3500 g for 15 min, washed three times with ice
cold phosphate buffered saline and the pellet resuspended in 200 µL of DNeasy lysis buffer (Qiagen,
Valencia, CA, USA) supplemented with 40 mg/mL lysozyme and incubated at 37 ◦C for 30 min.
After this point, DNA extraction continued following the protocol of the QIAmp Fast DNA Stool Mini
Kit (Qiagen,), with the addition of a bead beater cell lysis step for 2 min using a FastPrep-24 (MP Bio)
and 100 µL of DNA eluted using AE buffer (Qiagen). DNA concentration and quality were assessed
using a Quantus Fluorometer (Promega, Madison, WA, USA) followed by gel electrophoresis of 5 µL
of eluant in 1.5% agarose submerged in 1X TAE buffer. Gels were stained with GelRed™ (Biotium,
Fremont, CA, USA) nucleic acid gel stain and viewed under UV light using Gel Doc XR+ Imaging
system (Bio-Rad, Hercules, CA, USA) DNA samples (approx. 70 ng) were subject to PCR amplification
and sequencing performed by the Australian Genome Research Facility. PCR amplicons were generated
using as forward primer (ITS1: CTTGGTCATTTAGAGGAAGTAA or 341 F: CCTAYGGGRBGCASCAG)
and reverse primer (ITS2: GCTGCGTTCTTCATCGATGC or 806 R: GGACTACNNGGGTATCTAAT),
with 35 cycles, an initiation temperature of 95 ◦C for 7 min, disassociate conditions of 94 ◦C for
30 sec, annealing conditions of 55 ◦C for 45 sec for ITS or 50 ◦C for 60 sec for 16S RNA, extension
at 72 ◦C for 60 sec and a final temperature of 72 ◦C for 7 min. Thermocycling was completed with
an Applied Biosystem 384 Veriti and using AmpliTaq Gold 360 mastermix (Applied Biosystems,
Foster City, CA, USA) for the primary PCR. The first stage PCR was cleaned using magnetic beads,
and samples were visualized on 2% Sybr Egel (Thermo-Fisher, Carlsbad, CA, USA). A secondary PCR
to index the amplicons was performed with TaKaRa Taq DNA Polymerase (Takara Shuzo, Otsu, Japan).
The resulting amplicons were cleaned again using magnetic beads, quantified by fluorometry by the
Promega Quantifluor ST fluorometer (Promega), and normalized. The eqimolar pool was cleaned a
final time using magnetic beads to concentrate the pool and then measured using a High-Sensitivity
D1000 Tape on an Agilent 2200 TapeStation. The pool was diluted to 5nM and molarity was confirmed
again using a High-Sensitivity D1000 Tape. This was followed by sequencing on a MiSeq platform
(Illumina, San Diego, CA, USA) with a V3, 600 cycle kit (2 × 300 base pairs paired-end).

Paired-ends reads were assembled by aligning the forward and reverse reads using PEAR
(version 0.9.5) [29]. Primers were identified and trimmed. Trimmed sequences were processed using
Quantitative Insights into Microbial Ecology (QIIME 1.8) [30] USEARCH [31] (version 8.0.1623) and
UPARSE software (version 8.1.1861) [32].

Using USEARCH tools sequences were quality filtered, full length duplicate sequences were
removed and sorted by abundance. Singletons or unique reads in the data set were discarded.

The16S rRNA sequences were clustered followed by chimera filtering using “rdp_gold” database
as the reference. To obtain the number of reads in each OTU, reads were clustered with a minimum
identity of 97%. Using Qiime taxonomy was assigned using Greengenes database (version 13_8,
Aug 2013).

ITS sequences were clustered followed by chimera filtering using “Unite” database as reference.
To obtain number of reads in each OTU, reads were clustered with a minimum identity of 97%. Using
Qiime, taxonomy was assigned based on Unite database [33] (Unite Version7.1 Dated: 22.08.2016).

2.3. Data Analysis

The data processing and part of the statistical analysis has been performed with QIIME
(version 2019.1). The OTU table has undergone a series of filtering steps including removing
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OTUs with < 10 counts across all samples, removing OTUs whose assigned taxonomy did not reach
genus level and removing genera whose relative abundance was < 1% across all samples. After
collapsing the OTU table at genus level, in order to compensate for the uneven sequencing depth
across the samples, the OTU table was rarefied at a value equal to the maximum amount of sequences
observed across all samples so as each sample to include 11,579 sequences.

2.4. Statistical Analysis

The factors considered for the statistical analysis were region (G1, G2, O1, and O2), variety
(C and S) and harvest period (H1 and H3). Statistical analysis has been performed in QIIME with the
ADONIS permutation-based statistical test [34] and GNEISS, as well as externally using the Python
(version 3.7) libraries STATSMODELS [35], SCIPY [36], and PANDAS [37]. Using the rarefied OTU
table, alpha diversity was calculated based on the Shannon index, whereas beta diversity was based
on the Bray-Curtis index since taxonomy was constrained at genus level. Using the Shannon index,
the replicates were examined for outliers resulting in the removal of two samples. The distribution of
the Shannon index proved of being bimodal, with one mode concerning only the region O1. The two
modes were separated and two-way ANOVA was performed on each mode. Prior to ANOVA,
the assumptions of heteroskedasticity and normality on each mode were examined and satisfied using
the Levene and Shapiro-Wilk test, respectively. Similarities between regions, varieties, and harvest
periods were examined with Principal Coordinate Analysis (PCoA) using the Bray-Curtis distance
metric, whereas ADONIS multivariate analysis of variance (MANOVA) with 999 permutations helped
to identify significance. The unrarefied OTU table became the input source for GNEISS since it
applies its own normalization method. The analytical pipeline for GNEISS included the initial steps
of imputing zero OTU counts with a pseudocount equal to 1 and partitioning of genera into two
groups using Ward hierarchical clustering. Each group contains genera that are highly correlated
based on their co-occurrence and therefore the two groups are anti-correlated. Subsequently, GNEISS
applied isometric log-ratio transformation which calculates, for each sample, the log-ratio between
these two groups. That means one group represents the numerator of the ratio and the other group
the denominator, whereas the log-ratio is referred as balance. This balance may have positive or
negative value signifying that for a given sample the abundances of some genera have changed and
these genera are either from the numerator, the denominator, or both the numerator and denominator.
Finally, based on these balances GNEISS performed ordinary least squares regression (OLS) using
the regressors region, variety, and harvest period, where 10-fold cross validation of 10 partitions
showed that over fitting did not occur. Since OLS regression is more appropriate for continuous than
categorical independent variables, from the reported results the only statistical measure considered
was the explained variance (R2 adjusted).

3. Results

3.1. Sequences Analysis Results

DNA of 50 samples of grapes representative of the 4 vineyards (G1, G2, O1, and O2) were
massively sequenced by the Illumina platform resulting in a minimum of 30K reads for both the ITS
and 16S rRNA gene regions, respectively. After quality filtering and exclusion of sequences matching to
chloroplast or mitochondria, 1,187,046 and 24,610 reads remained for fungal and bacterial community
analysis, respectively. In the case of ITS sequences the median number of sequences per sample
was 23,028 whereas for the 16S rRNA sequences it was 366. Given the low number of 16S rRNA
sequences per sample combined with the fact that the majority of these sequences have been identified
of belonging to the genus Sphingomonas, we considered that the obtained sequences for this amplicon
were not enough for a robust analysis of the bacterial community.
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3.2. Fungal Diversity Was Mainly Impacted by the Wine Region

Figure 1 shows alpha diversity of the fungal community based on Shannon index. The Shiraz
samples from the Griffith region (G1 and G2) exhibited higher diversity compared to the rest of
the samples, whereas the samples with the lowest diversity have been the ones from the O1 region.
Additionally, the harvest period (H1 and H3) seemed to have affected the observed diversity of the
Shiraz samples from O1. Two-way ANOVA on the Shannon index for the region O1 revealed significant
differences between the groups of the factors variety and harvest which had relatively equal amount of
impact on the total variance explained by these two factors (54% in total) (Table 1). For the rest of the
samples significance was observed only between the groups of the factors region and variety which
combined explained 73% of the total variance with the factor region having the greatest impact (53%)
(Table 2).
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Figure 1. Samples alpha diversity based on Shannon index. Each value corresponds to the average
of samples’ replicates and bars correspond to standard deviation. Samples abbreviation includes
information of the region, Griffith (G1 and G2) or Orange (O1 and O2), the harvest time points (H1 or
H3), and the grape varietals, Shiraz (S) or Cabernet (C).

Table 1. Results from Shannon index two-way ANOVA on region O1.

Factor DF R2 F Pr (>F)

Variety 1.0 0.25 5.218 0.048

Harvest 1.0 0.29 5.522 0.043

3.3. Fungal Community Clustered Distinctly According to Wine Region, Variety and Harvest

The clustering of the samples in the PCoA based on Bray-Curtis distance metric (Figure 2)
suggested that the factor region has the greatest effect on the distinction of the samples with O2 samples
being the most different. Moreover, higher order of influence was observed on the G2 samples by
the factor variety, whereas on the O1 samples the factor harvest was the most influent, as suggested
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also by the Shannon index. After performing MANOVA with ADONIS on the Bray–Curtis distance
metric, the results showed that there are significant differences between the groups of the factors region,
variety and harvest period (Table 3). From the three factors, region accounts for the highest amount of
variance (53%) followed by variety (7%) and harvest period (2%).

Table 2. Results from Shannon index three-way ANOVA on all the regions apart region O1.

Factor DF R2 F Pr (>F)

Region 2.0 0.53 33.575 1.744e-8

Variety 1.0 0.20 25.710 1.754e-5

Harvest 1.0 0.02 2.807 0.103
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Table 3. Results of the MANOVA analysis performed with ADONIS on Bray–Curtis distance metric.

Factor DF R2 F Pr (>F)

Region 3.0 0.532 20.694 0.001

Variety 1.0 0.079 9.267 0.001

Harvest 1.0 0.027 3.229 0.029

3.4. Genera Balances Affected the Fungal Community Structure

The high-throughput sequencing analysis allowed the detection of 18 different genera represented
by more than 1% of the sequences for each sample. Table 4 shows all the genera that have been
identified as well as the range of their OTU counts based on the rarefied OTU table. The most abundant
genera in general were Aureobasidium and Mycosphaerella with a range of OTUs representing 5099
and 1991 on average, respectively. Other abundant genera were Botrytis, Aspergillus, Colletotrichum,
Rhodotorulla, and Penicillium.
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Table 4. OTU counts of rarefied OTU table collapsed at genus level. Values represent median and minimum-maximum range of OTU counts of sample replicates.

Taxonomy G1_H1_S G1_H3_S G2_H1_S G2_H3_S G2_H1_C G2_H3_C O1_H1_S O1_H3_S O1_H1_C O1_H3_C O2_H1_S O2_H3_S

Diplodia 25 52 21 45 14 11 9 119 2 3 1 4
1–46 0–128 12 –33 26–80 6–18 10–11 3–12 66–163 1–6 2–3 0–1 2–5

Cladosporium 2 1 2 2 3 2 54 98 53 21 6 7
1–4 0–3 0–4 1–7 3–6 1–7 21–54 91–135 41–58 19–25 6–7 7–7

Mycosphaerella 709 630 2046 1554 3876 2754 2536 3406 1750 1780 1784 1068
578–1041 467–796 1568–3104 852–2780 3511–4283 2105–2764 1845–2783 3073–3512 1695–1840 1519–2026 1782–2349 1011–1500

Aureobasidium
4190 3492 3783 2390 5384 4333 8178 5257 8545 8712 3393 2939

3373–5254 2849–4175 1996–4907 1502–5085 5237–5559 4122–4625 7963–9262 3293–5927 8513–8696 8331–9090 3289–4590 2868–3802

Alternaria
354 284 508 304 517 399 53 536 64 61 47 62

286–440 206–366 268–804 227–580 440–531 287–428 53–55 415–833 53–64 47–79 44–80 42–72

Stemphylium 196 162 376 282 346 300 86 188 49 58 27 18
107–263 126–232 226–479 207–409 303–404 211–337 86–139 176–214 42–65 35–61 23–48 13–32

Phoma
198 147 138 67 279 304 150 118 88 92 341 14

183–327 118–180 60–319 41–150 266–331 226–316 142–186 89–144 78–92 76–116 70–349 14–23

Aspergillus 1567 2263 1634 3734 44 32 6 14 1 2 3 0
465–2626 1826–3485 234–5548 811–6248 38–67 6–36 5–93 6–35 0–6 1–12 2–4 0–1

Penicillium
520 1320 685 460 34 17 35 164 25 2 2 1

360–943 324–2727 304–1414 268–933 21–54 5–19 16–129 106–307 10–406 1–44 0–4 0–4

Erysiphe 4 9 17 30 0 9 6 9 1 8 44 260
2–8 3–15 7–22 14–83 0–1 5–9 5–12 2–13 0–12 2–9 41–89 251–310

Botrytis 540 1121 50 1235 32 21 18 202 8 6 4302 5314
450–3317 318–1631 10–659 130–1723 22–54 9–25 12–21 132–508 3–9 2–7 2315–4794 4383–5398

Metschnikowia
6 51 2 0 4 1 4 103 5 4 0 0

0–58 0–148 0–5 0–2 2–5 1–4 1–5 16–151 2–6 3–17 0–2 0–1

Acremonium
12 16 122 232 44 32 0 2 0 0 1 1

1–35 1–32 47–662 63–316 43–67 16–33 0–0 1–4 0–2 0–0 0–4 1–1

Colletotrichum
112 250 1 14 331 2567 0 0 1 1 0 0

7–575 42–509 0–2 5–17 187–428 2554–3623 0–1 0–0 0–2 0–1 0–0 0–0

Rhodotorula
1638 1153 8 2 10 8 138 131 763 622 47 60

30–4445 81–2663 0–20 1–10 8–12 6–12 60–252 104–179 512–780 562–716 31–62 45–77

Sporobolomyces 139 90 236 148 184 249 11 288 24 22 12 7
84–264 35–175 89–361 108–311 182–228 127–287 3–14 159–434 18–32 12–41 6–31 5–12

Bullera
19 13 84 86 118 125 5 29 9 10 8 4

12–26 10–17 32–132 51–115 115–128 74–160 0–15 17–35 5–15 4–25 7–9 5

Cryptococcus 159 104 902 538 327 410 78 1303 97 136 1559 1770
81–256 58–170 27–1563 326–1425 277–353 234–468 34–88 691–1739 87–101 110–199 1195–1926 1441–1872
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Using the tool GNEISS, 9 genera were included by GNEISS in the numerator and 9 in the
denominator in order for the balances to be calculated (Figure 3). Furthermore, the range of the
OTU counts for each genus is being depicted along with the fold-change between the minimum and
maximum observed OTU count. Additionally, for each genus, the samples were grouped based on the
factors (region, variety and harvest) and Kruskal–Wallis H-test was performed in order to identify
non-significant genera. After applying Bonferroni correction on the resulted p-values and setting
the significance threshold at 0.01, the genera Aureobasidium, Phoma, and Diplodia were identified as
non-significant. Figure 4 shows the balances calculated by GNEISS for each sample showing again that
the factor region seems to have the greatest impact on the separation of the samples.
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Since GNEISS calculates log-ratio for each sample, it is difficult to conclude whether the calculated
log-ratio has been the outcome of changes in the genera of either the numerator, the denominator or
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both. However, based on the Figure 3 we may assume that the genera that could greatly influence
the resulted log-ratio are genera with quite high fold-change between the minimum and maximum
observed OTU count. These genera are Penicillium, Colletotrichum, and Aspergillus for the numerator,
and Rhodotorula and Botrytis for the denominator. Figure 5 shows the abundances of the identified
genera based on their observed OTU counts. The OTU counts have been converted to relative
abundance in order to be compared to their log2 values.Microorganisms 2019, 7, x FOR PEER REVIEW 3 of 16 
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The log2 transformation of the OTU counts in Figure 5 will be used as a means of explaining
the calculated balances depicted in Figure 4, taking into consideration the aforementioned genera of
Figure 3 that could greatly influence the resulted balance. Starting with the Shiraz samples from G1,
the calculated balances are close to zero signifying that the abundances of the genera in the numerator
are counter-balanced by the abundances of the genera in the denominator (Figure 4). For instance, the
abundances of Aspergillus, Colletotrichum, and Penicillium are relatively equal to those of Rhodotorula and
Botrytis. Therefore, the samples from G1 could conveniently be used as a reference for explaining the
change of the balances for the rest of the samples. Consequently, although the abundances of Aspergillus
and Penicillium of the Cabernet samples from G2 are lower than the samples of G1, the higher positive
balance of these samples could be attributed to the lower abundance of Rhodotorula and Botrytis as well
as the higher abundance of Colletotrichum resulting in an overall more positive balance for G2 samples
(Figure 4). Within the G2 Shiraz samples, Aspergillus and Penicillium had almost the same abundance as
the G1 samples, whereas great difference was observed with Rhodotorula and Colletotrichum (Figure 5).
Moreover, the H3 harvest period seems to have influenced positively the abundance of Aspergillus
and Colletotrichum, comparing to H1, and quite negatively the abundance of Rhodotorula making these
samples the ones with the highest positive balance. All the genera considered for the numerator in the
balances had very low relative abundance and log2 of the OTU counts for O1 and O2 samples (Figure 5),
resulting in negative balances (Figure 4). As far as the O1 region is concerned, the negative balance
was the result of the very low abundances of Aspergillus, Colletotrichum, and Penicillium comparing to
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G1. Also, comparing the Shiraz and Cabernet samples from O1, the lower abundance of Aspergillus
and Colletotrichum resulted in higher negative balance. Considering the harvest period, the genus that
seems to be greatly affected for the Cabernet samples is Penicillium, whereas for the Shiraz samples it is
Botrytis. The Shiraz samples from O2 followed the same pattern as the corresponding samples from O1
(Figure 4), however the higher abundance of Botrytis (Figure 5) compared to the rest of the samples
was the reason for having the highest negative balance.

The OLS regression performed by GNEISS on the calculated balances using the regressors region,
variety and harvest revealed a 75% of total variance explained. From the three factors, region is
responsible for the 63% of the total observed variance, whereas variety for 11% and harvest period
for 1%.

4. Discussion

Microbial communities on grape surfaces have been previously studied due to their perceived
importance for contribution to wine characteristics, style, and quality [4,6,14]. Bacterial and fungal
populations on the grape surface and the vine plant are affected by various biotic and abiotic factors,
such as insects, interactions between resident populations, geography, climate, and viticultural
practices [2,4,13]. Generally, many of these variables are not independent and may be clustered into
broad groups of effects. Particular attention needs to be paid to the population dynamics of fungi
during grape berry development which may be related to the increased surface area of each berry, and to
the availability of nutrients such as carbohydrates and organics acids [15,21,38]. Most of the studies
analyzing microbial changes during the maturation of the grape have been based on culture-dependent
analysis [9,15,18–21]. Those studies found changes in structure and dynamics of the bacterial and fungal
communities during grape maturation. However, the limitation of culture-dependent techniques
to assess the real microbial diversity in natural environments is well recognized [22,23]. Recent
investigations have characterized significant and consistent changes in grape and wine composition
and wine sensory profiles, associated with grape maturities at harvest and vineyard site [39,40]. Besides,
higher levels of carotenoids are present in grapes from hot or dry climates, or exposed vineyards to
solar radiation [41].

In the present study we used barcoded sequencing to analyze the mycobiome of Cabernet
Sauvignon and Shiraz grapes varieties sampled at two ripening times in four vineyards situated at two
different Australian wine regions.

Our results show that fungal diversity of the grapes was mainly influenced by region while the
varietal and harvest time had a slighter weight. As the climate at O is colder and drier than at G,
the pattern of lower fungal species richness in the highest altitude regions hints that selection might
have a role in determining these patterns. Within the two O vineyards, greater differentiation between
fungal communities was observed than for the G vineyards probably due to a higher heterogeneity
of the terrain and differences in altitude (about 270 m) between sampling points O1 and O2. In fact,
previous studies have observed changes in microbial diversity and composition due to altitude and
geographical orientation [14,42]. In addition, within the O1 samples, the factors variety and harvest
had significant influence on the fungal diversity while the weight of harvest or maturation time for
the rest of samples was not significant. Except for the absence of Acremonium or Colletotrichium in
most O samples, the list of genera is the same in the rest of samples, thus, the observed changes in
alpha diversity should be due to changes in species within each genus. In fact, both genera are usually
related to humid or moist climates, which would justify their low abundance in the area O that is
qualified as dry.

Our results also show that the fungal community composition varied significantly across the
different vineyards. The Bray–Curtis distance metric was used for the clustering of the samples and
indicated that the samples clustered significantly different by region, variety and harvest time, being
again the region the factor that had the strongest effect on sample differentiation by taxa composition.
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The most abundant genera across all samples were Aureobasidium and Mycosphaerella. While
Aureobasidium has been frequently isolated and also detected by culture-independent techniques in
previous studies analyzing wine grape berries surfaces around the world [2,3,11,16,20,42,43], the genera
Mycosphaerella has been seldom reported. Because several species of Mycosphaerella are considered plant
pathogens, the presence of this genus may be directly related to the vine health. However, as different
species of the same genus may behave totally different and Mycosphaerella was highly abundant in all the
analyzed samples, it could represent a characteristic genus of the Australian grapes. In fact, previous
studies using HTS analysis to analyze the grape microbiome have also suggested the presence of specific
genera or species in different wine regions [2,11,44,45]. Recently, Dissamayake et al. [46] identified
both Aureobasidium and Mycosphaerella within the endophytic community in stems grapevine. Other
epiphytic filamentous fungi usually associated with plant diseases and frequently found by HTS in the
grape mycobiome were Aspergillus, Botrytis, Colletotrichium, Rhodotorula, and Penicillium. The results
obtained by QIIME corroborated these findings and additionally GNEISS identified these five genera
as the ones with the strongest effect on the balances driving the differentiation in fungal composition
across samples. Most analyses of microbiome based on HTS relies on multivariate analysis. From the
comparison between relative abundance and log2 OTU counts it becomes apparent that the constraint
applied when the OTU counts are converted to compositional data could lead to misinterpretations.
For instance, the fluctuation of the relative abundance of Aureobasidium across all samples seems
significant. However, the log2 transformation of the OTU counts of Aureobasidium reveals a relatively
stable abundance across all samples corroborating its identification as non-significant genus by the
current analysis. Thus, the balances analysis applied during the present study lead to more realistic
results than those of transforming OTU counts of genera to relative abundance.

5. Limitations

Metataxonomic analysis is notorious of incorporating various laboratory and bioinformatic
procedures that assign a degree of inaccuracy to the overall analysis by introducing variability among
the samples. The numerous factors that are associated with these procedures, along with the fact that
the taxonomy and microbial abundance of the samples is unknown render difficult the estimation of the
produced variability. Moreover, the nature of the microbial data necessitates the use on non-parametric
statistics such as Kruskal-Wallis that do not make assumptions regarding the distribution of the OTU
counts. Nevertheless, such non-parametric statistics may lose statistical power in small datasets.
Finally, GNEISS does not provide an explicit information regarding differential abundance of taxa.
As the results demonstrate, it rather servers as an useful exploratory analysis tool aiming at producing
comparative insights between the samples utilizing the concept of balances. This way it sets the basis
for a subsequent controlled experimental design that focuses to analysing specific microbial dynamics.

6. Conclusions

This study used barcoded massive sequencing to analyze the effect of the grape ripening state,
the vineyard region, and grape variety on the grape mycobiome. The results revealed that both fungal
composition and diversity were mainly influenced by the vineyard region while the grape variety or
the ripening state had less impact. However, within each region the fungal communities were affected
differentially by the ripening state apparently due to the climatology. Even if the most abundant genera
across samples were Aureobasidium and Mycosphaerella, the results obtained by GNEISS identified five
genera with the strongest effect on the balances driving the changes in fungal composition. This result
manifests that the analysis of the microbiome changes based on transformed OTU counts to relative
abundance could lead to misinterpretations.



Microorganisms 2019, 7, 669 12 of 14

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/12/669/s1.

Author Contributions: D.K. and E.K.-D. participated in the study design and performed the experimental work,
data collection and data treatment. Experimental goals and general elements of the experimental design were
proposed by D.K., E.K.-D., L.M.S., A.M. and M.C.P. Manuscript writing was performed by D.K., L.M.S. and M.C.P.

Funding: The investigation for determining the impact of growing condition on grape and wine composition
was funded by Australia’s grapegrowers and winemakers through their investment body Wine Australia, with
matching funds from the Australian Government (Grant NWG1301) and through a Charles Sturt University
NWGIC Fellowship. The National Wine and Grape Industry Centre is an alliance between Charles Sturt University,
New South Wales Department of Primary Industries and the New South Wales Wine Industry Association. This
study was also supported by a project from the Spanish Government AGL2015-73273-JIN. DK was supported
from the European Union’s Horizon 2020 research and innovation program under the Marie Skodowska-Curie
grant agreement No. 713679 and from the University Rovira i Virgili (URV) (2017MFP-COFUND-7).

Acknowledgments: The authors acknowledge the samples provided by the companies De Bortoli Wines,
McWilliams Wines, Cumulus, and Philip Shaw Wines.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vacher, C.; Hampe, A.; Porté, A.J.; Sauer, U.; Compant, S.; Morris, C.E. The Phyllosphere: Microbial Jungle at
the Plant–Climate Interface. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 1–24. [CrossRef]

2. Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. PNAS Plus: From the Cover: Microbial
biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. 2014,
111, 139–148. [CrossRef] [PubMed]

3. Pinto, C.; Pinho, D.; Sousa, S.; Pinheiro, M.; Egas, C.; Gomes, A.C. Unravelling the diversity of grapevine
microbiome. PLoS ONE 2014, 9, e85622. [CrossRef]

4. Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Hampton-Marcell, J.; Lax, S.; Bokulich, N.A.;
Mills, D.A.; Martin, G.; Taghavi, S.; et al. The soil microbiome influences grapevine-associated microbiota.
MBio 2015, 6, e02527. [CrossRef]

5. Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with
differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 1–10. [CrossRef]

6. Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Millsa, D.A. Associations
among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to
regional wine characteristics. MBio 2016, 7, e00631. [CrossRef]

7. Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. Corrigendum: From vineyard soil to wine
fermentation: Microbiome approximations to explain the “terroir” concept. Microbiology 2017. [CrossRef]

8. Morgan, H.H.; du Toit, M.; Setati, M.E. The grapevine and wine microbiome: Insights from high-throughput
amplicon sequencing. Front. Microbiol. 2017. [CrossRef]

9. Setati, M.E.; Jacobson, D.; Andong, U.C.; Bauer, F. The Vineyard Yeast Microbiome, a Mixed Model Microbial
Map. PLoS ONE 2012, 7, e52609. [CrossRef]

10. Gilbert, J.A.; van der Lelie, D.; Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. 2014.
[CrossRef]

11. Taylor, M.W.; Tsai, P.; Anfang, N.; Ross, H.A.; Goddard, M.R. Pyrosequencing reveals regional differences in
fruit-associated fungal communities. Environ. Microbiol. 2014, 16, 2848–2858. [CrossRef]

12. Morrison-Whittle, P.; Lee, S.A.; Goddard, M.R. Fungal communities are differentially affected by conventional
and biodynamic agricultural management approaches in vineyard ecosystems. Agric. Ecosyst. Environ. 2017,
246, 306–313. [CrossRef]

13. Burns, K.N.; Bokulich, N.A.; Cantu, D.; Greenhut, R.F.; Kluepfel, D.A.; O’Geen, A.T.; Strauss, S.L.;
Steenwerth, K.L. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes:
Differentiation by vineyard management. Soil Biol. Biochem. 2016, 103, 337–348. [CrossRef]

14. Portillo Mdel, C.; Franquès, J.; Araque, I.; Reguant, C.; Bordons, A. Bacterial diversity of Grenache and
Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food
Microbiol. 2016, 219, 56–63. [CrossRef]

http://www.mdpi.com/2076-2607/7/12/669/s1
http://dx.doi.org/10.1146/annurev-ecolsys-121415-032238
http://dx.doi.org/10.1073/pnas.1317377110
http://www.ncbi.nlm.nih.gov/pubmed/24277822
http://dx.doi.org/10.1371/journal.pone.0085622
http://dx.doi.org/10.1128/mBio.02527-14
http://dx.doi.org/10.1038/srep14233
http://dx.doi.org/10.1128/mBio.00631-16
http://dx.doi.org/10.3389/fmicb.2017.00821
http://dx.doi.org/10.3389/fmicb.2017.00820
http://dx.doi.org/10.1371/journal.pone.0052609
http://dx.doi.org/10.1073/pnas.1320471110
http://dx.doi.org/10.1111/1462-2920.12456
http://dx.doi.org/10.1016/j.agee.2017.05.022
http://dx.doi.org/10.1016/j.soilbio.2016.09.007
http://dx.doi.org/10.1016/j.ijfoodmicro.2015.12.002


Microorganisms 2019, 7, 669 13 of 14

15. Renouf, V.; Claisse, O.; Lonvaud-Funel, A. Understanding the microbial ecosystem on the grape berry surface
through numeration and identification of yeast and bacteria. Aust. J. Grape Wine Res. 2005, 11, 316–327.
[CrossRef]

16. Martins, G.; Vallance, J.; Mercier, A.; Albertin, W.; Stamatopoulos, P.; Rey, P.; Lonvaud, A.;
Masneuf-Pomarède, I. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing
grape berries during the ripening process. Int. J. Food Microbiol. 2014, 177, 21–28. [CrossRef]

17. Pérez-Magariño, S.; González-San José, M.L. Polyphenols and colour variability of red wines made from
grapes harvested at different ripeness grade. Food Chem. 2006, 96, 197–208. [CrossRef]

18. Jolly, N.P.; Augustyn, O.P.H.; Pretorius, I.S. The Occurrence of Non-Saccharomyces cerevisiae Yeast Species
Over Three Vintages in Four Vineyards and Grape Musts From Four Production Regions of the Western
Cape, South Africa. South African J. Enol. Vitic. 2003, 24, 8–10. [CrossRef]

19. Prakitchaiwattana, C.J.; Fleet, G.H.; Heard, G.M. Application and evaluation of denaturing gradient gel
electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 2004, 4, 865–877. [CrossRef]

20. Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food
Microbiol. 2012, 153, 243–259. [CrossRef]

21. Martins, G.; Miot-Sertier, C.; Lauga, B.; Claisse, O.; Lonvaud-Funel, A.; Soulas, G.; Masneuf-Pomarède, I.
Grape berry bacterial microbiota: Impact of the ripening process and the farming system. Int. J. Food
Microbiol. 2012, 158, 93–100. [CrossRef] [PubMed]

22. Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual
microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [PubMed]

23. Rantsiou, K.; Urso, R.; Iacumin, L.; Cantoni, C.; Cattaneo, P.; Comi, G.; Cocolin, L. Culture-dependent and
-independent methods to investigate the microbial ecology of Italian fermented sausages. Appl. Environ.
Microbiol. 2005, 71, 1977–1986. [CrossRef]

24. Tsilimigras, M.C.B.; Fodor, A.A. Compositional data analysis of the microbiome: fundamentals, tools,
and challenges. Ann. Epidemiol. 2016, 26, 330–335. [CrossRef]

25. Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.;
Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome 2017, 5, 1–18. [CrossRef]

26. Morton, J.T.; Sanders, J.; Quinn, R.A.; Mcdonald, D.; Gonzalez, A.; Vázquez-baeza, Y.; Navas-molina, J.A.;
Song, S.J.; Metcalf, J.L.; Hyde, E.R.; et al. crossm Differentiation. mSystems 2017, 2, 1–11.

27. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.;
Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome
data science. PeerJ 2018, 6, e27295v2. [CrossRef]

28. Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions
worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [CrossRef]

29. Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR.
Bioinformatics 2014, 30, 614–620. [CrossRef]

30. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef]

31. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461.
[CrossRef] [PubMed]

32. Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10,
996–998. [CrossRef] [PubMed]

33. Kõljalg, U.; Larsson, K.H.; Abarenkov, K.; Nilsson, R.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.;
Kjøller, R.; Larsson, E.; et al. UNITE: A database providing web-based methods for the molecular identification
of ectomycorrhizal fungi. New Phytol. 2005, 166, 1063–1068. [CrossRef] [PubMed]

34. Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2006, 26,
32–46.

35. Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. Proc. 9th Python Sci.
Conf. 2010, 57. [CrossRef]

36. Jones, E.; Oliphant, T.; Peterson, P. Scipy: Open Source Scientific Tools for Python. Available online:
http://www.scipy.org (accessed on 18 October 2019).

http://dx.doi.org/10.1111/j.1755-0238.2005.tb00031.x
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.02.002
http://dx.doi.org/10.1016/j.foodchem.2005.02.021
http://dx.doi.org/10.21548/24-2-2640
http://dx.doi.org/10.1016/j.femsyr.2004.05.004
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.025
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22809638
http://www.ncbi.nlm.nih.gov/pubmed/7535888
http://dx.doi.org/10.1128/AEM.71.4.1977-1986.2005
http://dx.doi.org/10.1016/j.annepidem.2016.03.002
http://dx.doi.org/10.1186/s40168-017-0237-y
http://dx.doi.org/10.1038/s41587-019-0209-9
http://dx.doi.org/10.1016/j.agrformet.2003.06.001
http://dx.doi.org/10.1093/bioinformatics/btt593
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://dx.doi.org/10.1038/nmeth.2604
http://www.ncbi.nlm.nih.gov/pubmed/23955772
http://dx.doi.org/10.1111/j.1469-8137.2005.01376.x
http://www.ncbi.nlm.nih.gov/pubmed/15869663
http://dx.doi.org/10.1111/j.1442-9993.2001.01070
http://www.scipy.org


Microorganisms 2019, 7, 669 14 of 14

37. McKinney, W. Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. Conf. 2010, 1697900,
51–56.
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